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Abstract

HER3 is a pseudo-kinase member of the EGFR family having a role in both tumor progression and 

drug resistance. Although HER3 was discovered more than 30 years ago, no therapeutic 

interventions have reached clinical approval to date. Since the evidence of the importance of 

HER3 is accumulating, increased amount of preclinical and clinical trials with HER3 targeting 

agents are emerging. In this review article, we discuss the most recent HER3 biology in 

tumorigenic events and drug resistance, and overview the current and emerging strategies to target 

HER3.
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INTRODUCTION

The human epidermal growth factor receptor (HER) proteins are a family of receptor 

tyrosine kinases that play a role in both normal and tumor cell biology. The family consists 

of four highly homologous members epidermal growth factor receptor (EGFR [ERBB1/

HER1]), HER2 (ERBB2), HER3 (ERBB3) and HER4 (ERBB4), consisting of a ligand-

binding extracellular domain, a transmembrane domain, an intracellular kinase domain, and 

a C-terminal tail (1). The family members (except HER2) are generally activated through 

extracellular ligand binding inducing a conformational change, followed by homo- or 

heterodimerization among the family members, eventually leading to the activation of an 

intracellular signaling cascade (2). The cellular responses include increased cell survival and 
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proliferation, explaining why aberrant EGFR family signaling is strongly connected with 

oncogenic events (1).

When inactive, the EGFR receptors exist in a monomeric tethered conformation, but upon 

ligand binding, the receptor changes into its extended form, exposing a dimerization arm 

(2,3). Contact with another open conformation receptor permits formation of a receptor 

dimer, inducing a further conformational change in the intracellular domain of the receptor 

complex. This conformational change leads to a transphosphorylation event, where the 

donor receptor introduces multiple phosphorylations into the C-terminal tail of the acceptor 

receptor, allowing attachment and activation of downstream signaling cascade (3). The 

paradigm of EGFR family receptors existing solely in a monomeric form prior to ligand 

binding has been challenged by suggesting that EGFR can be found in an inactive dimerized 

form before ligand stimulus (4). The signal inactivation happens via dephosphorylation, 

receptor internalization, and proteolysis or recycling of the receptor (5).

EGFR binds to at least seven ligands including EGF, transforming growth factor-alpha, 

heparin-binding EGF-like growth factor, betacellulin, amphiregulin, epiregulin, and epigen 

(6). Neuregulins (NRG) 1–4 are the ligands for HER3 and HER4 (7). Unlike the other three 

EGFR family members, HER2 has no known ligands and is found constitutively in an open 

conformation with exposed dimerization loop and needs a ligand-bound heterodimerization 

partner to signal (8). The variety in both ligands and dimerization partners provides diversity 

in the downstream signaling response (9).

HER3: The oddball of the EGFR family

HER3 is a unique EGFR family member with no or little intracellular tyrosine kinase 

activity. Compared with the other EGFR family members, HER3 diverges at critical residues 

in the kinase domain locking it in an inactive-like conformation (10). Although HER3 has 

been reported to have some kinase activity, it is suggested to be 1000-fold weaker than the 

kinase activity of the fully activated EGFR (10,11). Since HER3 is unable to form 

homodimers, its activation depends on heterodimerization with another receptor in order to 

induce the downstream C-terminal phosphorylation events (12).

The HER3 gene localizes in the long arm of chromosome 12 (12q13.2), encoding a 180 kDa 

protein (13,14). The extracellular domain of HER3 is divided into four subdomains (I–IV): 

subdomains I and III are leucine-rich β-helical areas responsible for the ligand binding, 

whereas subdomains II and IV are cysteine-rich regions (15). Subdomain II also contains a 

dimerization arm necessary for the interaction with other receptors. The transmembrane 

domain is followed by an intracellular domain enclosing a flexible juxtamembrane region, 

kinase domain, and the C-terminal tail. In absence of a ligand, binding between subdomains 

II and IV keeps HER3 in an inactive state (16). Upon ligand binding, the dimerization 

partner’s kinase domain trans-phosphorylates the tyrosine residues in the C-terminal tail of 

HER3 (17).

