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Abstract 

Background:  Long non-coding RNAs (lncRNAs) are increasingly recognized as the crucial mediators in the regulation 
of ferroptosis and iron metabolism. A systematic understanding of ferroptosis and iron-metabolism related lncRNAs 
(FIRLs) in lung adenocarcinoma (LUAD) is essential for new diagnostic and therapeutic strategies.

Methods:  FIRLs were obtained through Pearson correlation analysis between ferroptosis and iron-metabolism 
related genes and all lncRNAs. Univariate and multivariate Cox regression analysis were used to identify optimal prog-
nostic lncRNAs. Next, a novel signature was constructed and risk score of each patient was calculated. Survival analysis 
and ROC analysis were performed to evaluate the predictive performance using The Cancer Genome Atlas Lung 
Adenocarcinoma (TCGA-LUAD) and Gene Expression Omnibus (GEO) datasets, respectively. Furthermore, multivariate 
Cox and stratification analysis were used to assess prognostic value of this signature in whole cohort and various sub-
groups. The correlation of risk signature with immune infiltration and gene mutation was also discussed. The expres-
sion of lncRNAs was verified by quantitative real-time PCR (qRT-PCR).

Results:  A 7-FIRLs signature including ARHGEF26-AS1, LINC01137, C20orf197, MGC32805, TMPO-AS1, LINC00324, 
and LINC01116 was established in the present study to assess the overall survival (OS) of LUAD. The survival analysis 
and ROC curve indicated good predictive performance of the signature in both the TCGA training set and the GEO 
validation set. Multivariate Cox and stratification analysis indicated that the 7‐FIRLs signature was an independent 
prognostic factor for OS. Nomogram exhibited robust validity in prognostic prediction. Differences in immune cells, 
immune functions and gene mutation were also found between high-risk and low-risk groups.

Conclusions:  This risk signature based on the FIRLs may be promising for the clinical prediction of prognosis and 
immunotherapeutic responses in LUAD patients.
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Background
Lung cancer, an extremely heterogeneous disease, caused 
more deaths in 2017 than breast, prostate, colorectal, 
and brain cancers combined [29]. LUAD is one of the 
important sub-types of lung cancer with an increasing 

incidence [28]. Despite great efforts having been made 
in developing novel treatments but still received a poor 
prognosis with 5-year survival rates vary from 4% to 
17% [13]. Patients with histologically similar tumors may 
have different outcomes due to molecular differences. 
Therefore, there is an urgent need to find new sensitive 
biomarkers for predicting survival of LUAD patients. 
Compared with a single biomarker, integrating multiple 
biomarkers into a signature would greatly improve prog-
nostic prediction.
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Iron is an essential trace element for human body. Its 
deficiency or excess can influence many biological pro-
cesses [23]. Cancer cells exhibit an enhanced dependence 
on iron for growth and are dramatically more suscepti-
ble to iron depletion than non-cancer cells [21]. How-
ever, highly increased iron concentrations result in cell 
death through membrane lipid peroxidation, termed fer-
roptosis [12, 31]. Ferroptosis is an iron-dependent path-
way of cell death that was discovered in recent years [18, 
19]. The induction of cell death is known to be an viable 
approach for cancer therapy. Ferroptosis has also been 
identified as a potential prevention or therapeutic strate-
gies to trigger cancer cell death, especially for malignan-
cies that are resistant to traditional treatments [20]. Some 
studies have noticed the potential function of ferroptosis 
and iron metabolism in lung cancer development and 
suppression, but the detailed regulators remain unclear. 
Meanwhile, lncRNAs are defined as non-protein-coding 
transcripts larger than 200 nucleotides to distinguish 
them from small noncoding RNAs [16]. LncRNAs are 
participated in various biological purposes, such as 
immune, metabolism, infection, and so on. LncRNAs 
have been shown to function as master regulators in vari-
ous disease processes including cancer [11]. Remarkably, 
it has been found that lncRNAs are the crucial mediators 
in the regulation of ferroptosis and iron metabolism in 
cancer [33]. For example, LINC00336, as an endogenous 
sponge of microRNA 6852, regulates ferroptosis in lung 
cancer cells [30]. In human leukemia, overexpression of 
LINC00618 increased the concentrations of intracellular 
iron and promoted ferroptosis [32]. Only a small number 
of lncRNAs have been functionally well-characterized, 
the clinical significance of most lncRNAs, especially 
FIRLs, has not been investigated clearly. Therefore, it is 
valuable to identify key lncRNAs closely related to fer-
roptosis and iron metabolism with prognosis significance 
in LUAD.

