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Background: A positive association between circulating C-reactive protein (CRP) and colorectal 

cancer (CRC) survival was reported in observational studies, which are susceptible to unmeasured 

confounding and reverse causality. We used a Mendelian randomization approach to evaluate the 

association between genetically-predicted CRP concentrations and CRC-specific survival.

Methods: We used individual-level data for 16,918 eligible CRC cases of European ancestry 

from 15 studies within the International Survival Analysis of Colorectal Cancer Consortium. We 

calculated a genetic risk score based on 52 CRP-associated genetic variants identified from 

genome-wide association studies. Due to the non-collapsibility of hazard ratios from Cox 

proportional hazards models, we used the additive hazards model to calculate hazard differences 

(HD) and 95% confidence intervals (CI) for the association between genetically-predicted CRP 

concentrations and CRC-specific survival, overall and by stage at diagnosis and tumor location. 

Analyses were adjusted for age at diagnosis, sex, body mass index, genotyping platform, study, 

and principal components.

Results: Of the 5,395 (32%) deaths accrued over up to 10 years of follow-up, 3,808 (23%) were 

due to CRC. Genetically-predicted CRP concentration was not associated with CRC-specific 

survival (HD= −1.15, 95% CI: −2.76 to 0.47 per 100,000 person-years, P =0.16). Similarly, no 

associations were observed in subgroup analyses by stage at diagnosis or tumor location.

Conclusions: Despite adequate power to detect moderate associations, our results did not 

support a causal effect of circulating CRP concentrations on CRC-specific survival.

Impact: Future research evaluating genetically-determined levels of other circulating 

inflammatory biomarkers (i.e. interleukin-6) with CRC survival outcomes is needed.
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INTRODUCTION

Chronic inflammation plays an important role in colorectal cancer (CRC) development and 

progression.(1) Elevated level of inflammation after CRC diagnosis may lead to increased 

expression of proinflammatory mediators and promote tumor growth and progression.(2)

C-reactive protein (CRP) is an abundant acute-phase protein produced mainly by 

hepatocytes in response to pro-inflammatory cytokines.(3) Observational studies of CRC 

outcomes have reported positive associations between pre-diagnostic and pre-operative 

concentrations of CRP and larger tumor size, metastases, and survival.(4–8) These studies, 

however, may have been subject to bias as most were unadjusted or insufficiently adjusted 

for potential confounders and factors related to inflammation and survival, such as adiposity, 

use of non-steroidal anti-inflammatory drugs (NSAIDs), and smoking. Furthermore, disease 

progression itself could lead to enhanced tumor-associated inflammation and elevated 

concentrations of circulating pro-inflammatory markers. Thus, reverse causation is also a 

potential source of bias.

Most studies of CRP and CRC only had a single measurement of CRP, which may not 

represent lifelong levels of chronic inflammation. Mendelian randomization utilizes 
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inherited germline genetic markers known to be associated with the risk factor of interest, in 

this case circulating CRP concentrations. These genetic variants can serve as non-modifiable 

markers of long-term susceptibility to chronic inflammation. Because of the natural random 

assortment of alleles during gamete formation, genetic variants are not affected by 

environmental factors that occur after conception and are non-modifiable by disease 

progression.(9) Over the last of 15 years, genome-wide association studies (GWAS) have 

accumulated robust evidence on genetic variants associated with various inflammatory 

biomarkers, including CRP.(10,11) “Mendelian randomization” has become a common 

approach for observational studies of inflammatory biomarkers in association with cancer 

risk, providing a way to minimize reverse causality and residual confounding. However, 

Mendelian randomization studies of inflammatory biomarkers and cancer survival are 

scarce.(12)

In this study, we aimed to test the association of genetically predicted concentrations of CRP 

with CRC-specific survival using a Mendelian randomization approach. As a secondary aim, 

we evaluated stage- and tumor site-specific associations between genetically predicted 

circulating CRP concentration and CRC survival. To achieve this, we used the existing data 

on germline genetic variants and epidemiological and clinical factors from the International 

Survival Analysis in Colorectal Cancer Consortium (ISACC).