The preferable dimerization partners for HER3 are EGFR and HER2, followed by lower 

affinity to HER4 (Figure 1). HER3 also dimerizes with some non-EGFR family receptors, 

including mesenchymal epithelial transition factor (MET) receptor and fibroblast growth 
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factor receptor 2 (FGFR2) (18,19). Six of 11 HER3 tyrosine phosphorylation sites are direct 

recruiters of phosphoinositide-3-kinase (PI3K), making HER3 a strong activator for PI3K / 

protein kinase B (AKT) signaling, important for cancer cell survival (20-22). HER3 also 

activates mitogen-activated protein kinase (MAPK) signaling, stimulating cell proliferation. 

Other suggested effectors of HER3 include Janus kinases (JAKs) and activators of 

transcription and proto-oncogene tyrosine-protein kinase SRC signaling pathways involved 

in signal transduction and increased cell proliferation (23,24).

HER3 SIGNALING IN CANCER DEVELOPMENT AND PROGRESSION

HER3 overexpression in cancer

In contrast to other EGFR family members, HER3 is not oncogenic when overexpressed 

alone (25). However, ubiquitous HER3 expression is detected in various cancers including 

breast, ovarian, colon, gastric, lung, cutaneous, and pancreatic cancers (26,27). High HER3 

expression is also linked to disease progression and/or poor prognosis in many cancer types 

(28,29).

Although HER3 does not cause tumorigenesis on its own, HER2:HER3 heterodimers 

possess the highest transforming capability among all the possible EGFR family dimers 

(30,31). The superior oncogenic capability of the dimer pair makes HER3 critical for HER2-

mediated tumorigenesis in multiple tumor types. HER3 overexpression is a frequent event, 

especially in HER2-positive breast cancers, and mice expressing neu (rodent HER2) 

transgene exhibit elevated HER3 expression (32,33). In breast cancer cell lines, HER3 was 

shown to be critical for maintaining cell viability, while EGFR was dispensable (34). In 

addition, inhibition of HER3 revokes HER2-dependent tumorigenesis in transgenic 

mammary tumor models (35). HER3 has also been implicated in the pathogenesis of non-

small cell lung cancer (NSCLC), many of which have EGFR mutations (36-38).

Ovarian cancers often express high levels of HER3, and HER3 expression has been 

associated with poor survival (39,40). HER3 was deemed essential for ovarian cancer cell 

proliferation in vitro and in vivo, and the activation of HER3 was mediated by NRG1 

autocrine signaling (41). NRG mRNA was detected in 83 % of ovarian carcinomas, and 

addition of ectopic NRG1 was stimulating the growth of several ovarian cancer cell lines 

(42). Additionally, NRG driven HER3 activation or NRG activating fusions have been 

reported in multiple other tumor types including pancreatic, head and neck, colorectal, lung, 

and prostate cancers (43-51), but NRG is also secreted into the tumor microenvironment by 

cancer-associated fibroblasts (CAFs) (51,52). Furthermore, NRG inhibition was suppressing 

tumor growth in preclinical models of pancreatic cancer (52), demonstrating the importance 

of NRG as a HER3 activating oncogenic factor.

Rare oncogenic HER3 mutations have been reported. Recurrent somatic HER3 mutations 

are found in 11 % of colon and gastric cancers and are associated with malignant 

transformation (53). Although these mutations transform cells in a ligand-independent 

manner, the oncogenic activity is dependent on co-expression with HER2. shRNA mediated 

HER3 knockdown delayed tumor growth in HER3 mutant tumors. Also in breast cancer 

several HER3 mutations (F94L, G284R, D297Y, T355I, and E1261A) were shown to have 

Haikala and Jänne Page 3

Clin Cancer Res. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



gain of function properties (54). HER3 mutations caused increased HER2:HER3 

heterodimerization and made the cells resistant to the HER2-targeting drug lapatinib. 

Overall, the prognostic value of the mutations and their role in tumor development or 

progression is still not well understood.

HER3 in cancer progression

HER3 expression is connected with disease progression and metastatic events in various 

cancer types. In breast cancer, HER3 expression is linked to increased intravasation and 

metastasis, and higher HER3 expression was found in metastatic breast cancer (MBC) 

samples compared with primary tumor samples (55). In another breast cancer study, 30% of 

the primary tumors were shown to express HER3, whereas the expression was 60% in the 

matched metastatic samples, suggesting that HER3 expression is linked to metastatic events 

(56). In a meta-analysis from multiple malignant tumor types it was confirmed, that HER3 

expression led to worse overall survival and 1.6-fold higher death risk than in HER3 

negative patients (57).