This is a systematic investigation of the underlying 
prognostic significance of FIRLs in LUAD. Prognostic 
FIRLs were selected using univariate Cox analysis based 
on TCGA database. Then, a 7‐FIRLs signature was con-
stituted by multivariate COX regression and GEO dataset 
was applied for external validation. Multivariate Cox and 
stratification analysis verified that the independence and 
universal adaption of the 7‐FIRLs signature. Considering 
the potential role of the FIRLs in the interaction between 
immune infiltrating and tumor mutation burden (TMB), 
their relationship was further explored. In conclusion, 
the signature played an important role in LUAD and was 
potential prognostic biomarker.

Materials and methods
Patient data sets
The data collected in this study were from TCGA-LUAD1 
and GEO2 (GSE3141, GSE37745) datasets. The detailed 
gene expression information, OS events and time were 
obtained from above three datasets, whereas clinical fea-
tures data were available from TCGA (n = 477) as train-
ing set (Table1). Only LUAD patients with clear survival 
time and survival status were included in the study. And 
patients in TCGA-LUAD whose OS less than 30  days 
were removed in order to improve the accuracy of study. 

Table 1  Clinical features of lung adenocarcinoma (LUAD) 
patients in TCGA database

Feature N (477) %

Age (years)

 ≦ 65 247 51.8

 > 65 230 48.2

Vital status

 Alive 320 67.1

 Dead 157 32.9

Gender

 Female 257 53.9

 Male 220 46.1

TNM stage

 Stage I 253 53.0

 Stage II 113 23.7

 Stage III 78 16.4

 Stage IV 25 5.2

 Unknown 8 1.7

T stage

 T1 159 33.3

 T2 254 53.2

 T3 43 9.0

 T4 18 3.8

 Unknown 3 0.6

N stage

 N0 307 64.4

 N1 90 18.9

 N2 67 14.0

 N3 2 0.4

 Unknown 11 2.3

M stage

 M0 313 65.6

 M1 24 5.0

 Unknown 140 29.4

1  https://​cance​rgeno​me.​nih.​gov/.
2  https://​www.​ncbi.​nlm.​nih.​gov/​geo/.

https://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/
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The GSE3141 (n = 58) and GSE37745 (N = 106) data sets 
were merged into an independent validation set. Besides, 
the somatic mutation data of patients with LUAD were 
downloaded with a mutation annotation format (MAF) 
file from TCGA. The “maftools” package [22] in R soft-
ware was used to visualize the mutation data and calcu-
late the TMB of LUAD patients.

