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Abstract 

Background:  Although immunotherapy for colon cancer has made promising progress, only a few patients currently 
benefit from it. A recent study revealed that infiltrating immune cells are highly relevant to tumor prognosis and influ-
ence the expression of immune-related genes. However, the characterization of immune cell infiltration (ICI) has not 
yet been comprehensively analyzed and quantified in colon adenocarcinoma (COAD).

Methods:  The multiomic data of COAD samples were downloaded from TCGA. ESTIMATE algorithm, ssGSEA method 
and CIBERSORT analysis were conducted to estimate the subpopulations of infiltrating immune cells. COAD subtypes 
based on ICI pattern were identified by consensus clustering then principal-component analysis was performed to 
obtain ICI scores to quantify the ICI patterns in individual tumors. Kaplan–Meier analysis was employed to validate 
prognostic value. Gene set enrichment analysis (GSEA) was applied for functional annotation. Finally, the mutation 
data was analyzed by employing “maftools” package.

Results:  Three bioinformatics algorithms were used to evaluate the ICI patterns from 538 patients with COAD. Two 
ICI subtypes were determined using consensus clustering, and the ICI score was constructed by performing principal 
component analysis. Our findings showed that a higher ICI score often indicated a more advanced tumor and worse 
prognosis. The high-ICI score subgroup had a higher stromal score and more M0 macrophages but fewer plasma cells 
and decreased CD8 T cell infiltration. In addition, patients with high ICI scores had significantly higher expression lev-
els of HAVCR2 and PCDC1LG2. Real-time polymerase chain reaction (PCR) was conducted to determine the prognos-
tic significances of ICI-related genes.

Conclusions:  In conclusion, ICI score may be considered as an original and useful indicator for independent prog-
nostic prediction and individual immune-related therapy.
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Introduction
Colon adenocarcinoma (COAD), a type of colorectal 
cancer (CRC), is the third most common cancer and the 
third leading cause of cancer-related deaths in both men 

and women [1]. With the widespread use of early diag-
nosis technology (such as colonoscopy), the incidence 
of COAD has been decreasing since the 2000s [1]. How-
ever, due to the lack of obvious clinical symptoms of early 
colon cancer and frequent metastasis, a large number of 
patients are already in the advanced stage of colon cancer 
prior to arriving at the hospital, which poses great chal-
lenges for treatment. Thus, there is an urgent need to 
alter the current therapeutic strategy in order to improve 
patient prognosis.
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At present, colon cancer is primarily treated with sur-
gery, radiotherapy, and chemotherapy. Recently, immu-
notherapy, especially immune checkpoint blockade 
(ICB), has emerged as an original method that exerts 
surprising therapeutic effects in various types of cancers, 
such as melanoma as well as renal and lung carcinoma 
[2]. Based on the distinct DNA proofreading and repair 
mechanisms, COAD can be classified into two molecu-
lar subsets. Patients with mismatch repair deficiency 
(dMMR) and DNA polymerase epsilon mutations are 
usually accompanied by a higher degree of T cell infil-
tration and response to immune checkpoint inhibitors, 
which indicates a better clinical prognosis [3]. However, 
only a limited number of patients with a high mutation 
burden can benefit from immune checkpoint inhibi-
tors. Hence, we aimed to identify new therapeutic mark-
ers to determine the subgroups with immunotherapy 
sensitivity.

The tumor microenvironment (TME) is a vastly com-
plicated cellular network composed of tumor cells, 
stromal cells, soluble factors, signal molecules, and extra-
cellular matrix components [4]. Recent studies have 
revealed that the interactions between cancer cells and 
their surrounding TME could affect recruitment and 
activation of immune cells, tumor angiogenesis, and 
extracellular matrix remodeling, which determine tumor 
progression [5, 6]. As an important part of TME, infiltrat-
ing immune cells, such as macrophages and lymphocytes, 
are considered to be highly relevant to tumor prognosis 
and influence the expression of immune-related genes in 
CRC [7]. Therefore, the patterns of immune cell infiltra-
tion (ICI) may possess potential prognostic value and be 
used to guide immunotherapy.