In NSCLC, HER3 messenger RNA (mRNA) expression was associated with increased 

metastatic rate and decreased survival (58). In a more recent study, EGFR and HER3 protein 

levels were analyzed from primary tumors, brain metastases, and circulating tumor cells 

(CTCs) (27). Over 50% of the primary tumors had EGFR expression and ~80% expressed 

HER3; the numbers for brain metastases were 60% and 90%, again highlighting the 

importance of HER3 in the disease progression. Codetection with EGFR/HER3 was 

successful in CTCs from the blood of 67% of the patients.

HER2 and HER3 protein levels were evaluated in colorectal cancer patients with liver 

metastasis (59). Whereas high HER2 levels were found only from 8% of the primary liver 

tumors, high HER3 levels were found from 75% of the metastatic samples, again suggesting 

a role for HER3 in the metastatic process and cancer progression. HER3 is also connected to 

worse outcomes in pancreatic cancer (60). Furthermore, HER3 is highly expressed in 

cutaneous tumors and was reported to act as an indicator for poor prognosis in melanoma 

(61,62). In contrast to other tumor types, high HER3 expression was associated with better 

survival in bladder cancers (63). Researchers suggested that this could be explained by 

increased expression of soluble form of HER3 (sHER3), which is overexpressed in bladder 

cancer (63). sHER3 is a 85 kDa truncated and secreted form of HER3 (64), which is 

reported as a negative regulator of HER2, HER3, and HER4 (64,65).

Although classically HER3 signals from the membrane, occasional nuclear localization of 

the full-length HER3 has been reported and nuclear HER3 expression has been connected to 

better overall survival in uveal melanomas (66-68). Functionally nuclear HER3 increased the 

mRNA level expression of cyclin D1, suggesting it might act as a transcriptional activator 

(66). However, the mechanisms and role of nuclear HER3 in cancer remain to be studied 

further.
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HER3 AS A DRIVER OF DRUG RESISTANCE

HER3 as a mediator of resistance to targeted therapies

HER3 expression acts as a bypass mechanism for various targeted therapies, and elevated 

HER3 signaling confers resistance to multiple therapeutic agents. Since HER3 dimerizes 

with receptors other than EGFR including HER2 and MET receptor, HER3 can confer 

resistance to EGFR-targeting therapies via dimerization with partners other than EGFR (69). 

Early on it was shown that HER2:HER3-mediated signaling associates with EGFR tyrosine 

kinase inhibitor (TKI) gefitinib resistance in head and neck cancer and in breast cancer 

(70,71). Later it was shown that HER3-ligand, NRG1, and the following increase in 

HER2:HER3 dimerization confers resistance to EGFR-directed antibody cetuximab in 

colorectal cancer (72). Similarly, an increase in EGFR:HER3 dimerisation was found in the 

majority of the residual cancer burden (RCB) of cetuximab/panitumumab resistant breast 

cancer patients (73). Other anti-HER TKIs such as osimertinib may also induce HER3 

upregulation as part of the resistance mechanism (74,75). This NRG1 driven EGFR inhibitor 

resistance was reverted using HER3 selective antibody patritumab. Interestingly, circulating 

NRG1 levels were a better indicator for patritumab efficacy than HER3 mRNA expression 

(37). In another study, MET amplification caused gefitinib resistance via increased HER3/

PI3K signaling, and MET amplification was detected in 22% of lung cancer patients bearing 

tumors resistant to gefitinib or erlotinib (18).

As with EGFR inhibitors, HER3 is known to confer resistance to HER2-targeted therapies. 

Trastuzumab (herceptin) is a monoclonal HER2-directed neutralizing antibody used mainly 

in HER2-positive breast cancer (76,77). Although several resistance mechanisms to 

trastuzumab exist, bypass activation of PI3K/AKT and SRC are the major molecular 

mechanisms behind therapy escape, and the bypass signaling can be driven by HER3 

(78,79). It was suggested that heterotrimer formation between HER2, HER3, and insulin-

growth factor receptor 1 (IGF1R) are the major inducer of AKT- and SRC-driven 

trastuzumab resistance in breast cancer cells (24). In the same study, knockdown of HER3 

decreased the phosphorylation activity of AKT and SRC signaling and re-sensitized the cells 

to trastuzumab, suggesting that dual blocking of HER2 and HER3 is needed to prevent the 

survival signaling. Additionally, stimulation with NRG1 induced trastuzumab resistance in 

HER2 overexpressing breast cancer cells (80).

