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Abstract

Computing plays a critical role in the biological sciences but faces increasing challenges of scale 

and complexity. Quantum computing, a computational paradigm exploiting the unique properties 

of quantum mechanical analogs of classical bits, seeks to address many of these challenges. We 

discuss the potential for quantum computing to aid in the merging of insights across different areas 

of biological sciences.

Understanding complex biological phenomena has required concurrent advances in 

experiment, theory and computing power. The increasing need for computing infrastructure 

has led to expansions of current supercomputing and other massively parallel computing 

facilities, but also considerations of entirely new computing paradigms. Here we consider 

the potential of quantum computing (QC) to address complex biological questions. QC is an 

approach to computation in which an algorithm is defined by a series of operations on 

quantum states that results in a solution to a problem. Recent technological developments 

have carried QC capabilities from the realm of academic exploration to commercial 

opportunities1,2. While the scale is not yet competitive with classical technologies, there is 

substantial excitement in its eventual promise, and we hope to provide an entry point for 

biologists to certain aspects of the discussion surrounding QC. This effort is especially 
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timely given recent policy efforts at a national or international level, such as the US National 

Quantum Initiative Act of 20183 (the implementation of a National Quantum Initiative for 

quantum information science and technology4), the European Quantum Technologies 

Flagship, and efforts in the United Kingdom and China5.

We first present a primer on quantum computation to familiarize the reader with the basic 

concepts and language of QC. The remainder is focused on the study of the human brain 

through genetics, genomics, neuroimaging and deep behavioral phenotyping, a 

multidisciplinary effort that falls under the term “convergent neuroscience.” We highlight 

these areas as they exemplify two sources of complexity: separately, each field presents a 

rich set of problems that often push the limits of classical computational capability; in 

combination, they offer a multiscale challenge leading from the molecular scale through the 

cellular and tissue levels to brain architecture and, eventually, to complex human behaviors 

and disorders. The study of the emergent properties of the brain, such as cognition and 

behavior, is a uniquely challenging multilevel endeavor that demands pioneering approaches 

in computation. Accordingly, we discuss how quantum algorithms that map onto 

methodological issues in the biological sciences may provide much needed improvements in 

computational efficiency, and we posit open questions for eventual development of new 

computational solutions.

Classical versus quantum circuits: state of the art

Quantum computing uses the laws of quantum mechanics to perform computations. 

Quantum mechanics is the physical theory that governs all matter but is particularly relevant 

at the molecular scale and below. It states that particles have wave-like properties and waves 

have particle-like properties. If a quantum computer could be built, then this wave-like 

behavior could be harnessed for computational benefit: in a conventional (classical) 

computer using randomness, different random choices can lead to different outcomes, and 

the total probability of an outcome is the sum of the probabilities of each computational path 

leading to that outcome; by contrast, a quantum computer can have complex amplitudes 

along computational paths, just as a wave can have different amplitudes in different modes. 

Measuring will ‘collapse’ the state and yield a specific outcome with probability equal to the 

squared absolute value of the amplitude. Thus, quantum computers promise a new form of 

computing that would be qualitatively different from any previous (classical) form of 

computation by allowing interference between computational paths, analogous to the 

interference between waves6. While quantum computers are technically more difficult to 

build, and the best current general-purpose quantum computers have only 50–100 qubits, 

they can solve some problems in a time that grows more slowly as a function of the input 

size than classical computation. The term “qubit” refers to a quantum two-level system, such 

as a photon that can travel down one of two optical fibers. Qubits can be thought of as a 

generalization of classical bits (cbits): cbits can be in states 0 or 1, while the state of a single 

qubit is described by complex numbers α0 and α1 satisfying |α0|2 + |α1|2 = 1. The power of 

quantum computers comes from scaling. A system of n cbits can be in one of 2n possible 

states at any time, while the state of n qubits is described by a complex unit vector of 

dimension 2n (Fig. 1a,b). These vectors (also called wavevectors or wavefunctions) can be 

transformed by multiplying them by unitary matrices, and in many cases this can be done 
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efficiently. For example, the wavevector can be Fourier transformed using O n2  elementary 

quantum gates. However, not all I transformations can be done efficiently. The laws of 

quantum measurement also limit the amount of information that can be extracted from a 

quantum state. A full measurement of the state yields outcome x with probability |αx|2, 

destroying the state in the process. Thus, even though describing the quantum state of n 
qubits requires an amount of information that scales exponentially with n, measurement can 

only extract n bits of information. Finding a way to benefit from the exponential state space 

of quantum computers despite this limitation and others is the central challenge of quantum 

algorithm design7.