In this study, 538 COAD patients were clustered into 
2 subgroups based on their ICI patterns. Subsequently, 
we used three algorithms, named “CIBERSORT,” “ESTI-
MATE,” and “ssGSEA,” to evaluate the gene expression 
information of COAD and develop a systematic land-
scape of tumor ICI. Additionally, we calculated the ICI 
scores, which could uncover the ICI patterns, for precise 
prognostic prediction and immunotherapeutic guidance. 
Finally, prognostic roles of the target gene were validated 
in vitro.

Materials and methods
COAD data and sample collection
A total 538 COAD samples, including RNA sequenc-
ing transcriptomic and clinical data, were obtained from 
The Cancer Genome Atlas (TCGA; http://​cance​rgeno​
me.​nih.​gov) and Gene Expression Omnibus (GEO; Gen-
Bank: GSE29623; https://​www.​ncbi.​nlm.​nih.​gov/​geo) 
databases. The expression patterns of TCGA-COAD 
samples were transformed from FPKMs (Fragments Per 

Kilo-downloaded Million) into TPMs (Transcripts Per 
Kilobase Million). The “ComBat” algorithm was also 
used to eliminate the possibility of batch effects caused 
by non-biotech bias among different datasets [8]. The 
specific clinicopathological data from TCGA-COAD and 
GSE29623 were listed in Additional file 1: Tables S5 and 
S6, respectively.

ICI patterns in the immune‑related TME
Using the R software package “CIBERSORT” (http://​
ciber​sort.​stanf​ord.​edu), the gene expression levels of the 
TCGA-COAD and GSE29623 combination cohort were 
evaluated to draw the ICI matrix [9]. Subsequently, the 
“ESTIMATE” algorithm was performed to calculate the 
stromal score, immune score, and estimate score for each 
COAD sample Yu, Wang [10]. In addition, the R package 
“GSEABase” was executed for 29 immune-related signa-
tures to further reveal the prospects of immune-related 
responses.

Consensus clustering for tumor ICI
In order to further stratify the COAD samples into dif-
ferent subgroups, the unsupervised clustering “Pam” 
method, which is based on the Euclidean and Ward 
linkage methods, was conducted using the “Consensu-
ClusterPlus” R software package and repeated as many 
as 1000 times to ensure classification stability in this 
analysis.

Differentially expressed genes (DEGs) of ICI clusters 
and enrichment analysis
According to ICI patterns, COAD patients from the 
TCGA-COAD and GSE29623 datasets were divided into 
different ICI clusters. To identify the genes related to 
ICI patterns, DEG analysis between ICI subgroups was 
performed using the R software package “limma.” The 
significant cutoff thresholds for determining DEGs were 
P < 0.05 after adjustment and absolute fold change > 1.5. 
To further clarify the biological functions of the DEGs, 
Gene Ontology enrichment analysis was performed to 
annotate the genes that were differentially expressed 
between different subgroups.

Definition and generation of ICI scores
First, patients from the TCGA and GEO combination 
cohort were classified according to the DEG values using 
unsupervised clustering. The DEG values, which were 
positively correlated and negatively correlated with clus-
ter signatures, were named as ICI gene signatures A and 
B, respectively. Next, the Boruta algorithm was used for 
dimensionality reduction of the ICI gene signatures A 
and B [11]. Subsequently, we extracted principal com-
ponent 1 and performed principal component analysis 
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(PCA) to generate the signature score. Finally, the ICI 
score of every COAD patient was defined using a method 
similar to the gene expression grade index [12] (ICI 
score = ∑PC1A—∑PC1B).

Correlation between ICI score and immunotherapy
To explore the immune infiltrating landscape of the 
TME in the high and low ICI score subgroups, we per-
formed CIBERSORT, ESTIMATE, and GSEABase 
assays as described above. In addition, to evaluate the 
potential value of the ICI score for immunotherapy, we 
examined the expression of 12 immune-related genes 
(CD274 [also known as PD-L1], CTLA4, HAVCR2 [also 
known as TIM3], IDO1, PDCD1 [also known as PD-1], 
PDCD1LG2 [also known as PD-L2], CD8A, CXCL10, 
CXCL9, GZMA, GZMB, IFNG, PRF1, TBX2, and TNF). 
Furthermore, owing to the excellent clinical outcome of 
ICB therapy, we analyzed the correlation between the 
ICI score and six crucial ICB immune genes (CD274, 
CTLA4, HAVCR2, IDO1, PDCD1, and PDCD1LG2).