MATERIALS AND METHODS

Study sample

We included individuals diagnosed with incident, invasive CRC from ISACC, a consortium 

consisting of clinical trials, case-control, and cohort studies from North America, Europe, 

and Australia. Of the 26,282 eligible ISACC participants who had GWAS and survival data 

available (Figure 1), we excluded individuals whose GWAS data didn’t pass QC (n= 1,154), 

whose epidemiologic data was not available (n=217), and those with non-European ancestry 

(n=1,200) for this analysis. Further exclusion of studies and individuals without data on 

CRC-specific survival outcome (n=6,793) resulted in a total of 16,918 subjects included in 

this analyses from the following fifteen studies: Colon Cancer Family Registry (CCFR) (13), 

Cancer Prevention Study-II (CPS-II) (14), German Darmkrebs: Chancen der Verhütung 

Durch Screening (DACHS) (15), Diet Activity and Lifestyle Study (DALS) (16), Early 

Detection Research Network (EDRN) (17), European Prospective Investigation into Cancer 

(EPIC) (18), Health Professionals Follow-up Study (HPFS) (19), Melbourne Collaborative 

Cohort Study (MCCS) (20), Nurses’ Health Study (NHS) (21), North Central Cancer 

Treatment Group (NCCTG) N9741 randomized trial (ClinicalTrials.gov, Identifier: 

NCT00003594) (22), Physician’s Health Study (PHS) (23), Prostate, Lung, Colorectal, and 

Ovarian Study (PLCO) (24), UK Biobank (UKB) (25), VITamins And Lifestyle Study 

(VITAL) (26), and Women’s Health Initiative (WHI).(27) Study-specific details are 

summarized in Supplementary Table 1. All studies were approved by their respective 

Institutional Review Boards and participants provided written informed consent.
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Ascertainment of environmental variables and survival outcomes

Demographic and epidemiologic factors were collected using self- or interviewer-

administered questionnaires at enrollment according to study-specific protocols. A multistep 

data harmonization process was conducted centrally to define epidemiologic and 

clinicopathological variables in the same way across studies, as described previously.(28) 

Information on cancer diagnosis, such as age at diagnosis, tumor location (proximal, distal 

colon, or rectum) and stage at diagnosis (local: American Joint Committee of Cancer 

[AJCC] stage I; regional: AJCC stage II/III; or distant: AJCC stage IV), was obtained from 

cancer registries and/or medical records.

All study participants were followed for vital status. Date and cause of death were 

ascertained through linkages to the National Death Index or cancer registries (CCFR, CPSII, 

DACHS, DALS, EPIC, MCCS, UKB, VITAL) or via active follow-up with dates/cause of 

death verified by the review of death certificates and/or medical records (HPFS, NHS, PHS, 

PLCO, WHI, N9741). Time to event was defined as days between CRC diagnosis and death, 

last date of contact, or the end of study follow-up. To evaluate 10-year CRC-specific 

survival, we censored cases at 10 years from the date of CRC diagnosis. Cases who died 

from causes other than CRC within 10 years from diagnosis were censored at the time of 

death. We used the International Classification of Diseases-9 (ICD-9) or ICD-10 (depending 

on year of linkage) to define CRC-specific deaths (ICD-9: 153.0–153.4, 153.6–153.9, or 

154.0–154.1; ICD-10: C18.0–20.0 or C26.0).

Genotyping, quality control (QC), and imputation

Details of genotyping and QC methods have been reported previously.(29–33) Briefly, 

genomic DNA was extracted from blood or buccal samples using conventional methods. 

Genotyping was performed using multiple platforms (Supplementary Table 1). All genotype 

data underwent standardized QC procedures including the exclusion of samples and SNPs 

with low call rates (<98%), chromosomal anomalies, samples with discrepancies in self-

reported and genetically-determined sex, and SNPs out of Hardy–Weinberg Equilibrium. To 

investigate population structure, we used Plink (v1.9) to conduct principal components 

analysis (PCA). We restricted our analytic sample to participants with estimated European 

ancestry based on the PCA due to the low numbers of participants of other ancestries 

(detailed in Supplementary Methods). We imputed genotypes to infer unobserved genotypes 

and increase the density of genetic variants. All samples were first phased using SHAPEIT2 

(34) and imputed to the Haplotype Reference Consortium (HRC) panel (35) using the 

University of Michigan Imputation Server.(36)

Selection of instrumental variables

The Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) is the 

largest GWAS of circulating CRP concentrations to date, analyzing 204,402 individuals of 