The challenges in building quantum hardware and mitigating noise are considerable and are 

not addressed in this paper, since our focus is principally on algorithm development and 

potential biological applications. Large-scale quantum computers are likely to rely on error-

correcting codes and other error mitigation strategies that will result in additional overhead; 

for example, needing to use many physical qubits to store one logical qubit. However, 

quantum algorithms can be built out of a universal set of quantum gates in a way that does 

not depend on the underlying hardware, just like classical algorithms.

Given the ubiquity of classical computers, the natural way to understand the strengths of 

quantum computers is by comparing their run-time scaling with that of the best-known 

classical algorithms. In some cases, these speedups are exponential: a quantum computer 

with a few thousand error-corrected qubits could factor numbers that could not be factored 

using existing classical computers and currently known algorithms in time less than the age 

of the universe. In other cases, provable polynomial speedups are known: for example, given 

the ability to compute a function f(x) where x takes on N values, a quantum computer can 

find the minimum value of f(x) in only O N  evaluations of f(x) while a classical computer 

would require O N  steps (assuming that f(x) has no other structure we can exploit)8. By 

contrast, for some problems, quantum computers are known to be no stronger than classical 

computers. And in many other cases, plausible heuristic algorithms have been proposed for 

quantum computers, whose performance is only incompletely understood.

The source of quantum speedup.

There is not a simple description of what accounts for speedups, although the most plausible 

explanation is the difference between interference of amplitudes and addition of 

probabilities. For example, a qubit can have states |0〉I and |1〉, which correspond to cbit 

values 0 and 1 and, in the representation of Fig. 1a, are the north and south poles. Qubits can 

also be in superpositions (see Box 1) such as 0 + 1
2  and 0 − 1

2 , which lie on the equator in 

the figure; these correspond to having amplitude 1
2  in the |0〉 state and amplitude ±1

2  in the |

1〉 state. To see that these differ from each other, and also from a random mixture of |0〉 and |

1〉 consider the NOT gate, which maps |0〉 and |1〉 to 0 + 1
2  and 0 − 1

2 , respectively. 

Starting with the |0〉 state, applying NOT once yields 0 + 1
2 . This state could be thought of 

as analogous to a random mixture of 0 and 1, as we would expect if NOT means applying 
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NOT with probability one-half. However, applying NOT twice yields |1〉, just as we would 

expect from a NOT gate, whereas applying the randomized version twice would yield the 

same uniform mixture of 0 and 1. More generally, quantum computers and randomized 

computers can both be thought of as taking different paths through the 2n possible bit 

strings, but for randomized computers we sum the non-negative-valued probabilities of these 

paths to get the final output distribution, while for quantum computers we sum the complex-

valued amplitudes of these paths. Adding complex numbers of roughly the same phase (for 

example, 1 + 1) corresponds to constructive interference while adding ones of opposite 

phases (for example, 1 + (–1)) corresponds to destructive interference, analogous to the way 

that light and other waves can exhibit interference.

While we often do not know how to take advantage of the rich possibilities offered by 

quantum interference, in some cases we can use them to achieve asymptotic speedups. 

Algorithms like Grover’s unstructured search algorithm9 are simple examples of this. 

Grover’s algorithm takes a subroutine with a small success probability p, which would need 

to be repeated O 1/p  times on a classical computer to obtain a successful outcome, and 

obtains an answer on a quantum computer using only O 1/ p  repetitions. This makes use of 

the fact that probabilities are obtained by taking the square of quantum amplitudes. The 

quantum Fourier transform (used in period finding and Shor’s factoring algorithm; Fig. 1c) 

is a more sophisticated example of how complex-weighted transitions can be useful, and in 

some cases this can give rise to exponential speedups. By contrast, some problems are 

known to not admit any quantum speedup: for example, finding the parity of N numbers 

requires time O N  on either a quantum or classical computer10. It is a major open research 

problem to determine when quantum speedup does or does not exist, and it is unlikely to 

ever be fully resolved, just as there is still no single theorem describing which problems can 

be solved by efficient classical algorithms. We next discuss some examples of potential 

quantum speedups.

Exponential speedup.

The main exponential speedups known are for code breaking (dramatic but unlikely to be 

relevant here) and quantum simulation of molecules or other large quantum systems. If the 

properties of a molecule are not well captured by simple classical approximations, then there 

is a good case to be made for using Ia quantum computer to make a better-quality 

approximation computationally tractable. The advantage of a quantum computer here arises 

from the exponentially growing dimension of quantum states. As a result, some promising 

cases for quantum advantage involve molecules with large numbers of active electrons, such 

as organometallic compounds11.

Polynomial speedup.

Typical polynomial speedups can be thought of as direct improvements of some classical 

algorithms. The best known of these is Grover’s square-root search speedup, described 

above12. Other, more sophisticated algorithms also admit provably quadratic improvements. 