Epigenetic mutation data processing
Somatic mutational information was systematically col-
lected and downloaded from the TCGA-COAD dataset. 
Subsequently, we calculated the COAD mutational bur-
den by counting the total number of non-synonymous 
mutations. Finally, we used the R software package 
“maftool” to identify the driver genes of COAD and listed 
the top 20 driver genes with the highest mutational fre-
quencies [13].

Patient data and tissue specimens
COAD tissues together with adjacent colon tissues were 
acquired from patients underwent surgical resection 
between October 2014 and December 2014. Correspond-
ing adjacent tissues were harvested 3 cm from the edges 
of the tumor lesion. Tissue specimens were immedi-
ately put into liquid nitrogen post-operation. The tissues 
were then stored into a − 80℃ refrigerator for total RNA 
extraction. To control the potential confounding factors, 
all patients were diagnosed with COAD by histopatho-
logical examination, while the patients received chemo-
therapy or radiotherapy were excluded in the study. All 
participants have signed written informed consent form. 
In this study, three pairs of tumor and adjacent tissues 
were employed for further analysis. The specific clinico-
pathological data was listed in Additional file 1: Table S8.

Quantitative real‑time PCR (qRT‑PCR) analysis
Total RNA was isolated from tumors samples and normal 
tissues using Trizol reagent (Invitrogen, Carlsbad, CA, 
USA) according to manufacturer’s instructions, and RNA 
concentration and purity were analyzed in triplicate by 

Nanodrop 2000 spectrophotometer (Thermo Scientific 
Inc., Waltham, MA, 93 USA). After that, the total RNA 
was reverse transcribed to cDNA using a cDNA Reverse 
Transcription Kit (Vazyme, Nanjing, China). To deter-
mine the expression level of CLCA1 and LTLN1, cDNA 
sample was tested with quantitative real-time polymerase 
chain reaction (RT-PCR), using (Roche, Basel, Switzer-
land). All samples were tested at least three times. The 
expression of glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) was used as an endogenous control, and 
relative expression of CLCA1 and LTLN1 was calcu-
lated by comparative Ct method formula 2-ΔΔCt. The 
sequences of all PCR primers used were as follows (5′–
3′): CLCA1: ACA​GGG​ACA​CAC​TCG​CCA​AA (forward), 
GTC​TTC​CCC​ATC​CGT​CAG​CA (reverse); LTLN1: CGG​
ATG​TAA​CAC​TGA​GCA​CCA​CTG​ (forward), TTA​TCT​
CAC​GGC​TGC​TGC​TGT​AAC​ (reverse); GAPDH: GGA​
GCG​AGA​TCC​CTC​CAA​AAT (forward), GGC​TGT​TGT​
CAT​ACT​TCT​CATGG (reverse).

Ethics approval and consent to participate
This retrospective study was conducted according to the 
ethical standards of the responsible committee on human 
experimentation (institutional and national) and with 
the Helsinki Declaration of 1975, as revised in 2000. All 
participants have signed written informed consent form. 
Ethical approval (No. 2015–425) was obtained from the 
Ethics Committee of the First Affiliated Hospital, School 
of Medicine, Zhejiang University.

Statistical analysis
The Wilcoxon test was used to compare two groups, and 
the Kruskal–Wallis test was conducted to compare three 
or more groups. Survival curves were depicted using the 
Kaplan–Meier plotter (log-rank test). X-tile software 
was employed to classify COAD patients into different 
subgroups while decreasing the computational batch 
effect [14]. Additionally, the chi-square test and Spear-
man analysis were carried out to evaluate the correlation 
and calculate the correlation coefficient, respectively. All 
statistical data were analyzed using R software (version 
4.0.3; The R Foundation, Vienna, Austria). Statistical sig-
nificance was set at P < 0.05.