Lapatinib is a dual TKI of EGFR and HER2 used against HER2-positive MBC. Lapatinib 

treatment was shown to induce feedback upregulation of both mRNA and protein levels in 

breast cancer cell lines, and HER3 knockdown restored the drug sensitivity in lapatinib-

resistant cells (81). Another study showed that lapatinib-resistant breast cancer cells were 

not dependent on HER2:HER3 signaling, but were relying on NRG1-driven HER3:EGFR 

dimerization (82). In fact, lapatinib can induce the symmetrical HER2:HER3 dimer which 

may have unexpected effects on tumor cell proliferation (83).

Since HER3 is a substantial activator of PI3K/AKT survival signaling, it confers resistance 

also to other targeted therapies. PI3K/AKT inhibitors are known to cause feedback 

upregulation of HER3 by relieving AKT/FoxO dependent suppression of HER3 (84), 

leading to reduced efficacy of PI3K/AKT inhibitors. NRG1 induces resistance to ALK 
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inhibitors and BRAF-V600E inhibitor, vemurafenib (85,86). Furthermore, transcriptional 

HER3 activation was connected to resistance to MAPK and RAF kinase inhibitors both in 

melanomas and thyroid cancer, and most recently HER3 amplification was described as a 

clinical bypass mechanism for MET inhibitors in NSCLC (87-89).

HER3 in resistance to hormonal therapy, chemotherapy, and radiation therapy

HER3 expression is also connected to resistance to hormonal therapies. HER3 plays a 

critical role in the phosphorylation of HER2 in breast cancer cells, and downregulation of 

HER3 reversed anti-estrogen receptor (ER) tamoxifen resistance in breast cancer cell lines 

(90). Furthermore, breast cancer patients bearing tumors coexpressing HER2 and HER3 are 

more prone to develop tamoxifen resistance measured by disease-free survival (91,92). 

Increased activity of EGFR, HER2, and HER3 was also connected to resistance to ER 

agonist fulvestrant (93). Fulvestrant treatment enhanced the HER3 expression and 

phosphorylation in breast cancer cells in an NRG1-dependent manner, and this was 

suggested as a resistance mechanism for fulvestrant in breast cancer (94). In triple-negative 

breast cancer (TNBC) patients, high HER3/EGFR protein expression (but not HER3 or 

EGFR alone) conferred worse 10-year survival after chemotherapy. Interestingly, high 

HER3/EGFR was associated with worse survival following adjuvant chemotherapy, when 

compared to patients who did not receive adjuvant chemotherapy (95).

In castration-resistant prostate cancer (CRPC), EGFR:HER3 dimers caused androgen 

receptor therapy resistance via increased PI3K/AKT signaling. Blocking HER3 with small 

interfering RNA abolished the growth of these cells, suggesting that HER3 was responsible 

for the increased PI3K/AKT expression (96). Recently it was also shown that NRG1 

secreted by the stromal cells promotes antiandrogen resistance in CRPC (51). Autocrine 

NRG1/HER3 signaling, measured by NRG1 qPCR and HER3 phosphorylation status, was 

shown to induce therapy resistance in mouse models of prostate cancer. Blockade of NRG1/

HER3 with monoclonal antibodies was re-sensitizing tumors to hormone deprivation in vitro 
and in vivo. Androgen deprivation therapy (ADT) was shown to increase the amount of 

NRG1 positive cancer associated fibroblasts also in prostate cancer patients, measured by 

immunohistochemistry and protein analysis. These studies in breast cancer and CRPC 

suggest that HER3 as well as NRG1 protein levels could be a useful biomarker for the use 

and withdrawal of hormonal therapies in cancer.

HER2/HER3 coexpression and PI3K/AKT signaling is connected to increased resistance for 

several chemotherapeutic agents including 5-fluorouracil, paclitaxel, camptothecin, and 

etoposide in breast cancer cells (97). HER3 expression was also reported to cause paclitaxel 

resistance in HER2 positive breast cancer cells by enhanced expression of AKT and survivin 

(98). Another DNA-damaging agent, doxorubicin, induced NRG upregulation and HER3-

mediated AKT signaling in ovarian cancer cells and dual use of doxorubicin with HER3 

inhibition increased apoptosis in the chemoresistant cells (99).