For example, a classical algorithm might search over a tree of possibilities in a manner that 

can improve over brute-force search by sometimes being able to quickly prune entire 

subtrees. Such searches can also be quadratically improved quantumly; that is, if the 
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classical search process explores N nodes, then the quantum algorithm requires effort 

roughly equal to N times the effort to evaluate one node13. The strength of these algorithms 

is that they I apply under very general conditions, such as needing to minimize an easily 

computable function. They also do not usually need more qubits than are already needed to 

compute the function.

Heuristic speedups.

Many of the most important algorithms for classical computers either lack formal proofs of 

correctness or are often run outside of the regime in which these proofs of correctness apply. 

These include Markov chain Monte Carlo (where rigorous upper bounds on mixing time are 

usually not known) and gradient descent applied to non-convex problems such as deep 

neural networks. For quantum computers, heuristic algorithms include adiabatic 

optimization14 — or, more generally, quantum annealing (QA)15 — and the quantum 

approximate optimization algorithm (QAOA)16. The level of speedup provided by these 

algorithms over classical algorithms is in general unknown. It is expected that as quantum 

computers are built, our understanding of the performance of these heuristics will improve, 

just as much of our understanding of the performance of classical heuristics comes from 

empirical evidence and not only theory. In the following sections, we refer to this class of 

methods as “quantum heuristics.”

Interfacing with classical algorithms.

There is an important caveat about quantum algorithms. Suppose for concreteness that we 

are minimizing a function f(x). For a speedup, a quantum computer would need to interfere 

computational paths that compute f(x) for different values of x. If information about the 

value of x leaked to an outside classical system, then this would prevent those paths from 

coherently interfering, and we would be left with f(x) for a random choice of x. This would 

limit its ability to share the computation with a classical computer. Suppose, for example, 

that the evaluation of f(x) were a memory- and time-intensive calculation for which quantum 

speedups were not known. Then using quantum computers to improve the minimization of f 
would need to use qubits to perform this evaluation and could not offload the computation to 

a classical computer. This means that the overall speedup would be less than quadratic.

Big data and quantum RAM.

A related limitation of current models of quantum computers is that they cannot access large 

classical datasets in superposition; attempting to do so would amount to measuring the qubit 

register containing the address being queried, which would collapse any superposition there 

into a random mixture. This means that quantum computers may be able to speed up 

complicated calculations on small datasets (for example, finding the best Bayesian network) 

but have less advantage in solving problems on large datasets. One way to address this is 

with filtering or data-reduction techniques, which select a small but hopefully representative 

sample of the data and use that as input to the optimization problem17. Or the quantum 

computer could be used for ‘small data’ problems where the difficulty comes from the 

complexity of the analysis. A more speculative possibility is a quantum hardware solution 

known as a qRAM (quantum RAM)18, which would give a quantum computer the ability to 
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coherently query a large classical dataset as a superposition of qubits: a superposition of 

input memory addresses would yield an output consisting of a superposition of memory cell 

contents (see Box 2). A qRAM would enable powerful quantum algorithmic primitives18, 

but there are no proposals for scalable error-corrected qRAM, and it is not clear whether it 

would ultimately be easier than making a large quantum computer19.

Potential applications for quantum computing in biology Sequence analysis.

We first consider QC algorithms implementable on near-term quantum processors. An 

essential initial step in genetics and genomics is the matching of sequences of nucleotides 

and amino acids to organism databases and, more specifically, the mapping of sequencing 

reads from experimental assays to reference genomes. Any approach needs to contend with 

both memory (holding a representation of the reference and information on the mapping) 

and speed concerns. Dynamic programming methods, such as the Smith–Waterman 

algorithm20, enable queries of sequence strings against immense databases and could be cast 

as hidden Markov models (HMMs). The recent development of hidden quantum Markov 

models (HQMMs)21,22 opens the possibility of simulating classical HMMs on available 

quantum circuits22, as well as extending model space beyond classical HMMs21. In fact, the 

potential advantage of HQMMs stems from this extension of the model space to yield more 

efficient representations of sequence generators21. However, it is unclear how and to what 

extent this increased efficiency would translate into speedups. Hybrid approaches are 

attractive prospects: the iteration through hyperparameter space in HMMs could be classical, 

with quantum optimization of the maximal trajectory through state space. Given that 

dynamic programming methods have mostly been supplanted by the approximate but faster 

k-mer-based BLAST algorithm20 for database searches, a QC-based improvement in 

efficiency could reopen the case for their utility.