European descent.(11) It reported 48 lead genetic variants from the HapMap GWAS and 

four additional variants from the 1000 Genome GWAS that were associated with CRP at the 

genome-wide statistical significance (P<5×10−8). Together these 52 SNPs explained 6.5% of 

the variance in circulating CRP.(11)
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We also searched for, but did not identify additional variants from the NHGRI-EBI GWAS 

Catalog (37) (downloaded on 03/09/20) that met the following criteria: 1) association with 

CRP at a genome-wide statistical significance level (P<5×10–8); 2) study population of 

European ancestry; 3) not in LD (R2<0.3) with previously selected SNPs; and 4) available 

information on effect sizes and standard errors.

We included the 52 variants as instrumental variables in our Mendelian randomization 

analyses. The imputation quality (r2) of all 52 CRP-associated SNPs in our data was greater 

than 0.8. We then calculated a 52-SNP genetic risk score (GRS) (38) by taking the sum of 

the number of risk (CRP-increasing) alleles for each of the 52 genetic variants weighted by 

the β coefficients reported by the CHARGE study.(11) The β coefficients represent the 

change in the natural-log-transformed CRP per copy increment in the risk allele (Table 1).

Statistical Analysis

The genetic variants selected as an instrumental variable in a Mendelian randomization 

analysis need to meet three assumptions: (1) they are robustly associated with the exposure 

(“relevance”), (2) they do not share a common cause with the outcome (“exchangeability”), 

and (3) they affect the outcome only through the exposure (“exclusion restriction”).

We first verified the “relevance” assumption by evaluating the association between GRS and 

post-diagnosis circulating CRP concentrations in a subset of CRC cases from Seattle CCFR 

(n=285) whose CRP leves were measured in between one to three years after diagnosis to 

rule out active treatment effects.(39) We estimated the proportion of variance (R2) explained 

by the 52 genetic variants and calculated the F statistic, a measure of instrument strength, 

based on R2, the sample size (n), and the number of instruments (k) as described in the 

formula: F = R2

R2 + 1
* n−k − 1

k . A strong instrumental variable is defined as having F≥10.(40)

For the second “exchangeability” assumption, we examined several epidemiologic and 

clinicopathological factors that may confound the CRP- survival association, including 

smoking, body mass index (BMI), NSAID use, tumor location, and stage at diagnosis. Each 

was assessed for association with the GRS. BMI was statistically significantly associated 

with the GRS and therefore it was included as an additional adjustment variable in the 

following Mendelian randomization analysis. No other variables were statistically 

significantly associated with GRS.

The “exclusion restriction” assumption was assessed in a series of sensitivity analyses. We 

used MR- Egger regression to assess the horizontal pleiotropic effect. The test of a non-zero 

intercept indicates whether there are averaged pleiotropic effects.(41) We also restricted the 

instrumental variable to rs2794520 in the CRP gene to minimize the probability of 

horizontal pleiotropy. This variant itself explained 1.4% of the variance in circulating CRP.

(11)

We performed the Mendelian randomization analyses using a two-stage regression approach.

(42) Additive hazards model offers a flexible alternative for modeling associations on the 

hazard scale: a hazard difference (HD), unlike the hazard ratio (HR) from the Cox 
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proportional hazards model, is a collapsible effect measure over strata of unmeasured and 

unknown confounders. (42,43) We used additive hazards models to calculate HD and 95% 

confidence intervals (CI) for the associations between CRP-associated GRS and CRC-

specific survival. The R package “timereg” was used for fitting additive hazards models.(44)

We also evaluated the association between genetically determined CRP circulating 

concentration and CRC-specific survival using the inverse-variance weighted (IVW) method 

(45), MR-Egger regression (41), and the estimator from the weighted median approach (46) 

based on summary statistics on SNP-specific associations with CRC survival. In secondary 

analyses, we evaluated the associations between genetically predicted concentrations of CRP 

and CRC-specific survival according to tumor stage and location.

In the sensitivity analyses, Cox proportional hazards models were used for hypothesis 

testing. We also compared results with and without adjustment of BMI in addition to age at 

diagnosis, sex, genotyping platform, study, and the first nine principal components. All 

analyses were conducted using R version 3.6.0.