Results
ICI landscape in the TME of COAD
To assess the activity and enrichment levels of the inflam-
matory cell subpopulation in the TME of CRC, we imple-
mented the ESTIMATE and CIBERSORT algorithms. 
Based on the ICI patterns of 538 CRC samples from the 
TCGA-COAD and GSE29623 datasets, we clustered the 
CRC patients into different subgroups using the R soft-
ware package “ConsensusClusterPlus.” According to the 
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similarity shown in the ICI profiles, the consensus matrix 
had the best clustering stability when k = 2, and the 
cumulative distribution function value, which is consid-
ered as an indicator of outstanding clustering, tended to 
increase (Additional file 2: Figure S1A–F). Consequently, 
we divided these CRC cases into two ICI clusters and 
depicted the relationship between ICI patterns and clini-
cal phenotypes in the comprehensive heatmap (Fig. 1A). 
Although there was no significant difference in overall 
survival (OS) time as shown by the Kaplan–Meier plotter 
(Fig. 1B; P = 0.878), we observed that the OS of ICI clus-
ter A was higher than that of ICI cluster B after 5 years. 
Subsequently, in order to uncover the intrinsic biologi-
cal distinction, we compared the immune cell composi-
tion of the two ICI clusters in the TME and visualized 
the universal ICI landscape using the correlation coeffi-
cient heatmap (Fig. 1C and D). We found that ICI cluster 
A had greater proportions of naïve B cells, plasma cells, 

CD8 T cells, resting or activated memory CD4 T cells, 
follicular helper T cells, activated NK cells, monocytes, 
M1 macrophages, and resting or activated dendritic cells 
as well as a higher immune score. On the other hand, ICI 
cluster B possessed markedly increasing densities of reg-
ulatory T cells, M0 macrophages, and activated mast cells 
as well as a higher stromal score. We also estimated the 
expression levels of several ICB genes between the two 
ICI clusters, such as PD-L1, CTLA4, TIM3, IDO1, PD-1, 
and PD-L2 (Fig. 2A–F). We observed that all six genes of 
ICI cluster A, except TIM3 and PD-L2, were expressed at 
higher levels than those of ICI cluster B.

Determined immune gene subsets
In order to reveal the potential biological characteristics 
of different immunophenotypes, we conducted differen-
tial gene expression analysis to identify the genomic vari-
ations between these two subsets using the R software 

Fig. 1  The Landscape of Immune Cell Infiltration in the TME of COAD. A Unsupervised clustering of tumor infiltrating immune cells in COAD 
patients. The rows represent tumor infiltrating immune cells, and the columns represent samples. B Kaplan–Meier plotter for COAD patients in two 
ICI clusters. C The proportion of tumor infiltrating immune cells (also including stromal scores and immune scores) in two ICI clusters. D Intrinsic 
interaction of tumor infiltrating immune cells, immune scores and stromal scores
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package “limma.” As described previously, we selected 
11 DEGs (Additional file  1: Table  S3) and grouped 538 
CRC patients from the TCGA-COAD and GSE29623 
combination cohort into two transcriptomic subgroups 
via unsupervised clustering (gene clusters A and B; Addi-
tional file 3: Figure S2A–F). Among the 11 DEGs, 6 genes 
were positively correlated with the gene cluster, which 
was termed gene signature A, whereas the other 5 genes 
were classified as gene signature B (Additional file  1: 
Table S4). In Fig. 3A, we depicted the heatmap to visual-
ize the transcriptomic variation between gene cluster A 
and gene cluster B using the R software package “Cluster-
Profiler.” In addition, we performed GSEA analysis to elu-
cidate the significantly enriched biological processes of 
gene signatures A and B (Fig. 3B and C), and more details 
are presented in Additional file  1: Table  S5. To investi-
gate the prognostic value of immune gene clustering, we 
performed survival analysis by drawing a Kaplan–Meier 
curve. We found that patients in cluster A had longer 
OS than those in gene cluster B, which indicates a better 
prognosis (Fig.  3D; P = 0.001). Subsequently, we deter-
mined the difference in TME characterization between 
gene cluster A and gene cluster B. As shown in Fig. 3E, 
gene cluster A exhibited higher infiltration of naïve B 
cells, plasma cells, CD8 T cells, resting memory CD4 T 
cells, activated NK cells, monocytes, and eosinophils. 

However, gene cluster B showed remarkably high expres-
sion of M0 macrophages and a higher stromal score. Fur-
thermore, we compared the expression levels of the six 
aforementioned ICB genes between the two gene clus-
ters. As depicted in Fig. 4A–F, gene cluster A was charac-
terized by upregulated levels of PD-L1, CTLA-4, IDO-1, 
and PD-1, whereas TIM3 and PD-L2 levels were not sig-
nificantly different.