We next explore problems whose QC solutions may depend on the availability and storage in 

memory of superpositions of qubits (qRAM). For genomic read mapping, state-of-the-art 

classical algorithms include the exploitation of the Burrows–Wheeler transform to efficiently 

perform DNA sequence alignments23, and seed-based approaches to map RNA reads to exon 

boundaries separated by large genomic distances24. Both methods rely on lexicographically 

sorted suffixes constructed from the reference genome, followed by scanning for matches of 

the query read. The classical complexity of sequence matching depends on whether exact 

O n + m ; n = length of reference sequence, m = query read length) or inexact matches 

O nm , including gaps, are considered. Grover’s-algorithm-based improvements in string-

matching speeds25 could be exploited O n + m  for exact matches) to aid the scanning 

process. Recent work has demonstrated the potential for even further QC speed gains under 

the assumption of unique membership of a query string within a reference database26. The 

scaling of the problem is such that a reduction in complexity of even simpler mapping 

problems would be highly beneficial, although the need to generate superpositions of the 

entire reference string also creates potential problems: given the need to store a large 

reference database in superposition, the current lack of qRAM is an issue. Furthermore, 

speed gains from Grover’s-algorithm-based methods could be reduced by the cost of 

evaluating the function being searched, if done classically.
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Genetics.

As in the previous section, a possible problem for near-term QC algorithms to tackle is the 

imputation of individual-specific mutations, especially single-nucleotide polymorphisms 

(SNPs). Given shared sets of haplotypes across subpopulations, a relatively sparse set of 

SNPs can be expanded by inferring additional SNPs that co-occur with the original set with 

high probability. This imputation usually involves an HMM-based likelihood 

maximization27, which could be cast as HQMMs.

While imputation depends on inherited SNPs within populations (germline mutations), cells 

also contain postconception de novo variants, called “somatic variants.” Every neuron in the 

human brain is likely to contain private somatic variants, including single-nucleotide 

variants and large structural variants that alter allelic diversity for dozens of genes. 

Identifying their functional impact is essential. Machine-learning classifiers have been 

trained on case–control datasets to identify psychiatric-disorder-associated variants28. 

However, given the high-dimensional parameter search space for the classification problem, 

classical computation frequently runs into search efficiency issues. These issues might be 

ameliorated using near-term implementable QC machine learning methods29, discussed at 

length in subsequent subsections.

Another important category of genetic analyses is the construction of optimal trees that 

describe the relative proximity of genetic sequences, including ancestral recombination 

graphs (ARGs)30, depicting ancestral relationships between individual genomes while 

accounting for genetic recombination; pathogen evolutionary trees in epidemiological 

studies; and tumor cell mutational lineages, as could be relevant to malignancy and medical 

response. Tree reconstruction algorithms optimize across the similarity constraints between 

genomic segments, mainly involving sampling from the space of possible genealogies with 

heuristics and simplifications31. For smaller input sequence sets, the massive tree-search 

space makes this an open candidate problem for speedup using available quantum heuristic 

optimization methods14–16.

SNP association and heritability analyses are problematic for near-term quantum 

approaches, given the need to manipulate large matrices to solve systems of linear equations. 

In association studies, SNPs can be statistically associated with individual-level phenotypes 

in genome-wide association studies (GWAS) or to quantitative molecular traits (cell or tissue 

gene expression, methylation, epigenetic markers, cell fractions) and other quantitative traits 

(loci designated as QTLs). The evaluation of total SNP heritability often involves linear 

mixed effects models, with genetic variance estimations carried out through techniques such 

as the restricted maximum likelihood (REML) method32. With qRAM, algorithms such as 

quantum least squares33,34 could offer up to exponential speedups through the ability to 

perform fast linear-algebraic operations, under certain assumptions of sparseness and 

condition number, although it is unclear to what extent any advantages would be undercut by 

the time cost of querying the qRAM. For lower-dimensional regression problems, there is 

some potential for near-term quantum heuristic optimizers to tackle these tasks35.
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Functional genomics.

The chain of factors that leads from genetic variation to higher-level behaviors such as 

cognitive traits includes complex intermediate links, such as the molecular regulatory 

framework within cells, cell-to-cell interactions, heterogeneity in cellular composition and 

behavior in tissues, and inter-regional connectivity patterns in the brain, among many others 

(Fig. 2). These factors are further governed by complex developmental processes and gene–

environment interactions in an individual-specific manner. Despite this complexity, recent 

studies have shown that genetic risk for particular traits can be partitioned across 

‘intermediate’ phenotypes, such as gene expression or chromatin binding profiles; a direct 

approach to such analysis is to impute intermediate molecular phenotypes first and then link 

the imputed phenotypes to high-level traits36. However, intermediate molecular phenotypes 

are typically high dimensional and interdependent; for example, bulk transcriptome 

expression profiles can be ~22,000 dimensional. Possible models that can learn joint 

probability distributions over such levels of analyses include Bayesian networks, undirected 

models such as Boltzmann machines37, and recent deep-learning approaches such as 

variational autoencoder (VAEs). Exact optimization of such models, however, is intractable: 

structure learning in Bayesian networks requires optimization over a search space of all 

directed acyclic graphs, which is super-exponential O n!2
n!