Identification of FIRLs in LUAD
According to the lncRNAs annotation file acquired from 
the GENCODE3 [8]. 14,142 lncRNAs were identified 
in the TCGA, and 1632 lncRNAs were identified in the 
GSE37745 for gene screening. Ferroptosis related genes 
were obtained from three databases. 177 ferroptosis regu-
lators (including 108 drivers, 69 suppressors) and 111 fer-
roptosis markers were found from FerrDb database4 [36]. 
25 ferroptosis-related genes were obtained in the ferrop-
tosis pathway (map04216) from the KEGG PATHWAY 
Database.5 40 ferroptosis-related genes were extracted 
in gene sets “M39768: Ferroptosis” from the Molecular 
Signatures Database (MSigDB).6 Iron metabolism related 
genes were also obtained in gene sets “M962: Iron uptake 
and transport” and “M15748: Iron ion homeostasis” from 
MSigDB. Finally, the 296 ferroptosis and iron metabolism 
related genes were included for subsequent research by 
integrating intersection genes and eliminating unrelated 
genes (see Additional file  5: Table  S1). Pearson correla-
tion analysis was performed between the lncRNAs and 
296 ferroptosis and iron metabolism related genes (with 
the |Correlation Coefficient| > 0.3 and p < 0.001). Then 
FIRLs were obtained in TCGA and GSE37745 respec-
tively. Venn analysis was used to screen intersection 
FIRLs from two datasets above for further analysis.

Construction of FIRLs prognostic signature for LUAD
According to the clinical data of LUAD cases in the 
TCGA, univariate Cox proportional hazards regres-
sion analysis was applied to screen prognostic lncRNAs 
related to OS. Those lncRNAs with P value < 0.01 were 
selected for multivariate Cox regression analysis to iden-
tify optimal prognostic lncRNAs. A risk signature was 
then established on the basis of the expression levels as 
well as the risk coefficients of optimal prognostic lncR-
NAs. Based on the following formula, the risk score for 
each patient was calculated.

lncRNAn is the nth selected lncRNAs.

Evaluation of the prognostic signature containing 7 FIRLs
LUAD patients in TCGA were divided into high-risk 
group and low-risk group by using the corresponding 
median risk score as the cutoff point. Kaplan–Meier 
survival analysis was performed to estimate the sur-
vival difference between the two groups by using the 
“survival” and “survminer” R packages. ROC curve was 
performed and area under the curve (AUC) at different 
time points were calculated to assess the diagnostic value 
of risk signature. Due to the few samples in GSE37745, 
the GSE3141 (n = 58) and GSE37745 (N = 106) data sets 
were merged as an independent validation set to assess 
the prognostic performance of the signature. The same 
prognostic formula and cutoff point (median risk score 
in TCGA) were used to calculate the risk score of each 
included patient and divided into high/low risk group. 
Next, Kaplan–Meier survival analysis and ROC curve 
were also performed in validation set. Besides, principal 
component analysis (PCA) and t-SNE analysis were per-
formed using “Rtsne” and “ggplot2” packages to exam the 
clustering ability of risk signature.

Univariate and multivariate Cox regression analysis 
evaluated whether the risk score was independent of 
other clinicopathological parameters, including age, gen-
der, TNM stage, T stage and N stage (M stage had a large 
number of uncertain values, which were not included in 
the study). The hazard ratios (HR) and 95% confidence 
intervals (CI) were estimated. Then a nomogram was for-
mulated by employing “rms” R packages. All independent 
prognostic factors identified by multivariate Cox regres-
sion analysis were included in the construction of a prog-
nostic nomogram to investigate the probability of 1-, 3-, 
and 5-OS of LUAD. Calibration curves of the nomogram 
were plotted to estimate the accuracy of actual observed 
survival rates with the predicted survival probability. But 
beyond all that, stratification analysis was also performed 
to detect the prognostic value of risk signature in differ-
ent subgroups. All statistical analysis were conducted 
using R software and Bioconductor. The significance was 
defined as P value being less than 0.05.