Statistical power

Currently, there is no available power calculation tool for survival outcomes in Mendelian 

randomization analysis, we first took a conservative approach treating CRC-specific survival 

as a binary outcome and used the methods described by Burgess. (47) With a total of 16,916 

CRC cases and 23% CRC-specific deaths occurring over up to 10 years follow-up, we have 

more than 85% power to detect an OR of 1.25 for the association between CRP and CRC-

specific survival at a significance level of 0.05, assuming 5.9% variance of CRP explained 

by the genetic variance.

In addition, we ran a simulation using the additive hazards model for power calculation. 

With the number of CRC cases and 3,808 CRC deaths accrued over a 10-year follow-up, the 

population-averaged hazard was estimated to be 3808/(16918*10) =0.023 per person*year. 

We have at least 83% power to detect a 25% difference in hazard (HD=0.0058) for every 1 

SD increase of CRP assuming 5.9% of the variance of CRP was explained by GRS. The R 

code for the simulation is included in the Supplementary Materials.

RESULTS

We included 16,918 eligible CRC cases from ISACC in this study (Figure 1). Study 

participants were diagnosed at a median of 67 years of age, and 49.7% were female. Over 

the maximum 10-year follow up, there were 5,395 (32%) deaths accrued with 3,808 (23%) 

due to CRC. Study-specific summaries are shown in Supplementary Table 1. SNP-specific 

associations with circulating CRP concentrations and CRC-specific survival are summarized 

in Table 1.

In evaluating the “relevance” assumption, we observed strong associations between the GRS 

and circulating CRP concentrations in a subset of the study participants (n= 285). A one-unit 

increase in GRS was associated with a 1.22-unit increase in the natural-log-transformed 

CRP (95% CI: 0.65–1.80, P= 4.33×10−5) and explained 5.9% of the variance of the natural-
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log-transformed CRP concentrations. The estimated F statistic was 20.2, indicating a strong 

instrumental variable.

Among the 16,918 participants from ISACC, the distribution of the CRP-associated GRS 

calculated based on individual-level data is shown in Supplementary Figure 2. Based on 

additive hazards model, we observed that one unit increase in GRS was associated with 1.15 

fewer deaths due to CRC per 100,000 patients each year (HD= −1.15, 95% CI: −2.76 to 0.47 

per 100,000 person-year, Table 2). However, it didn’t reach statistical significance (P= 0.16). 

No associations between quartiles of GRS and CRC-specific survival were observed (Table 

2). Results based on IVW, MR-Egger, and weighted median approaches using summary 

statistics were consistent with those based on individual GRS data (Table 2). Sensitivity 

analyses using Cox proportional hazards models for hypothesis testing showed similar null 

associations between GRS and CRC-specific survival (HR= 0.90, 95% CI= 0.79 to 1.02, P= 

0.10, Table 2).

We further evaluated this association by stage at diagnosis and tumor location, and found no 

evidence of statistically significant association in these subgroup analyses using Cox 

proportional hazards models, whereas the additive hazards model did not converge due to 

limited number of events in subgroups. (Table 3). Among inidividuals diagnosed with colon 

cancer, we observed a boarderline significant association: one unit increase in GRS was 

associated with improved CRC-specific survival (HR=0.87, 95% CI: 0.75 to 1.00, P= 0.06, 

Table 3).

We plotted the SNP-specific associations with CRC-specific survival against coefficients of 

SNP-CRP associations (Figure 2). After conducting MR-Egger regression analysis, we 

found that the intercept was not statistically significantly different from zero (β0 = 

1.28×10−7, 95% CI = −1.23×10−6 to 1.48×10−6, P= 0.85) when using additive hazards 

models. This suggested no horizontal pleiotropic effect. The MR-Egger regression using 

Cox proportional hazards estimates (Figure 2B) yielded similar results compared to the one 

using additive hazards models (Figure 2A). We then restricted the instrumental variable to 

rs2794520 in the CRP gene and repeated the Mendelian randomization analysis. A null 

association with CRC survival was observed (additive hazards model: HD= −0.049 per 

100,000 person-year, P= 0.88; Cox proportional hazards model: HR= 0.99, 95% CI: 0.94–

1.04, P=0.60).

DISCUSSION

In this large Mendelian randomization study, we did not find evidence of an association 

between genetically predicted CRP circulating concentration and CRC-specific survival in a 

cohort of individuals diagnosed with incident invasive CRC and followed up for survival. No 

associations were observed in subgroups defined by tumor stage at diagnosis and location. 