2! n − 2 ! , where n is the 

dimensionality38). Inference in Boltzmann machines requires a search over O 2n  states after 

binarization to calculate a gradient, and training VAEs requires the optimization of a non-

convex objective function. Such problems may be potential candidates for quantum 

approaches: for smaller input sizes, near-term approaches without qRAM may be developed 

to perform exact searches across the space of Bayesian networks, while for moderate-sized 

problems, approximate quantum analogs of Boltzmann machines (QBMs) and VAEs 

(QVAEs) have been tested in simulation and experimentally39,40, with the optimization 

being conducted through QA. We note also that, for all these models, prior knowledge of 

molecular interactions may be used during training to suggest causal network 

interpretations.

In contrast to direct imputation of molecular phenotypes, intermediate phenotypes may be 

derived at the level of sets of genes (such as functional pathways) and cell-type proportions. 

For instance, weighted gene correlation network analysis (WGCNA) performs a version of 

hierarchical clustering to derive coexpression modules, which are enriched in gene 

pathways41, and non-negative matrix factorization (NMF) based on marker gene profiles can 

be used to decompose bulk transcriptome data into components corresponding to cell-type 

fractions37. Exact optimization of these models is again intractable; exact hierarchical 

clustering would require a search over a large space of trees, and NMF is a non-convex 

optimization problem. The former may be a candidate for an exact quantum solution for 

small-scale problems while both may benefit from quantum heuristic approaches (a QA 

approach to NMF is found in ref. 42, and quantum speedups for approximate clustering are 

described in ref. 17). While clustering ~1,000 to ~20,000 features is common in genomics, 

there are a number of applications where a relatively small number of features, ~100, are 

clustered across samples (for example, protein-array data). Clustering associated with global 

minimization of objective functions is of great interest in these small-feature-number cases. 
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More generally, comparison of clusters (and solutions to other genomic algorithms) derived 

from exact and approximate greedy minimization would inform the nature of the errors 

associated with applying greedy algorithms to large numbers of features and samples, as 

well as suggest possible approaches to improving the greedy algorithms in the short term. 

Application of these methods at full genomic scale, however, would require further technical 

developments in qRAM or quantum processor size.

Mapping neurobehavioral variation via neuroimaging and deep phenotyping.

The overarching goal of convergent neuroscience is to link cellular-level mechanisms to 

system-level observations and ultimately behavior. Multimodal neuroimaging provides rich 

high-dimensional data that can map neural and behavioral mechanisms in humans. While 

many quantitative optimizations remain, one of the core challenges is accurate identification 

and alignment across people of brain anatomy to reference atlases. For instance, one 

widespread approach implemented in FreeSurfer software43 employs a sequence of 

registration steps involving the minimization of an energy function over the spatial 

transformation field. Here, potential quantum heuristic approaches could be brought to bear 

for images of moderate resolution if the corresponding energy function (Hamiltonian) can be 

mapped to an Ising-type model. A related challenge involves training statistical models to 

rapidly and accurately quantify neurobehavioral variation. For instance, the presence of 

active psychotic symptoms in previously unseen individuals diagnosed with schizophrenia 

and bipolar illness can be predicted using dynamic functional connectome features derived 

from fMRI44. Quantum analogs (such as HQMMs21,22; see “Sequence analysis” and 

“Genetics”) may help train such predictive models more efficiently.

Computational neuroscience has used circuit models to inform and constrain experimental 

observations. Dynamical neural models operate at the local circuit or global level and use 

parameterizations based on known constraints (for example, biophysical parameters) or 

learned de novo. Local and global neural dynamics are typically highly nonlinear, producing 

difficult optimization problems in the case of parametric model fitting45 and requiring a rich 

model class for de novo learning methods. Fluctuations at equilibrium exhibit complex 

interdependencies. Furthermore, the hierarchical relationships between genetics, anatomy, 

function and the equilibrium connectivity neural state are, in general, highly nonlinear and 

only partially captured by available computational models. Current classical models relate 

such simulations to equilibrium distribution features (or to resting state characteristics) — 

for instance, Ising models and second-order mean-field regional models of resting-state 

fMRI observations46,47. These differential-equation-based analyses of global brain dynamics 

represent regional firing rates using a mean-field approximation46. Such models can be fitted 

to functional neuroimaging data by linearizing the initial stochastic nonlinear system of 

differential equations around a fixed point using the method of moments46 and using 

methods such as approximate Bayesian computation to fit parameters45. In the QC domain, 

quantum algorithms have been developed that have the potential to offer exponential 

speedups in the solving of linear differential equations48,49. Furthermore, models such as the 

QBM39 and QVAE40, as discussed in the previous subsection, may be naturally applied to 

model complex distributions such as those found in neurodynamics datasets.
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General-purpose quantum solvers for nonlinear systems of differential equations have also 

been proposed50, although so far these seem unlikely to offer speedups over classical 

methods. Efficient general-purpose solvers would eliminate the need for linear 

approximations and allow more accurate fitting of neural dynamical models, particularly out 

of steady state (for example, transitions between resting-state and task-based fMRI). This 

application may help motivate finding fast quantum algorithms for nonlinear differential 

equations.