Functional enrichment analysis and immune infiltration 
level analysis
In order to investigate the biological roles of the seven 
lncRNAs in LUAD, the mRNAs that highly related with 
these above lncRNAs were identified. A co-expression 
network of the seven lncRNAs-mRNAs was established 
and visualized using Sankey diagram. The correlation 

Risk score = ExplncRNA1 × βlncRNA1 + ExplncRNA2

× βlncRNA2 + · · · + ExplncRNAn × βlncRNAn,

3  https://​www.​genco​degen​es.​org/.
4  http://​www.​zhoun​an.​org/​ferrdb/.
5  https://​www.​genome.​jp/​kegg/​pathw​ay.​html.
6  https://​www.​gsea-​msigdb.​org/​gsea/​msigdb/.

https://www.gencodegenes.org/
http://www.zhounan.org/ferrdb/
https://www.genome.jp/kegg/pathway.html
https://www.gsea-msigdb.org/gsea/msigdb/
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coefficient threshold was set to > 0.3 or < − 0.3, and the 
corresponding P value < 0.01 was considered statisti-
cally significant. Functional enrichment analysis were 
conducted including gene ontology (GO) and Kyoto 
encyclopedia of genes and genomes (KEGG) pathway. 
The pathways with P value < 0.05 were considered as sig-
nificantly enriched. The relationship between 7 lncRNAs 
and ferroptosis was verified by the correlation expres-
sion with four most common ferroptosis-related mRNAs 
through GEPIA.7

At the same time, the TIMER [18, 19], CIBERSORT 
[6, 25], QUANTISEQ [10], Microenvironment Cell 
Populations-counter (MCP-counter) [5], XCELL [1], 
and Estimating the Proportion of Immune and Cancer 
cells (EPIC) [27] algorithms were used to estimate the 
abundances of immune cells between the high-risk and 
low-risk groups based on FIRLs signature. In addition, 
ssGSEA was used to quantify the immune cells and path-
ways between two groups using the “gsva” package. Given 
the important roles of immune infiltration cells in the 
tumour microenvironment, the relationship between the 
signature and single lncRNA contained in it and immune 
infiltration cells were also analyzed through TIMER 
and CIBERSORT algorithms. Pearson correlation coef-
ficient and P value were calculated. The expression level 
of immune checkpoint related genes may be connected 
with treatment responses of immune checkpoint inhibi-
tors. The relationship between risk score and immune 
checkpoint was explored by testing the difference of gene 
expression level in high-risk and low-risk groups.

Cell culture and qRT‑PCR
Human LUAD cells (A549 and H1299) and normal bron-
chial epithelial cell (16HBE) were purchased from Cell 
Bank, Institute of Life Sciences, Chinese Academy of 
Sciences Cell Bank (Shanghai, China) and confirmed by 
short tandem repeat (STR) profiling. The 16HBE and 
H1299 cells were cultured in RPMI 1640 medium (Gibco, 
Invitrogen, Carlsbad, CA), and A549 cells were cultured 
in DMEM medium (Gibco) with 10% fetal bovine serum 
(FBS) under a humidified atmosphere of 37 °C and 5% of 
CO2. Total cellular RNA was extracted using TRIzol rea-
gent (Invitrogen, Carlsbad, CA, USA) and quantified by 
NanoDrop Lite spectrophotometer (Thermo Scientific). 
The total RNA underwent reverse transcription using 
the PrimeScript™ RT Reagent Kit (Takara, Dalian, Liaon-
ing, China) for cDNA synthesis according to the manu-
facturer’s instruction. The relative lncRNA expression 
levels were determined by qRT-PCR in triplicate on the 
Applied Biosystems StepOnePlus Real-Time PCR System 

(Termo Fisher Scientific) using the TB Green™ Premix 
Ex Taq™ II (TaKaRa). All program steps of qRT-PCR are 
performed in accordance with the instructions provided 
by the manufacture. Melting curves were generated at 
the end of amplification to ensure the specificity of the 
PCR products. GAPDH was used as an internal control. 
The relative expression of each lnRNA was calculated by 
2−△△Ct method. Multiple primers of C20orf197 were 
designed, and none of them had specific melting curves, 
so only the other six lncRNAs were conducted qRT-PCR 
analysis. Primers sequences are listed in Additional file 6: 
Table S2.