Our findings do not support a causal relationship between circulating CRP and CRC-specific 

survival.

Previous studies of CRP and CRC incidence and survival do not provide convincing 

evidence of causation. For CRC risk, meta-analyses of prediagnostic circulating CRP 
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concentrations showed that one unit change in natural logarithm CRP was associated with a 

12% increased risk of developing CRC.(48) Conversely, we showed in a large multi-

consortium Mendelian randomization study with more than 30,400 cases and 22,800 

controls no association between genetically determined CRP concentrations and CRC risk.

(49) For CRC-specific survival, results from observational studies of circulating CRP 

concentration were inconsistent. Some studies observed that circulating CRP concentration 

measured before surgery was not statistically significantly associated with survival after 

multivariable adjustment.(7,8) Other studies observed that elevated concentrations of pre-

operative (4–6,50) and post-treatment (51,52) CRP were associated with worse CRC 

survival outcomes. However, the CRP measures in these studies were crude. Several of these 

studies used CRP ≥10mg/L as the cut-off to dichotomize circulating CRP concentrations.

(4,5,50) Elevated CRP concentrations ≥10mg/L are likely driven by acute inflammatory 

conditions other than chronic inflammation. Similarly, in our recent study, circulating 

concentration of CRP was no longer associated with CRC survival after we excluded CRC 

cases who had post-treatment CRP>10mg/L.(39)

In this study, we used genetic variants as proxies of circulating CRP concentrations that can 

help address potential biases due to residual confounding and reverse causality, but existing 

evidence on CRC survival outcomes is limited. Slattery et al. evaluated four tag SNPs in the 

CRP gene in relation to CRC survival among 1,574 cases, however, none were statistically 

significantly associated with CRC-specific survival within 5 years after diagnosis.(53) 

Another study with 421 CRC cases of East Asian ancestry showed that two SNPs from the 

CRP gene were associated with CRC survival: rs3093059 was associated with disease-free 

survival, whereas rs1205 was associated with CRC-specific survival.(54) Although these two 

variants were not included in our study, we evaluated rs2794520, at CRP locus that is in high 

LD with these two SNPs. The allele frequencies of these SNPs are twice as common in the 

East Asian population (ASN) compared with the European population (EUR): rs3093059 

(ASN: 0.14; EUR: 0.07), rs2794520 and rs1205 (ASN: 0.60; EUR: 0.31). This could 

partially explain the different study findings.

There are some limitations when interpreting our study results. First, the restriction of our 

study sample to individuals diagnosed with CRC by design could be a potential source of 

selection bias (also known as collider bias) particularly if CRP is causally associated with 

increased risk of developing CRC. By conditioning on the collider- CRC risk (selecting only 

CRC cases into the study sample), it can induce an association between genetic variants and 

risk factors of CRC. However, evidence from our previous Mendelian randomization study 

suggests that CRP is not causally associated with CRC risk.(49) To further address this 

potential selection bias, we evaluated the associations between the genetic variants with both 

potential confounders of CRP and CRC survival associations and common risk factors of 

CRC risk. BMI was identified as the only variable being statistically significantly associated 

with the GRS for CRP in our study sample and was adjusted for in all analyses. However, as 

BMI is an inheritable trait that shares some genetic suscpetibilites with CRP, we also 

assessed whether there was potential bias due to BMI adjustment (55,56) and compared 

main analysis with and without adjustment of BMI (Supplementary Table 2). We observed 

minimal changes due to BMI adjustment. Second, the 52-SNP GRS for CRP explained only 

less than 6% of the variance of the natural-log-transformed CRP concentrations. The null 
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results of our study cannot rule out a weaker causal effect of CRP on CRC-specific survival. 

Third, the genetic variants shown to be robustly associated with circulating CRP were 

identified from a GWAS based on study sample from the general population. The SNP-CRP 

associations may be different in a sample of CRC cases. Although we evaluated the 

“relevance” assumption in a subset of our study sample and observed a strong association 

between the CRP-associated GRS and post-diagnostic circulating CRP concentrations 

among CRC cases, the small sample size limited the statistical power to evaluate SNP-

specific associations with CRP among CRC cases. In addition, our subgroup analyses had 

insufficient statistical power even though our main analysis was well powered. The limited 

number of events in subgroups also led to convergence issues when using the additive 

hazards model. Lastly, since the study sample was limited to individuals with European 

ancestry, our findings may not be generalizable to other racial/ethnicity groups.