The computational challenge in human neuroscience is particularly acute in the case of 

‘deep’ behavioral phenotyping (for example, digital real-time measures), which can generate 

massive amounts of continuously measured dynamical behavioral variables with varied 

granularity. In this situation, there is clear potential for ‘very deep’ optimization and the 

opportunity for massive state-space exploration. Relevant use-case scenarios include in-the-

moment clinical decisions that may require rapid computation. This becomes challenging for 

longitudinal real-time digital phenotyping, which may require rapid and precise data 

reduction. For instance, rich individualized phenotypic characterization using high-

resolution video and audio datasets have yet to be leveraged since they are identifiable in 

raw form and present operational challenges to data reduction and protection of participant 

privacy.

Collectively, the complexity of human neurobehavioral data tests the boundaries of learning 

algorithms, which have to deal with the high dimensionality of data needed to robustly link 

nonlinear dynamics of brain states (for example, fMRI) and the influence of time-related 

variables relevant to behavioral mapping. Recent deep learning approaches using 

interpretable recurrent networks have provided a powerful means of learning such brain-

state/behavior associations de novo by jointly modeling fMRI and behavioral data51. 

Quantum analogs of neural network frameworks (such as QNNs52, QBMs39 and QVAEs40) 

have the potential to discover novel structure in these datasets. Models such as HQMMs 

provide alternative dynamical models with intrinsically quantum representations22, which 

have been shown to have comparable or possibly improved performance relative to classical 

methods on small-scale problems through classical simulations. Further, there is evidence 

that HQMMs allow complex dynamics to be modeled in a reduced state space21 compared to 

classical models. The application of such methods to behavioral data, though, is a long-term 

goal, since reliable qRAM appears necessary to handle large dataset sizes.

Integration across disciplines.

Stitching together insights across fields and levels of analyses to yield a complete picture of 

brain function is an ongoing challenge. Quantum machine learning may help elucidate the 

interdependencies between levels through its ability to learn and simulate nonlinear, 

potentially classically intractable models. One promising avenue involves mechanism-

agnostic machine learning methods like deep neural networks, where biological insights are 

gained by interpreting the model a posteriori. Such an interpretable framework would 

involve connections between modules such as gene regulatory networks, on the one hand, 

and structural or functional neuroimaging parameters (for example, cortical thickness, white 

matter integrity and dynamic functional connectivity) on the other. The exact nature of these 
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connections could be altered in competing hypotheses. One could imagine a hierarchical 

network with molecular phenotypes at the base, emergent neuroimaging-based parameters at 

a higher layer, and behavioral phenotypes as prediction targets. An alternative framework 

would treat the molecular and neural-systems-level components as parallel factors in 

determining behavior, with the latter having been influenced at a developmental stage and 

not directly emerging from the molecular phenotypes per se but rather operating in 

dependent lockstep. Thus, different architectures of relationships between levels of analysis 

may be constructed. The National Institute of Mental Health in the United States has 

recently supported efforts at building such multiscale, convergent neuroscience approaches 

(https://grants.nih.gov/grants/guide/pa-files/par-17-176.html). Such an analysis could be 

aided by QNNs52 and quantum variational classifiers53 designed for use on non-qRAM, 

gate-based quantum computers. Quantum variational classifiers are able to successfully 

classify states designed to be hard to simulate classically53. This hints at the greater 

generality of such circuits than their classical counterparts. Here the challenge lies in scaling 

up the available number of qubits.