Results
Identification of shared FIRLs from TCGA and GEO 
databases
This study was conducted according to the flow chart 
shown in Fig. 1. First, 14,142 lncRNAs were identified in 
the TCGA-LUAD and 1632 lncRNAs were identified in 
the GSE37745 according to the lncRNA annotation file. 
Then these lncRNAs were subjected to Pearson correla-
tion analysis with 296 ferroptosis and iron metabolism 
related genes (Additional file 1: Figure S1A, B; |Correla-
tion Coefficient| > 0.3 and p < 0.001). TCGA-LUAD and 
GSE37745 obtained 1757 and 183 FIRLs, respectively.  
The intersection of two datasets yielded 118 FIRLs (Addi-
tional file 1: Figure S1C; Additional file 7: Table S3).

Derivation of FIRLs signature for OS prediction
477 LUAD patients from TCGA were chosen to explore 
the association between the expression of 118 lncR-
NAs and survival. Among 118 lncRNAs, 16 lncRNAs 
were significantly associated with the survival of LUAD 
(P < 0.01) by univariate Cox proportional hazards regres-
sion analysis. Then multivariate Cox proportional haz-
ards regression analysis was performed to pick out the 
optimal prognostic lncRNAs with nonzero coefficients. 
Finally,7 lncRNAs constituted the optimal prognos-
tic risk signature of FIRLs (Table  2), including 3 risky 
lncRNAs (HR > 1) and 4 protective lncRNAs (HR < 1). 
By combination of lncRNAs expression levels weighted 
by the corresponding regression coefficients, the risk 
score of LUAD patients was calculated as follows: Risk 
score = (− 0.310 × A​RHG​EF2​6-A​S1) +​ (0.364 ​×​ LI​NC0​
11​37) + (− 0​.​270​ × ​C2​0orf197) +​ ​(− ​0.2​6​3 × MGC3​2​
805​) +​ ​(0.331 × T​M​PO-​AS1​) ​+ (− 0.4​0​4 ×​ LI​NC0​032​
4) + (0.222 × LINC0111​6).​

Validation of FIRLs signature
The risk scores of all LUAD patients were obtained 
based on the above calculation formula. LUAD patients 
in TCGA were classified into high-risk group (n = 238) 
and low-risk group (n = 239) on the basis of median 7  http://​gepia.​cancer-​pku.​cn/.

http://gepia.cancer-pku.cn/
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risk score. The classification ability of the risk signature 
was confirmed by PCA and t-SNE analysis (Fig.  2A, B). 
Kaplan–Meier survival analysis showed that the high-risk 
group exhibited a significantly shorter OS than the low-
risk group (training set: P < 0.001, Fig. 2C; validation set: 

P = 0.032, Fig.  2E), indicating that the risk signature of 
the 7 FIRLs has prognostic value. We next assessed the 
predictive sensitivity and specificity of the risk signature 
by ROC curves. The AUC at 1, 2, and 3  years reached 
0.711, 0.658, 0.676, and 0.593, 0.577, 0.525 for training set 
and validation set respectively (Fig.  2D, F). The expres-
sion patterns of seven lncRNAs is shown in Fig. 2G. As 
expected, three risky lncRNAs was highly expressed in 
the high-risk group and the remaining four protective 
lncRNAs were up-regulated in the low-risk group.

We compared the performance for OS prediction of 
7-FIRLs signature (hereinafter referred to as LncSig) and 
other published prognostic signatures [15, 34, 35]: the 
lncRNAs signature derived from Zhang’s study (ZhangL-
ncSig), Zhou’s study (ZhouLncSig) and Jin’s study (Jin-
LncSig). Utilizing the same TCGA patient cohort, risk 
scores of each signature were calculated based on normal-
ized expression values and coefficients provided by origi-
nal articles and ROC analysis was performed. As shown 
in Fig. 2H, LncSig achieved a AUC value is 0.711, which 

Fig. 1  Flow chart of the study

​Table 2​ ​​ The ​optimal prog​nos​tic​ risk si​gna​tur​e ​of ​7 l​ncR​NAs​ by​ 
mu​ltivariate Cox regression analysis