Generation of ICI scores in COAD
To quantitatively estimate the ICI profiles of CRC 
patients, we calculated the two parts of the scores from 
ICI gene signatures A and B using PCA. Subsequently, 
we used X-tile software to obtain the best cutoff value 
and classified all patients from the TCGA-COAD and 
GSE29623 cohort into two subgroups named “high 
ICI scores” and “low ICI scores.” The specific distribu-
tion is shown in the Sankey diagram (Fig.  5A). Using 
the Kaplan–Meier plotter, we evaluated the prognostic 
value of the ICI score and found that patients with low 
ICI scores had a better survival advantage compared to 
the high ICI score subset in both the combination and 
TCGA-COAD cohorts (Fig. 5B; P < 0.01 and Additional 
file 4: Figure S3A; P < 0.001). Although there was no sig-
nificant difference, we observed that patients with rela-
tively low ICI scores had a better survival probability 

Fig. 2  Comparison of ICB genes between two ICI clusters. The expression levels of PD-L1 (A), CTLA4 (B), TIM3 (C), IDO1 (D), PD1 (E) and PD-L2 (F) of 
COAD patients from different ICI clusters
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in the GSE29623 cohort (Additional file 4: Figure S3B; 
P = 0.526). Furthermore, we performed stratification 
analysis and divided the patients from the combina-
tion cohort into different subgroups based on clinical 
characteristics (Additional file  4: Figure S3C–H). In 
Fig. 5C–F, we found that ICI scores were positively cor-
related with tumor staging and tumor–node–metasta-
sis (TNM) stage. A higher ICI score often indicated a 
more advanced tumor and a worse prognosis, which is 
also consistent with the results of the aforementioned 
Kaplan–Meier curves. In addition, sex did not appear 
to be related to ICI score (Additional file 4: Figure S3I). 
Together, this consistency among clinical characteris-
tics and prognosis confirmed the scientific and rational 
nature of our classification methods. To further analyze 
the prognostic predictive ability of the ICI score in dif-
ferent clinical characteristic subgroups, we depicted 
the survival curves. As shown in Additional file  5: 
Figure S4A–4  J, we discovered that the ICI score had 

promising predictive value in patients who were male, 
T3–4, N0, M0, and stage I–II.

Relationship between ICI score and immunotherapy
To further elucidate the connection between ICI score 
and ICI patterns, we calculated stromal, immune, and 
estimate scores using the ESTIMATE algorithm. As 
depicted in Fig. 6A, we found that the high ICI score sub-
group had higher stromal, immune, and estimate scores. 
Subsequently, with the help of the R software package 
“CIBERSORT,” we uncovered that the fraction of active 
immune cells, such as naïve B cells, plasma cells, CD8 T 
cells, resting memory CD4 T cells, monocytes, activated 
dendritic cells and eosinophils, were negatively cor-
related with ICI score, whereas M0 macrophages were 
positively associated with ICI score (Fig. 6B). In addition, 
we used the ssGSEA algorithm to estimate the immune-
related signatures. As shown in Fig. 6C, B cells were rela-
tively high in patients with low ICI scores, but there was 

Fig. 3  Determination of Immunogenic Gene Subtypes. A Unsupervised clustering of DEGs between two ICI clusters to divide patients into two 
subgroups: gene clusters A–B. GO enrichment analysis of the two ICI-related signature genes: ICI signature genes A (B) and B (C). D Kaplan–Meier 
plotter for COAD patients from two ICI gene clusters. E The subpopulation of tumor infiltrating immune cells, stromal scores and immune scores in 
ICI gene cluster A and B 
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Fig. 4  The contrast of ICB genes between two ICI gene clusters. The expression levels of PD-L1 (A), CTLA4 (B), TIM3 (C), IDO1 (D), PD1 (E) and PD-L2 
(F) of COAD patients from distinct ICI gene clusters

Fig. 5  Generation of the ICI Scores. A Sankey diagram of the distribution of ICI gene clusters in subgroups with dissimilar ICI scores and survival 
state. B Kaplan–Meier plotter for high and low ICI score subgroups. Comparison of ICI score among different subgroups classified on the basis of 
clinical characteristics: caner staging (C), tumor (D), regional lymph node (E) and metastasis (F)
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an increasing trend of macrophages in the high ICI score 
subgroup.