Our study also has many strengths. This is the first study that evaluates circulating 

biomarkers in relation to CRC survival using a Mendelian randomization approach. Our 

large sample size possessed adequate statistical power to detect associations with moderate 

effect sizes. Also, the well-characterized study sample with individual-level genotype data 

and detailed information on epidemiologic and clinic factors allowed us to compare study 

results with those based on summary statistics, to evaluate the “exchangeability” 

assumptions, and to conduct subgroup analysis by stage at diagnosis and tumor location, 

however we weren’t able to account for several clinical prognostic factors for CRC survival, 

such as treatement, due to data availability. A subset of study participants had data on both 

genotypes and circulating CRP concentrations allowing us to evaluate the “relevance” 

assumption. By carefully examining the three assumptions, our Mendelian randomization 

study is less susceptible to confounding and reverse causality compared with observational 

studies.

In summary, our study did not find evidence of an association between genetically predicted 

circulating CRP concentration and CRC-specific survival, overall or in subgroups defined by 

stage at diagnosis or tumor location. Future research should be conducted to determine if 

other circulating inflammatory biomarkers, such as interleukin 6, are associated with CRC 

survival outcomes to better understand chronic inflammation and disease progression among 

CRC patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Study sample diagram. Of the 26,282 eligible ISACC participants with both GWAS and 

survival data, we further excluded individuals based on GWAS QC, genetic ancestry, 

availability of epidemiologic data and disease-specific survival outcomes, leaving a total of 

16,918 subjects included in the analysis.
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Figure 2. 
Scatter plot of SNP-specific associations with CRC survival against coefficients of SNP-

CRP associations among CRC cases from ISACC using A) additive hazards models and B) 

Cox proportional hazards models. The slope of the regression line provides an estimate of 

the association between genetically predicted circulating concentration of CRP and CRC 

survival; the intercept is an estimate of the average pleiotropic effect across all the genetic 

variants.
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Table 1.

Association between 52 SNPs and circulating CRP concentrations identified in Ligthart et al. (11) and 

between SNPs-and CRC-specific survival associations in ISACC

rs chr: pos* Count/ 
Alternative allele

Count 
allele 
freq

Ligthart et al. SNP-CRP associations ISACC SNP-survival 
associations

beta** se P

HD*** 
(per 

100,000 
person 
year)