LncRNA Coef. HR HR.95L HR.95H P-value

ARHGEF26-AS1 − 0.310 0.734 0.515 1.046 0.087

C20orf197 − 0.270 0.764 0.603 0.967 0.025

MGC32805 − 0.263 0.769 0.578 1.022 0.070

LINC00324 − 0.404 0.668 0.464 0.961 0.030

LINC01116 0.222 1.249 1.039 1.501 0.018

LINC01137 0.364 1.438 1.157 1.788 0.001

TMPO-AS1 0.331 1.393 1.005 1.931 0.047
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was higher than of JinLncSig (AUC = 0.699), ZhangLnc-
Sig (AUC = 0.625) and ZhouLncSig (AUC = 0.695). These 
results indicated the superiority of the 7-FIRLs signature 
in OS prediction of patients with LUAD. Additionally, in 
univariate and multivariate Cox regression analysis, Lnc-
Sig was both an independent and superior prognostic 
factor of LUAD patients. Our signature was identified to 
be superior or comparable to the previous defined signa-
tures (Additional file 8: Table S4).

Correlation of the prognostic signature of 7 FIRLs 
with clinicopathological features
The independence of the signature in LUAD was eval-
uated by univariate and multivariate Cox regression 
analysis. Univariate Cox regression analysis demon-
strated that the risk score was associated with the OS 
of LUAD patients (P < 0.001; Fig. 3A). Multivariate Cox 
regression analysis revealed that the risk signature was 
independent prognostic factor for predicting the OS 
of LUAD patients (P < 0.001; Fig.  3B). Then a nomo-
gram was constructed (Fig.  3C) to quantify the 1-, 3-, 
and 5-year survival probabilities by using independent 
predictive factors, including tumor stage, N stage and 
risk score (based on 7FIRLs signature). The calibration 
curves of the nomogram showed that the predicted sur-
vival rates is closed related to the actual survival rates 
at 1, 3 and 5 years (Fig. 3D–F).

Chi-square test was conducted to investigate whether 
the 7-FIRLs signature participated in the development 
of LUAD. The heat map (Fig.  4A) showed that there 
were significant differences between high- and low-risk 
groups in tumor stage (P < 0.01), N stage (P < 0.01), T 
stage (P < 0.01), and survival state (P < 0.001). Stratifica-
tion analysis was further conducted using the following 
clinical variables: age (≤ 65 and > 65), gender (female 
and male), tumor stage (I, II and IV), T stage (T1–2 and 
T3–4), N stage (N0 and N1–3) and M stage (M0 and M1). 
The results indicated that the signature has prognostic 
significance between high and low risk patients for all 
subgroups. Patients in the high-risk group shown sig-
nificantly poorer OS than patients in the low-risk group 
(Fig. 4B–M). In sum, these results testify that the 7-FIRLs 
risk signature exerts critical roles in determining the 
prognosis of LUAD patients.

Functional enrichment analysis and immune infiltration 
level analysis
To explore the potential biological function of the seven 
FIRLs, protein-coding genes co-expressed with seven 
lncRNAs were screened out. |Pearson correlation coef-
ficients | > 0.3 and p < 0.001 as the cutoff value yielded 40 
protein-coding genes from the mRNA expression data of 
TCGA, whose expression was highly associated with all 
or at least one of the seven lncRNAs. A Sankey diagram 
was depicted to visualize the correlation of lncRNAs, 
mRNAs, and risk type (Additional file 2: Figure S2A). GO 
functional enrichment analysis revealed that the corre-
lated mRNAs were significantly clustered in ion homeo-
stasis and protein catabolic processes (Additional file  2: 
Figure S2B). The KEGG enrichment analysis showed that 
the correlated mRNAs were enriched in known ferropto-
sis, necroptosis, autophagy and cancer-related pathway 
(Additional file 2: Figure S2C). The correlation expression 
between 7 FIRLs and four most common ferroptosis-
related mRNAs (FTH1, GPX4, ACSL4, PTGS2) verified 
the relationship between 7 lncRNAs and ferroptosis from 
another perspective. The results with P value < 0.05 are 
shown in Additional file 2: Figure S2D–L.