To assess the immune activity or tolerance condition of 
the two ICI score subgroups, we presented the expression 
level profiles of six ICB genes (CD274, CTLA4, HAVCR2, 
IDO1, PDCD1, and PDCD1LG2) and nine inflammation-
related genes (CD8A, CXCL10, CXCL9, GZMA, GZMB, 
IFNG, PRF1, TBX2, and TNF). As shown in Fig. 7A, we 
found that several genes, particularly HAVCR2, PCD-
C1LG2, CXCL9, and CXCL10, were highly expressed 
in patients with high ICI scores. Subsequently, we fur-
ther estimated the relationship between ICI score and 
ICB key target genes and discovered that all six ICB 
genes were positively correlated with ICI score (Fig. 7B–
H; CD274 [R = 0.15, P = 0.00076], CTLA4 [R = 0.18, 
P = 7.6e-05], HAVCR2 [R = 0.39, P < 2.2e − 16], IDO1 
[R = 0.089, P = 0.048], PDCD1 [R = 0.12, P = 0.0058], and 
PDCD1LG2 [R = 0.39, P < 2.2e − 16]).

Correlation between ICI score and tumor mutational 
burden (TMB)
Recently, many original studies have elucidated that 
high TMB may be utilized as a new biomarker to pre-
dict the effect of immunotherapy [15]. Considering this 
newfound clinical significance of TMB, we explored the 
link between TMB and ICI score. First, we compared 

the TMB value between the high and low ICI score sub-
groups and found no significant difference (Additional 
file  6: Figure S5A). The results of correlation analysis 
revealed that there was no obvious correlation between 
TMB and ICI score (Additional file  6: Figure S5B; 
R = − 0.1, P = 0.052). Subsequently, we conducted sur-
vival analysis and demonstrated that the OS of patients 
with high or low TMB was not statistically different 
(Additional file  6: Figure S5C; P = 0.113). In order to 
further verify the prognostic value of the ICI score and 
exclude the interference of TMB, we performed stratified 
survival analysis and found that regardless of the TMB 
level, patients with low ICI scores exhibited a more opti-
mal survival advantage compared to patients with high 
ICI scores (Fig.  8A; P < 0.01). In addition, we evaluated 
the distribution of COAD gene mutations in the low and 
high ICI score subgroups. As shown in Fig. 8B and C, we 
drew the comprehensive patterns of somatic variants and 
listed the top 20 driver genes with the highest alternative 
frequencies. Taken together, these results illustrate that 
ICI score may act as a potential independent prognostic 
indicator and be used to guide ICB therapy.

The prognostic roles of ITLN1 and CLCA1
To better reveal the prognostic role of potential targets 
from ICI gene signatures A and B, two genes (ITLN1 

Fig. 6  Correlation between ICI scores and the characterization of TME. A Comparison of stromal scores, immune scores and estimate scores 
between patients with high ICI scores and patients with low ICI scores. B The fraction of tumor infiltrating immune cells between two ICI score 
subgroups. C The value of 29 immune-related signatures between high and low ICI score subgroups
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and CLCA1) were extracted into further analyses. Chlo-
ride channel accessory 1 (CLCA1), one of CLCA family 
protein, served as a functional player in modulating the 
proliferation and differentiation [16]. The expression 
value of CLCA1 has not yet been investigated from the 
mRNA level in COAD although Bo Yang et al. reported 
that CLCA1 could be a predictor of prognosis in primary 

human CRC. Expression level of CLCA1 between nor-
mal tissues and tumor samples was compared based 
on TCGA data. Relative to tumor tissues, CLCA1 was 
upregulated in adjacent normal specimens (Fig. 9A). Tak-
ing advantage of qRT-PCR, expression level of CLCA1 in 
COAD tissues and adjacent samples were determined. 
Consistent of previous results, expression level of CLCA1 