Epilogue

While the field of QC is undergoing notable development and progress in both hardware and 

software, knowledge gaps and challenges remain. To surpass classical computers, quantum 

computer architectures will need to improve numbers of and connectivity between qubits, 

reduce error rates both for operations and storage, and expand algorithmic development into 

all areas where classical computing faces inherent bottlenecks. These challenges are all 

significant and are partially conflicting; indeed, the central experimental QC challenge is to 

create quantum systems that are both highly decoupled from unwanted environmental 

degrees of freedom yet subject to fast and precise control and measurement. While there has 

been steady experimental progress over the past two decades, it is not easy to predict the rate 

of future improvements in QC. A recent consensus study on the progress and prospects of 

QC from the National Academies of Sciences, Engineering and Medicine estimates that to 

effectively break current internet security protocols (that is, find a private key in a 1,024-bit 

RSA encrypted message) using Shor’s algorithm requires building a quantum computer that 

is five orders of magnitude larger and has error rates that are two orders of magnitude lower 

than existing machines54. More than 100 academic and government laboratories around the 

world are working to address these challenges with a variety of hardware solutions54. These 

include ion-trap quantum computers with 20–100 qubits that are likely to become available 

by the early 2020s54. Leveraging the power of lithographic technology, superconducting 

quantum computers hold great promise, and 5-, 16- and 20-qubit machines are available to 

users via the web. Other promising approaches include developing quantum computers 

based on photonic, neutral-atom and semiconductor qubits54.

As mentioned above, many algorithmic quantum speedups depend on qRAM, but there is no 

practical implementation of this technology. In fact, this reliance on qRAM, in part, stems 

from attempts to arrive at algorithms that are essentially quantum versions of classical 

algorithms. An alternative approach is to design intrinsically quantum algorithms that take 

advantage of quantum features such as interference. We think that this alternative approach 

offers the added benefit that small-scale versions of problems are readily implementable on 
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existing hardware. Indeed, recent advances in quantum machine learning algorithms exploit 

the exponentially large quantum state space to estimate kernel functions53,55, as well as the 

natural ability of quantum computers to execute kernel-based classification56,57. We believe 

that generalizations of these algorithms for genomics applications hold great promise and 

will allow assessment of the current capabilities of publicly available quantum computers29. 

Given the potential of quantum computers to efficiently explore a vast state space, we think 

that the natural applications to neuroscience problems are largely associated with 

optimization and machine learning, as detailed above. We feel that another potentially 

fruitful path is to identify computational problems that can be naturally cast into a quantum 

framework. For example, the minimum free energy among all possible protein folds is an 

important problem with an exponentially large search space and thus a compelling target. 

Another natural set of problems are those associated with quantum biology — the study of 

chemical processes including formation of excited electron states within molecules (for 

example, proteins) in living cells, along with their functional effects58. These processes are 

inherently quantum mechanical and may involve an exponentially vast set of excitation 

states, which can only be efficiently modeled by applying transformations to an 

exponentially large state space afforded by a quantum computer. However, we are not sure 

whether such processes can be relevant to higher-levels of brain function (and 

consciousness59); the algorithms used by the brain at David Marr’s algorithmic or 

representational level may ultimately be classical60, although the advent of quantum 

machine learning means that increasingly this need not be the case for artificial agents. 

While a cautious albeit optimistic estimation associated with steady progress of quantum 

hardware development (for example, applying Moore’s law) puts the availability of 

sufficiently powerful, universal quantum computers years in the future, sudden, orders-of-

magnitude breakthroughs in resolution, noise reduction and so forth are not unprecedented 

in experimental physics. We strongly believe that such unforeseen breakthroughs would 

unleash the power of quantum computing to address pressing computational challenges in 

biology.
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Box 1 |

Glossary

Biological

• Single-nucleotide polymorphism (SNP). Germline (inherited) variant in a 

genome where the identity of a single nucleotide is changed relative to a 

reference genome; the prevalence of a SNP in a population is dependent on 

the pattern of its inheritance.

• Genetic recombination. Exchange of segments between separate genomes or 

chromosomes, or different regions of the same chromosome, by the creation 

of single-stranded (in, for example, viruses) or double-stranded (in, for 

example, humans) breaks and subsequent ligation of the crossed segments.

• Genome-wide association study (GWAS). Identification of variants in a 

population with statistically significant associations to the occurrence of a 

studied phenotype.

• Quantitative trait locus (QTL). Variant in a genome or population with 

statistically significant association to the occurrence of a studied phenotype, 

including but not limited to endophenotypes (that is, phenotypes at the 

suborganismal level; for example, cell- or tissue-level gene expression).

Machine learning

• Hidden Markov model (HMM). Stochastic latent-state method to model a 

linear sequence of observations as a probabilistic sequence of underlying state 

transitions and state-to-observation emissions.

• Boltzmann machine. Generative classical neural network model, based on an 

energy function containing local (unary) and pairwise terms over an 

underlying undirected graph. Recently, the model has been extended to 

replace the classical energy with a quantum Hamiltonian to form a quantum 

Boltzmann machine (QBM)39.

• Variational autoencoder (VAE). Generative neural network model, 

incorporating a latent space that is mapped to observed variables by a learned 

feedforward classical neural network. Latent space can be a classical 

(Gaussian) or quantum (QBM)40 distribution.