The heatmap of immune infiltration based on TIMER, 
CIBERSORT, QUANTISEQ, MCP-counter, XCELL, 
and EPIC algorithms is shown in Fig.  5A. Compara-
tive analysis of immune cells and pathways confirmed 
the differences of HLA, MHC class I, parainflammation, 
type I IFN response, type II IFN response, B cell, iDCs, 
mast cell, neutrophils, NK cell, T helper cell and TIL 
between two risk groups (P < 0.05, Fig. 5B, C). Given the 
importance of checkpoint-based immunotherapy, dif-
ference was further found in the expression of immune 
checkpoints between two-groups (Fig.  5D). Then, scat-
ter plots were generated using TIMER database to show 
the relationship between the risk score and immune cell 
infiltration. Results showed that the immune cell infil-
tration was negatively correlated with the prognosis of 
LUAD patients (Additional file 3: Figure S3A–F): B cells 
(cor = − 0.181, p = 7.595e−05), CD4 cells (cor = − 0.105, 
p = 0.023), CD8 cells (cor = − 0.061, p = 0.185), dendritic 
cells (cor = − 0.08, p = 0.082), neutrophil (cor = − 0.043, 
p = 0.353), macrophages (cor = − 0.112, p = 0.015). 
It was suggested that this prognostic signature may 

Fig. 2  The prognostic value of the risk signature including 7 FIRLs in training set and validation set. A, B PCA (A) and t-SNE (B) analysis between 
high-risk and low-risk groups in training set. C, D Kaplan–Meier survival analysis (C) and AUC of ROC at 1-, 2- and 3-y OS (D) in training set. E, F 
Kaplan–Meier survival analysis (E) and AUC of ROC at 1-, 2- and 3-y OS (F) in validation set. G lncRNA expression patterns for patients in high/low 
risk groups based on the 7-FIRLs prognostic signature. H Comparison of OS prediction for different prognostic signatures. FIRLs ferroptosis and 
iron-metabolism related lncRNAs, AUC​ area under the curve, OS overall survival

(See figure on next page.)
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participate in immune response in tumor microenviron-
ment through affecting immune cells. Moreover, CIBER-
SORT algorithm was applied to analysis the correlation 
between expression level of single lncRNA in the signa-
ture and immune cell infiltration (p < 0.001, Additional 
file 3: Figure S3G-N). In summary, these results indicate 
that the 7-FIRLs prognostic signature of LUAD was cor-
related with immune cell infiltration to a certain extent.

Somatic mutations in different risk groups based 
on 7‑FIRLs signature
The somatic mutation information of LUAD patients 
were utilized to explore the association between risk 
score and TMB. First, detailed mutation information of 
each gene was exhibited in waterfall plot, where small 
rectangles with different color represent different muta-
tion types (Additional file  4: Figure S4A). Among these 