Fig. 7  Immunotherapeutic Significance of ICI Scores. A The expression level of ICB-related genes (CD274, PDCD1, PDCD1LG2, HAVCR2, IDO1 and 
CTLA4) and inflammatory-relevant genes (GZMA, TNF, TBX2, CXCL10, PRF1, CD8A, CXCL9, IFNG and GZMB) in high- / low- ICI score subgroups. 
B Correlation analysis between ICI scores with crucial immune checkpoint inhibitors (PDCD1, CD274, IDO1, CTLA4, HAVCR2 and PDCD1LG2). 
Correlation between ICI scores and ICB key target genes, including CD274 (C), HAVCR2 (D), PDCD1 (E), CTLA4 (F), IDO1 (G) and PDCD1LG2 (H)
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was lower in tumor relative to adjacent tissues (Fig. 9B). 
To further estimate the prognostic value of CLCA1 in 
COAD, Kaplan–Meier analysis were conducted between 
CLCA1 low- and high-expressed patients. As presented 
in Figs. 9C and D, low expression level of CLCA1 signifi-
cantly suggested shorter overall survival time (P = 0.012) 
and longer disease-free survival time (P = 0.041). These 
findings indicated that CLCA1 could be a robust prog-
nostic factor for predicting clinical outcome in COAD.

Human intelectin-1 (ITLN1) is a novel recognized 
galactose-binding lectin expressed in the colonic goblet 
cells. The aberrant ITLN1 expression has been demon-
strated to correlate with clinicopathological features and 
be a robust predicting indicator for prognosis of gastric 
cancer patients [17]. However, the prognostic role of 
ITLN1 in COAD remains unclear. Our results showed 
that expression level of ITLN1 was downregulated in 
cancer compared with normal tissues based on TCGA 
dataset (Fig.  9E) and experimental validation (Fig.  9F). 

As for survival analysis, high expression level of ITLN1 
experienced significant prognosis advantage (Fig.  9F, 
P= 0.0024). Our results indicated that ITLN1 might 
serve as a reliable biomarker for prognostic prediction in 
COAD.

Discussion
CRC is the third most common cancer, accounting for 
9% of cancer-related deaths in both men and women [1]. 
Owing to high intertumor and intratumor heterogeneity, 
different patients, even those with the same TNM stage, 
have different survival rates [18]. Surgery, radiotherapy, 
and chemotherapy are the main treatments for CRC. 
Recently, immunotherapy has been regarded as a prom-
ising therapeutic method for CRC. Two immune check-
point inhibitors, pembrolizumab and nivolumab, have 
been approved by the U.S. Food and Drug Administration 
and verified to be effective in metastatic CRC patients 
with high microsatellite instability (MSI-H) and dMMR 

Fig. 8  The Correlation of ICI Scores with TMB. A Kaplan–Meier plotter for patients stratified by both ICI scores and TMB. The oncoPrint was 
constructed with high ICI scores (B) and low ICI scores (C)
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[19, 20]. However, only approximately 5% of patients 
with metastatic CRC (complying with dMMR/MSI-H) 
can benefit from immunotherapy, and many immune-
sensitive patients can be distinguished via molecular sub-
typing, signature of gene expression, or immune-related 
score [21]. Thus, there is an urgent need to identify an 
original and effective biomarker for predicting prognosis 
and guiding immunotherapy options.

The characteristics of inflammatory infiltration indi-
cate that there are significant differences in the number 
and location of inflammatory cells in different colorectal 
tumor types. For example, patients with dMMR/MSI-H 
often possess more tumor-infiltrating lymphocytes 
and a higher TMB, which reduces immune tolerance 
and immune evasion in the TME. In this study, we esti-
mated the ICI patterns of 538 COAD samples from the 
TCGA-COAD and GSE29623 combination cohorts and 
divided them into two different ICI clusters using con-
sensus clustering. Our results showed that ICI cluster A 
had significantly greater proportions of plasma cells, CD8 

T cells, CD4 T cells, dendritic cells, activated NK cells, 
and M1 macrophages as well as a higher immune score, 
whereas ICI cluster B possessed markedly increasing 
densities of regulatory T cells and M0 macrophages as 
well as a higher stromal score. It appeared that patients 
in ICI cluster A may have a pre-existing anti-tumor 
immune response compared to patients in ICI cluster 
B. However, the survival analysis results between the 
two clusters were not significantly different. This illus-
trates that immune phenotypes cannot accurately evalu-
ate the prognosis of patients with COAD and respond to 
immunotherapy.