Additional studies link HER3 with resistance to radiation therapy. Ionizing radiation (IR) 

increases the phosphorylation of EGFR, HER2, HER3, and HER4, and silencing of HER3 

reduced the cancer cell viability after treatment with IR in vitro and in vivo mouse models 

(100,101).
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HER3-TARGETING THERAPIES AND CLINICAL TRIALS

Monoclonal antibodies (mAbs) and small molecule TKIs have been essential in targeting 

EGFR and HER2 in various tumor types; however, because of the impaired kinase activity, 

HER3 was long ignored as a therapeutic target. Recently, HER3 has come more into focus 

as the importance of HER3 in tumor progression and drug resistance has emerged (Figure 

2).

From monoclonal antibodies to antibody-drug conjugates

Since HER3 has only minimal kinase activity, HER3-directed antibodies have been the most 

pursued strategy to target HER3 so far. Various HER3-directed mAbs have been under 

preclinical and clinical development (Table 1). Most of these agents have been tested in solid 

tumor types for safety, tolerability, and preliminary efficacy in phase 1 studies. 

Seribantumab, lumertuzumab, and patritumab showed the most promise in clinical trials so 

far, progressing up to phase 2 and phase 3 studies. Although preclinical mouse studies 

demonstrate the importance of HER3 in cardiovascular development (102,103), no 

significant cardiovascular effects have been observed when anti-HER3 antibodies have been 

evaluated as single agents or in combination with erlotinib or trastuzumab (104-107). In the 

phase I trial of patritumab, no dose limiting toxicities were observed and no maximum 

tolerated dose was reached (104). The most common treatment related toxicities were mild 

and included fatigue, diarrhea and nausea. Although most of the mAbs demonstrated 

favorable toxicity profiles, the single agent activity of the HER3 mAbs has been limited, and 

development for most of the HER3 antibodies for clinical use has been discontinued. 

However, recent advances in the development of bispecific (EGFR/HER3, HER3/IGF1, 

HER2/HER3) antibodies and antibody-drug conjugates (ADCs) have created new hope for 

HER3 targeting. Bispecific antibodies generally inhibit the kinase by blocking the ligand-

binding site (108,109). ADCs are monoclonal antibodies conjugated to cytotoxic agents via 

synthetic linkers and have been shown to induce receptor endocytosis and degradation, as 

well as cancer cell death (110,111). Allosteric HER3 antibodies, which do not block NRG-1 

binding, and can bind HER3 even in the presence of NRG-1, maybe more effective than 

antibodies that block NRG-1 binding, but have yet to enter clinical development (112).

Seribantumab (MM-121) is a fully human IgG2 monoclonal antibody binding to HER3 

while blocking the NRG ligand binding and the ligand-dependent downstream activity of 

HER3 (113). In preclinical studies, seribantumab reduced HER3 activity and growth of 

xenograft tumors (41,113). Seribantumab reached several phase 1 and phase 2 studies and it 

was tried either as a single agent or in combination with EGFR-inhibiting antibodies, 

chemotherapies, or PI3K inhibitors (107,114). NRG ligand levels were shown to correlate 

with seribantumab response (107). The furthest phase 2 studies in combination with 

paclitaxel or exemestane (aromatase inhibitor) in ovarian cancer and breast cancer did not 

reach the clinical endpoint of progression-free survival (PFS); however, retrospective 

analysis showed that there was survival benefit in the NRG-high patient group (115,116). In 

EGFR-dependent tumors, there was a limited activity for combination of seribantumab and 

cetuximab with or without irinotecan chemotherapy (117). Similarly, HER3-specific mAb 

lumretuzumab was combined in a phase 1b study with EGFR-inhibiting cetuximab or 

erlotinib, and even though the toxicity was acceptable, clinical activity was modest in 
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HER3-positive solid tumors (118). Lumretuzumab was evaluated in MBC together with 

paclitaxel and pertuzumab, but the combination was associated with high incidence of 

diarrhea and narrow therapeutic window, and the clinical trial was discontinued (119). 

Recently a phase 2 clinical trial with single agent seribantumab was initiated in solid tumors 

with NRG1 fusions (NCT04383210).