se P

rs2293476 1:40036847 C/G 0.23 0.030 0.004 8.27E-13 0.124 3.44E-06 0.72

rs1805096 1:66102257 G/A 0.62 0.104 0.004 2.17E-183 −0.121 2.99E-06 0.68

rs4129267 1:154426264 C/T 0.61 0.088 0.004 1.20E-129 −0.474 2.91E-06 0.10

rs2794520 1:159678816 C/T 0.66 0.182 0.004 4.17E-523 −0.049 3.17E-06 0.88

rs10925027 1:247612562 T/C 0.40 0.036 0.004 4.25E-21 −0.759 2.92E-06 0.01

rs1260326 2:27730940 T/C 0.41 0.073 0.004 2.72E-92 0.278 2.95E-06 0.35

rs13409371 2:113838145 A/G 0.39 0.048 0.004 5.07E-36 −0.209 2.91E-06 0.47

rs13233571 7:72971231 C/T 0.88 0.057 0.005 2.95E-25 −0.180 4.22E-06 0.67

rs4841132 8:9183596 G/A 0.92 0.065 0.006 2.00E-25 0.442 5.40E-06 0.41

rs10778215 12:103537266 T/A 0.52 0.033 0.004 1.86E-20 −0.222 2.87E-06 0.44

rs7310409 12:121424861 G/A 0.60 0.137 0.004 2.54E-299 0.105 2.88E-06 0.71

rs340005 15:60878030 A/G 0.63 0.030 0.004 1.01E-15 0.352 2.92E-06 0.23

rs10521222 16:51158710 C/T 0.95 0.104 0.011 2.06E-22 −1.450 6.99E-06 0.04

rs2852151 18:12841176 A/G 0.40 0.025 0.004 1.36E-11 −0.002 2.94E-06 0.99

rs4420638 19:45422946 A/G 0.83 0.229 0.006 1.23E-305 −0.425 4.16E-06 0.31

rs1800961 20:43042364 C/T 0.97 0.112 0.011 4.63E-23 −0.742 8.51E-06 0.38

rs469772 1:91530305 C/T 0.81 0.031 0.005 5.54E-12 0.242 3.60E-06 0.50

rs12995480 2:629881 C/T 0.83 0.031 0.005 1.24E-10 0.329 3.92E-06 0.40

rs4246598 2:88438050 A/C 0.46 0.022 0.004 5.11E-10 −0.200 2.89E-06 0.49

rs9284725 2:102744854 C/A 0.24 0.027 0.004 7.34E-11 −0.434 3.36E-06 0.20

rs1441169 2:214033530 A/G 0.47 0.025 0.004 2.27E-11 −0.130 2.81E-06 0.64

rs2352975 3:49891885 C/T 0.31 0.025 0.004 6.43E-10 0.161 3.27E-06 0.62

rs17658229 5:172191052 C/T 0.04 0.056 0.010 5.50E-09 −0.274 6.67E-06 0.68

rs9271608 6:32591588 G/A 0.17 0.042 0.005 2.33E-17 0.094 4.15E-06 0.82

rs12202641 6:116314634 C/T 0.60 0.023 0.004 3.00E-10 0.187 2.94E-06 0.53

rs1490384 6:126851160 C/T 0.49 0.025 0.004 2.65E-12 0.175 2.83E-06 0.54

rs9385532 6:130371227 C/T 0.66 0.026 0.004 1.90E-11 −0.403 3.25E-06 0.21

rs1880241 7:22759469 A/G 0.51 0.028 0.004 8.41E-14 −0.313 2.90E-06 0.28

rs2710804 7:36084529 C/T 0.37 0.021 0.004 1.30E-08 0.298 2.91E-06 0.31

rs2064009 8:117007850 T/C 0.58 0.027 0.004 2.28E-14 −0.697 3.03E-06 0.02

rs2891677 8:126344208 T/C 0.54 0.020 0.004 1.59E-08 0.212 3.00E-06 0.48

rs643434 9:136142355 A/G 0.37 0.023 0.004 1.02E-09 −0.041 3.05E-06 0.89

rs1051338 10:91007360 G/T 0.30 0.024 0.004 2.27E-09 0.514 3.14E-06 0.10

rs10832027 11:13357183 A/G 0.67 0.026 0.004 4.43E-12 −0.394 2.96E-06 0.18
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rs chr: pos* Count/ 
Alternative allele

Count 
allele 
freq

Ligthart et al. SNP-CRP associations ISACC SNP-survival 
associations

beta** se P

HD*** 
(per 

100,000 
person 
year)