Quantum computing

• Quantum superposition. A fundamental principle of quantum mechanics 

whereby the overall state of a system (for example, an electron in an atom or 

qubit) is in a linear combination of orthogonal basis states (for example, the 

lowest energy state, next excited state and so forth). For example, if |0〉 
denotes the lowest energy state of a qubit and |1〉 an excited state of a qubit, 

the state of the qubit, |ψ〉, can be a superposition of basis states: |ψ〉 = α0|0〉 + 

α1|1〉.

Emani et al. Page 16

Nat Methods. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Quantum random-access memory I (qRAM). In analogy with random 

access memory (RAM), which uses n bits to address 2n distinct memory cells, 

qRAM would use n qubits to address any quantum superposition of 2n 

memory cells18.

• Quantum annealing (QA). A technique for minimizing a function f using a 

low-temperature quantum system whose energy corresponds to f, along with 

an auxiliary field that is slowly turned off. The auxiliary field attempts to 

create superpositions between nearby qubit strings, similarly to equally 

weighting possible solutions, and facilitates quantum tunneling (that is, 

transition of a quantum state between nearby low-energy strings even through 

regions of higher energy) to arrive at a minimum of f relatively efficiently 

once turned off.

• Hidden quantum Markov model (HQMM). The quantum analog of 

HMMs, where the sequence of quantum operations is such that information of 

the state transition and emission probabilities of the qubits can be retained 

even after partial measurement of the system (that is, measurements do not 

collapse the entire system)21.
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Box 2 |

Computational opportunities for the future

Existing quantum algorithms — for example, function minimization — are often written 

in terms of abstract and highly general functions. If biological applications can help 

motivate specific, mathematically well-posed tasks, then it may be the case that targeted 

quantum algorithm development can lead to improvement. While this promise is 

discussed at length in the main text in the context of the study of the human brain, here 

we briefly introduce some of the key areas of ongoing research in quantum computing, 

related to and providing the context for applications in biology.

Optimization in biomolecular problems

There has been considerable interest in extending QC to biomolecular and biological 

problems63. In several cases, small examples of biological problems have been mapped to 

combinatorial optimization problems. A QA approach was employed in the exploration 

of the coarse-grained folding landscape of a six-amino-acid peptide, within a 2D lattice 

framework64. QA was also evaluated against a set of classical methods on an 

optimization problem involving the search for the consensus DNA sequence motif of 

transcription factor binding35. In this instance, Li et al. trained a classifier (sequence 

binds or does not bind) and a ranking algorithm (ranking sequences by binding affinity), 

finding a slight improvement of QA over classical approaches in the classification 

problem and similar performance for the ranking task.

Simulation of classical and quantum systems

There have been successful demonstrations of the application of quantum computation to 

problems in chemistry. A variational quantum eigensolver (VQE) approach was used65 to 

estimate the ground state energies of small molecules as a function of their component 

atomic separations. Briefly, short quantum circuits define a variational ansatz of trial 

solutions for the ground state, and the circuit parameters are varied to minimize the 

energy using algorithms such as gradient descent. While the complexity of simulating 

quantum dynamics on quantum computers is well understood and is usually tractable, the 

success of VQE will depend on the quality of the ansatz and is an active area of ongoing 

research.

Quantum simulation of chemical reactions is known in principle to be possible on a 

quantum computer, and, as the practical details are fleshed out, this is expected to be an 

important application of quantum computers for applications both inside and outside of 

biology. One particular strength is in modeling dynamics, and there is evidence that 

energy transport and electron transport in biological molecules involves quantum effects 

that could potentially be more accurately modeled by a quantum simulation66.
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Fig. 1 |. Concepts in quantum computing.
a, Conceptual illustration of bit versus qubit. The state of a qubit can be represented by a 

point on the unit sphere with the north and south poles corresponding to the states 0 and 1 of 

a classical bit. b, The state space of 3 qubits is a 23-dimensional complex vector. c, Classical 

(number field sieve (NFS) algorithm) and quantum (Beckman–Chari–Devabhaktuni–Preskill 

(BCDP) implementation of Shor’s algorithm) run times for factoring integers. Shor’s 

algorithm for quantum computers yields an exponential speedup over the best known 

classical algorithm (panel c adapted with permission from ref. 61, R. Van Meter et al.).
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Fig. 2 |. Complexity of linking levels of analyses from genetics to human behavior.
The challenge consists, in part, of the need to interrogate the enormous search space for 

determining the mapping across levels, which constitutes a many-to-many probabilistic 

problem. Computational innovation will be a key effort to help close these gaps. Portion of 

figure adapted with permission from ref. 62, Elsevier. Also shown are some of the ways in 

which QC can aid in the interrogation of these levels.
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