Patritumab (U3-1287) is a fully humanized HER3-targeting antibody targeted toward the 

extracellular domain of HER3, which blocks HER3 ligand binding (104). Patritumab 

suppressed proliferation and survival of cancer cells in in vitro and in vivo xenograft models 

(120). It was also effective as a combination with anti-EGFR–targeting antibodies in both 

wild-type EGFR tumor models and models resistant to the first-generation EGFR inhibitors. 

Circulating NRG ligand was a predictive biomarker for patritumab efficacy in NSCLC 

patients (121,122). In HER2-positive breast cancer, patritumab together with trastuzumab 

and paclitaxel was reported to have an overall response rate (ORR) of 39 % (105). In the 

further clinical studies assessing the efficacy of patritumab (including a phase 3 study in 

NSCLC together with erlotinib) the drug failed to meet the efficacy criteria (NCT02134015). 

However, as a continuation, the novel HER3 antibody-drug conjugate U3-1402 was 

constructed using patritumab as the antibody component (110).

Patritumab deruxtecan (HER3-DXd; U3-1402) is a HER3-directed antibody-drug conjugate 

composed of patritumab, a cleavable tetrapeptide-based linker, and a topoisomerase 1 

inhibitor (exatecan derivative, DXd) payload (123). Patritumab deruxtecan was shown to 

have preclinical efficacy in NSCLC cells resistant to EGFR inhibitors, as well as colorectal 

cancer xenografts, and it was shown to have superior efficacy compared with patritumab 

alone (110,123). Patritumab deruxtecan efficacy is associated with high baseline HER3 

expression (110). It was recently reported that Patritumab deruxtecan induces antitumor 

immune response through DXd-induced cell damage and immune activation. Patritumab 

deruxtecan sensitizes HER3 expressing tumors for anti–PD-1 checkpoint blockade in vitro 
and in vivo, suggesting that it could be beneficial to combine Patritumab deruxtecan with 

immunotherapy agents (124). Preliminary results from a phase 1/2 study in MBC showed 

that Patritumab deruxtecan has a manageable safety profile and there was an ORR of 42.9% 

in heavily pretreated patients (125,126). In another phase 1 study in metastatic EGFR-

mutant and EGFR TKI-resistant NSCLC, Patritumab deruxtecan led to a response rate of 

25% (127). Importantly, clinical efficacy was observed in cancers with diverse EGFR TKI 

resistance mechanisms as HER3 is not a known resistance mechanism to EGFR TKIS. 

Additionally, two EV20 derived HER3-specific ADCs, EV20-Sap and EV20/MMAF, 

recently reported (128,129). EV20-Sap was shown to be effective in preclinical models of 

melanoma, whereas EV20/MMAF showed preclinical activity in melanoma and breast 

cancer (130). Also 9F7-F11 derived HER3-ADC was recently reported (131). So far, no 

clinical studies with these agents have been reported.

Pan-HER strategies

Since tumors often express more than one EGFR family member and the family members 

are known to induce resistance to single-HER strategies, pan-HER therapies have been 

developed to overcome compensation mechanisms. Pan-HER therapies are either antibody 
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mixtures, bispecific antibodies directed to multiple antigens, or TKIs targeting more than 

one EGFR family member. Although most of the pan-HER strategies have focused on co-

targeting EGFR and HER2, some strategies attempting to co-target HER3 have recently 

emerged.

Pan-HER (Sym013) is a mixture of six antibodies targeting EGFR, HER2, and HER3, and it 

was shown to reduce cancer cell growth in vitro and in vivo (132). Interestingly, pan-HER 

was effective even in cells with acquired resistance to cetuximab, trastuzumab, or 

pertuzumab, or in cells additionally stimulated with EGFR family ligands (132). In a 

mechanistic study, pan-HER prevented the EGFR family dimer formation and blocked the 

switch in HER dependencies (133). A phase 1/2 study with Sym013 was initially launched, 

but clinical development was subsequently discontinued so the toxicity profile remains 

unknown (NCT02906670).

Bispecific antibodies can target two distinct tumor-associated antigens and could thus 

overcome some of the problems of redundant kinase activity. Bispecific antibodies have 

been developed to simultaneously block either EGFR/HER3, HER2/HER3, or HER3/

IGF-1R signaling. Duligotuzumab (MEDH7945A) is an EGFR/HER3-directed bispecific 

antibody that has two identical binding sites binding to the extracellular domain of either 

EGFR or HER3 (134). Duligotuzumab exhibited antitumor activity in both in vitro and in 
vivo models and overcame EGFR inhibitors and radiation resistance in preclinical models 

(135,136). Although duligotuzumab demonstrated an acceptable safety profile and it showed 

some clinical activity together with cisplatin/5-fluorouracil in a phase 2b study in head and 

neck cancers, it failed to provide clinical benefit in another study in metastatic colorectal 

cancer (137,138). No further clinical activity with the compound has been reported. 