se P

rs10838687 11:47312892 T/G 0.79 0.031 0.004 9.12E-13 0.016 3.39E-06 0.96

rs1582763 11:60021948 G/A 0.63 0.022 0.004 2.37E-09 −0.083 2.97E-06 0.78

rs7121935 11:72496148 G/A 0.62 0.022 0.004 5.28E-09 0.090 3.04E-06 0.77

rs11108056 12:95855385 C/G 0.58 0.028 0.004 5.42E-14 0.318 3.02E-06 0.29

rs2239222 14:73011885 G/A 0.37 0.035 0.004 9.87E-20 0.415 3.15E-06 0.19

rs4774590 15:51745277 G/A 0.62 0.022 0.004 2.71E-08 0.110 3.07E-06 0.72

rs1558902 16:53803574 A/T 0.40 0.034 0.004 5.20E-20 0.030 2.84E-06 0.92

rs178810 17:16097430 T/C 0.56 0.020 0.004 2.95E-08 −0.060 2.83E-06 0.83

rs10512597 17:72699833 C/T 0.80 0.037 0.005 4.44E-14 −0.048 3.87E-06 0.90

rs4092465 18:55080437 G/A 0.62 0.027 0.004 3.11E-10 −0.154 3.11E-06 0.62

rs12960928 18:57897803 C/T 0.26 0.024 0.004 1.91E-09 −0.296 3.34E-06 0.38

rs2315008 20:62343956 G/T 0.68 0.023 0.004 5.36E-10 0.118 3.11E-06 0.70

rs2836878 21:40465534 G/A 0.73 0.043 0.004 7.71E-26 0.289 3.10E-06 0.35

rs6001193 22:39074737 A/G 0.63 0.028 0.004 6.53E-14 −0.678 3.10E-06 0.03

rs75460349 1:27180088 A/C 0.98 0.086 0.014 4.50E-10 0.477 9.43E-06 0.61

rs1514895 3:170705693 G/A 0.30 0.027 0.004 2.70E-09 0.002 3.26E-06 0.99

rs112635299 14:94838142 G/T 0.98 0.107 0.017 2.10E-10 −2.150 1.22E-05 0.08

rs1189402 15:53728154 A/G 0.63 0.025 0.004 3.90E-09 0.474 3.20E-06 0.14

*
Chromosome: position, hg19

**
beta, SNP-sepcific coefficients for association with circulating concentrations of CRP obtained from Ligthart et al, per unit increase in natural 

log transformed CRP (mg/L)

***
hazards difference for CRC-specific survival per unit increase in the count allele based on additive hazards model

Abbreviations: ISACC: the International Survival Analysis in Colorectal Cancer Consortium; HD: hazards difference; se: standard error
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Table 2.

Association between genetically determined CRP concentrations and CRC-specific survival

Additive hazards model Cox proportional hazards model

HD (95% CI) per 100,000 person-year P HR (95% CI) P

Using individual-level data

52-SNP GRS

Continuous* −1.15 (−2.76, 0.47) 0.16 0.90 (0.79, 1.02) 0.10

By quartiles

 Q1 (2.05,3.06] 1.00 Ref 1.00 Ref

 Q2 (3.06,3.24] 0.31 (−0.87, 1.49) 0.61 1.02 (0.93, 1.12) 0.67

 Q3 (3.24,3.41] −0.52 (−1.71, 0.68) 0.40 0.96 (0.88, 1.05) 0.41

 Q4 (3.41,4.08] −0.73 (−1.87, 0.41) 0.21 0.93 (0.85, 1.02) 0.14

Using summary statistics

IVW −1.12 (−2.72, 0.48) 0.17 0.90 (0.79, 1.02) 0.10

MR-Egger −1.29 (−3.68, 1.11) 0.29 0.88 (0.72, 1.06) 0.18

Weighted median −0.77 (−3.02, 1.47) 0.50 0.93 (0.77, 1.11) 0.40

*
Per one-unit increment in GRS;

All models adjusted for age at diagnosis, sex, body mass index, genotyping platform, study and principal components.

Abbreviations: CI: confidence interval; GRS: genetic risk score; HD: hazard difference; HR: hazard ratio; IVW: inverse-variance weighted; MR: 
Mendelian randomization.
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Table 3.

Association between genetically determined CRP concentrations and CRC-specific survival, by subgroups

52-SNP GRS Total Events*
Cox proportional hazards model

HR (95% CI)** P

All 16,918 3,808 0.90 (0.79, 1.02) 0.10

By stage at diagnosis
ⱡ

Local 3,341 142 0.50 (0.24, 1.02) 0.06

Regional 6,420 1,177 0.92 (0.73, 1.17) 0.51

Distant 1,845 1,387 0.97 (0.75, 1.24) 0.79

By tumor location
║

Colon 12,000 2,791 0.87 (0.75, 1.00) 0.06

Proximal 6,205 1,365 0.86 (0.69, 1.07) 0.18

Distal 4,879 932 0.98 (0.75, 1.29) 0.91

Rectum 4,729 974 1.02 (0.79, 1.33) 0.85

*
Death events due to CRC within up to 10-year follow-up

**
HRs represent per one-unit increase in GRS, and were adjusted for age at diagnosis, sex, body mass index, genotyping platform, study, and 

principal components; Additive models do not converge in subgroup analysis.

ⱡ
Stage at diagnosis was defined using SEER summary stage (local: AJCC stage I; regional: stage II-IIl; distant: stage IV)

║
Proximal colon was defined as from the cecum through transverse colon; distal colon was from the splenic flexure to sigmoid colon; rectum 

included the rectosigmoid junction and rectum. Abbreviations: CI: confidence interval; GRS: genetic risk score; HR: hazard ratio; AJCC: American 
joint committee on cancer.
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