A recent study revealed that molecular subtype-spe-
cific biomarkers have high prognostic value in CRC [22]. 
Therefore, we integrated the characterization of ICI pat-
terns and immune-related gene expression profiles to 
provide a more original and comprehensive classifica-
tion scheme. In the current study, we defined six DEGs 
as gene signature A, which positively correlated with 
the gene cluster, and the remaining DEGs were termed 

Fig. 9  The clinical significance of CLCA1 and ITLN1. CLCA1 are downregulated in COAD tumor tissue based on TCGA dataset (A) and experimental 
study (B). Higher CLCA1 level predicts longer overall survival time (C) and disease-free survival time (D). ITLN1 are donwrefulated in COAD tumor 
tissue based on TCGA dataset (E) and experimental study (F). Higher CLCA1 level predicts longer overall survival time (G)
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gene signature B. Our data showed that ICI gene clus-
ter A contained more genes from signature B, which was 
associated with the immune response, whereas ICI gene 
cluster B displayed higher expression levels of gene signa-
ture A, which was related to the extracellular matrix and 
structure organization. In line with these results, patients 
in ICI gene cluster A exhibited higher densities of plasma 
cells and CD8 T cells in the TME, but patients in ICI 
gene cluster B had a relatively high stromal score, which 
was likely also related to higher tumor-associated mac-
rophage cell infiltration. Survival analysis revealed that 
ICI gene cluster A had a more favorable prognosis than 
ICI gene cluster B based on the Kaplan–Meier plotter. In 
addition, ICI gene cluster A was characterized by upreg-
ulated levels of four ICB genes: PD-L1, CTLA-4, IDO-1, 
and PD-1. Consequently, we speculated that patients in 
ICI gene cluster A may be more suitable for immune-
related therapy.

Given the complex tumor heterogeneity, we quanti-
fied the ICI profiles of each patient. In this study, based 
on the Boruta algorithm, we constructed an ICI score to 
comprehensively present the ICI landscape. Our results 
showed that ICI scores were positively correlated with 
tumor staging and TNM stage. A higher ICI score often 
indicates a more advanced tumor and worse progno-
sis. With the help of the ESTIMATE, CIBERSORT, and 
ssGSEA algorithms, we observed that the high ICI score 
subgroup had a higher stromal score and more M0 mac-
rophage infiltration. Although the high ICI score subset 
had a higher immune score, there was a clearly higher 
distribution of plasma cells and CD8 T cells in the TME 
of the low ICI score subgroup. However, interestingly, 
patients with high ICI scores showed significantly higher 
expression levels of HAVCR2 (also named TIM3) and 
PCDC1LG2 (also named PD-L2). At present, immu-
notherapy for CRC mainly focuses on PD1/PD-L1, and 
two drugs, pembrolizumab and nivolumab, have been 
approved for use in metastatic CRC patients. As the 
research develops, TIM3 and PD-L2 may become new 
targets for COAD immunotherapy, bringing clinical ben-
efits to patients with advanced tumors in the high ICI 
score subgroup. Finally, in order to exclude the interfer-
ence of TMB, we performed stratified survival analysis 
and discovered that the ICI score may independently act 
as a potential prognostic indicator that can analyze the 
response to immunotherapy.

Chloride channel accessory 1 (CLCA1) as a member 
of CLCA family protein, functioned as a biological role 
in modulating the proliferation and differentiation [16]. 
Furthermore, CLCA1 might serve as opposing role in 
progression of tumor [23]. Human ITLN1 is produced 
from the goblet cells and secreted into mucus in nor-
mal colon epithelia [24], and expression level of ITLN1 

was upregulated during gastrointestinal infection [25]. 
However, little to know about the prognostic role of both 
CLCA1 and ITLN1 in COAD. The present study shows 
that CLCA1 and ITLN1 is downregulated in COAD tis-
sues, could function as favorable prognostic predictors in 
COAD. However, the underlying biological mechanism 
requires to be further investigated in future experiment.

In conclusion, we comprehensively evaluated and 
quantified the ICI patterns of COAD, clarified that 
patients with different ICI patterns have different prog-
noses and clinical outcomes, and provided potential tar-
gets for COAD immunotherapy. Therefore, systematic 
analysis of ICI patterns may be considered as an original 
and useful indicator for prognostic prediction and indi-
vidual immune-related therapy.
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