Recently, a pharmacokinetic predictive study with another EGFR/HER3-bispecific antibody 

SI-B001 was reported (139). Bispecific antibody IgG3-43 was shown to prevent the growth 

and cancer stem cell expansion in TNBC cells, demonstrating that some preclinical activities 

in the field of EGFR/HER3 bispecifics are still ongoing (109).

Pertuzumab is a HER2-targeting monoclonal antibody that blocks HER2/HER3 

heterodimerization (34,140). In a phase 1 study of 21 patients with solid tumors, pertuzumab 

was well tolerated with a pharmacokinetic profile supporting 3-week dosing (141). Patients 

with HER2-positive breast cancer treated with combination therapy of pertuzumab with 

chemotherapy and trastuzumab had improved disease-free survival (142). In first-line 

patients with HER3-positive, HER2-low MBC, ORR was 56% after administration of 

lumretuzumab (500 mg) every 3 weeks, in combination with pertuzumab (840 mg loading 

dose [LD] followed by 420 mg) every 3 weeks, and paclitaxel (80 mg/m2) weekly (119). 

When the patients were given the same combination therapy without the LD of pertuzumab, 

ORR was 39% (119). However, this therapy demonstrated a small therapeutic range, with a 

high proportion of patients in the study experiencing Grade 3 diarrhea (119).

MM-111 is a bispecific antibody for HER2/HER3 that inhibits heregulin-induced HER3 

activation and slows down the tumor growth in HER2-dependent preclinical models (108). 

The combination of MM-111 and trastuzumab or lapatinib further inhibits growth of HER2 

overexpressing cells. MM-111 was tested in clinical trials as a single agent, together with 
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chemotherapies, or together with other HER2-targeting therapies (143). MM-141 

(istiratumab) was designed to target HER3 and IGF-1R, but it failed to show clinical benefit 

(144). Zenocutuzumab (MCLA-128) is a HER2/HER3 targeting antibody that showed the 

most promise in the clinical setting. It is currently being evaluated in solid tumors with 

NRG1 fusions in phase 1 studies, and promising interim results were recently published 

(NCT02912949).

Sapitinib (AZD8931) is a pan-EGFR–targeting inhibitor that inhibits the activation of 

EGFR, HER2, and HER3 (145). A phase 1/2 study in advanced breast cancer failed to reach 

the clinical endpoint (146). Sapitinib was tested in breast cancer together with hormonal 

therapy but there was increased toxicity with no additional benefit (147). Sapitinib led to a 

worse PFS compared to placebo in metastatic colorectal cancer, and no further clinical 

activities with sapitinib have been reported (148).

It is important to mention that also indirect targeting of HER3 through its dimerization 

partners can be considered as HER3 targeting strategies, but those approaches are outside 

the scope of this review.

Emerging treatment approaches

In addition to direct therapeutic strategies to target HER3, some approaches inhibit HER3 

indirectly.

Proteasomal degradation has emerged as a new therapeutic modality, including proteolysis 

targeting chimera (PROTAC) inhibitors linked to a warhead that directs the drug target into 

cellular degradation (149). Although PROTAC for HER3 has not been reported, at least 

partial HER3 degradation can be achieved with monoclonal antibodies. The HER3-directed 

antibody NG33 was shown to induce HER3 degradation and inhibit the growth of HER2-

driven cancer cells (150). HER3 was also degraded by a crosslinked form of trastuzumab 

binding to HER2. Only HER2 and HER3, but not EGFR, were pulled into degradation 

(111). Another unique approach to inhibit and degrade HER3 is TX2-121-1, a covalent 

ligand that binds to HER3 receptor and induces partial HER3 degradation by interfering 

with HER3 dimerization with HER2 and MET (151). HER3 mRNA degradation can be 

induced by antisense oligonucleotides or micro-RNAs, but this concept has not been tested 

in clinical trials to date (152).

Recently, a HER3-targeting vaccine (Ad-HER3-FL) was created. Ad-HER3-FL stimulates 

the production of HER3-specific T cells and antibodies in mouse models, suggesting that 

HER3 might be a good target for antitumor vaccines (153). In the same study, Ad-HER3-FL 

was also combined with anti-PD1, showing enhanced response compared to the vaccine 

alone. Along the same lines, an earlier study described an immunoreacting HER3 epitope 

(HER-3872-868), and this peptide was used to provoke antitumor immune responses in 

preclinical models of lung cancer and head and neck cancer (154). Although these new 

therapies modalities to target HER3 are promising, further preclinical and clinical evaluation 

is required.
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CONCLUSIONS

HER3 is an exceptional EGFR family member that is not oncogenic alone, but can cooperate 

with other receptors to induce tumorigenesis, metastatic events, and drug resistance. HER3 

is a compelling cancer therapeutic target, but so far, no HER3-directed therapies have been 

approved for clinical use. In contrast to EGFR and HER2, which have been broadly targeted 

with TKIs, HER3 has been mainly targeted with monoclonal or bispecific antibodies due to 

the minimal kinase activity, either blocking the ligand binding or heterodimerization with 

other receptors. In clinical trials, the safety profile of these antibodies has been acceptable, 

but the efficacy has been disappointing. It is unclear if the failure of the antibody therapies 

has been due to the use of wrong antibody epitopes, pharmacokinetic problems, or lack of 

biomarkers, but with some exceptions the clinical development of most of these agents has 

been discontinued. However, retrospective studies and a meta-analysis from HER3 mAbs in 

various tumor types suggest that NRG expression could be used as a predictor for HER3 

mAb response in the future (37,122,155). It has also been suggested, that HER3 antibodies 

that don’t compete with the NRG binding site could be more effective in tumors with high 

NRG1 expression before antibody treatment.

The interest in targeting HER3 has persisted and new mechanisms to target HER3 have 

constantly emerged. New therapeutic strategies, including HER3 directed ADCs, are being 

investigated in a broad range of cancers. The potential advantage of ADCs over monoclonal 

antibodies could be that the cancer cells need to express HER3, but do not have to be fully 

dependent on HER3 to induce cell death. Other novel strategies to target HER3 include 

proteasomal degradation, antisense oligos, and most recently a HER3-targeted peptide 

vaccine. So far, these agents have shown efficacy in preclinical models, but the clinical 

safety and efficacy remains to be determined. The winning strategy to therapeutically target 

HER3 remains to be seen, but HER3 is as a promising drug target and the era of drugging 

the “undruggables” has already started.
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Figure 1: HER3 dimerization and signaling cascade.
Upon ligand binding, HER3 preferentially dimerizes with EGFR or HER2 inducing a 

conformational change in the receptor pair. The conformational change leads into 

transphosphorylation event in the intracellular kinase tail, where the C-terminal tail of HER3 

acts as an acceptor for multiple phosphorylations. This induces activation of signaling 

cascades promoting cell survival and proliferation. EGFR: Epidermal growth factor receptor, 

EGF: Epidermal growth factor, HER2: Human epidermal growth factor receptor 2, HER3: 

Human epidermal growth factor receptor 3, NRG: Neuregulin, p85: 85kDa regulator subunit 

of phosphoinositide 3-kinase, p110: 110kDa catalytic subunit of phosphoinositide 3-kinase, 

AKT: protein kinase B, SHC: SHC-transforming protein 1, GRB2: growth factor receptor 

bound protein 2, SOS: Son of sevenless, RAS: RAS GTPase, RAF: Raf kinase, MAPK: 

Mitogen-activated protein kinase.
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Figure 2: Therapeutic strategies to target HER3.
The most popular strategies to target HER3 have been monoclonal and bispecific antibodies, 

as well as pan-HER strategies. Emerging strategies to target HER3 include antibody drug 

conjugates, HER3-targeting vaccines, and different ways to affect HER3 degradation either 

in mRNA or protein level. Epigenetic inhibitors could potentially be useful for inhibiting 

HER3 gene expression, although the mechanisms and feasibility of these strategies will have 

to be further validated. EGFR: Epidermal growth factor receptor, HER2: Human epidermal 

growth factor receptor 2, HER3: Human epidermal growth factor receptor 3, NRG: 

Neuregulin, mAbs: Monoclonal antibodies, IGFR: Insulin-like growth factor receptor. DXd: 

DX-8951 derivative.
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