mutations, missense mutation was the most common 
type in patients with LUAD (Additional file  4: Figure 
S4B). Single nucleotide polymorphism (SNP) occurred 
more proportion than insertion (INS) or deletion (DEL), 
and C > A was the most common of single nucleotide 
variants (SNV; Additional file  4: Figure S4C, D). The 
number of variants per sample was shown in Additional 
file 4: Figure S4E. The box diagram showed the mutation 
type with different colors (Additional file 4: Figure S4F). 
Horizontal histogram revealed the top ten mutated genes 
with high mutation frequency (Additional file  4: Figure 
S4G). Then, patients in the high-risk group were found 
with more mutation event than patients in the low-risk 
group (p < 0.05; Fig.  6A). Differential analysis was per-
formed with the top ten mutated genes between the 
high/low risk group (Fig. 6B–K). The results showed that 
the TP53 mutation and TTN mutation had statistically 
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significant differences between two groups. Then LUAD 
patients were divided into four groups for survival analy-
sis based on TTN/TP53 mutation status and risk scores. 
Significant difference was found in OS between the four 
subgroups, and patients in the TP53 mutation/high-risk 
group suffered shorter survival time than those in the 
TP53 wild/low-risk group (Fig.  6L). The same results 
were found for TTN group (Fig. 6M). Results also showed 
that the higher risk score was associated with lower sur-
vival probability in TTN/TP53 mutation subgroups, sug-
gesting that the 7 FIRLs signature acted as a risk factor 
for patients carrying TTN/TP53 mutation.

Validation the expression of lncRNAs in LUAD cells
We applied the unpaired t test to assess the expression 
levels of the 7 lncRNAs in LUAD cell lines by qRT-PCR. 
As show in Fig. 7A–F, the expression of LINC01137 was 
upregulated while ARHGEF26-AS1 was downregulated 

in LUAD cells. Although the expression of MGC32805, 
TMPO-AS1, LINC00324 and LINC01116 showed no 
statistical difference between LUAD cells and normal 
bronchial epithelial cell (16HBE), their expression trend 
was consistent with bioinformatics analysis (Fig. 7G). The 
qRT-PCR data revealed that our bioinformatics analysis 
was accurate.

Discussion
Recently, the next-generation sequencing has been trans-
formative for the prognosis prediction of cancer [2, 3, 17]. 
In routine clinical practice, pathologic staging is a vital 
prognostic determinant of LUAD. However, clinical out-
comes differ among patients at the same stage, indicat-
ing that the traditional staging system cannot adequately 
predict the prognosis of patients. Biomarkers related to 
tumor diagnosis and prognosis urgently need to be devel-
oped. Disturbances in iron metabolism cause excessive 
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intracellular iron storage and may induce ferroptosis [4]. 
Impaired ferroptosis is implicated in various pathological 
conditions [7]. Due to the important role of ferroptosis 
and iron metabolism in cancer, its related lncRNA has 
also attracted a lot of attention [24].

To the best of our knowledge, this study is the first 
one to identify and comprehensively analyze prognostic 
FIRLs in LUAD. This signature based on 7 FIRLs pro-
vides a useful tool to supplement the traditional clinical 
prognostic factors, and guides prognostic prediction and 
therapeutic decisions. Additionally, we provide a FIRLs-
related nomogram combining clinical factors to predict 
the OS of LUAD patients with an effective quantitative 
approach.

Immune regulation plays a crucial part in the progres-
sion of LUAD. The number and proportion of infiltrating 
immune cells are recognized as important factors affect-
ing cancer progression and immunotherapy response 
and associated with patient prognosis. According to the 

tumor immunoediting hypothesis [9], less immunogenic 
cancer cells are selected for during tumor development in 
immune-competent hosts, to evade antitumor immune 
responses. This may result in increased immunosuppres-
sive cells (e.g., regulatory T cells), decreased immunore-
active cells (e.g., helper T cells). Thus, we hypothesized 
that patients in different risk groups would have different 
immunotherapeutic responses. Results found that high-
risk LUAD patients had higher NK cells infiltration and 
lower fractions of Mast cells and helper T cells than low-
risk patients. The above results suggest that the poorer 
prognosis of high-risk patients is due to higher immu-
nosuppression and lower immunoreactivity in the tumor 
microenvironment, and these differences contribute to 
tumor progression. Checkpoint inhibitor-based immu-
notherapies have improved the survival of patients of 
advanced malignancies [14]. Significant differences in the 
expression of immune checkpoints between high and low 
risk groups suggested the differences in the sensitivity 

Fig. 5  Immune infiltration analysis. A Heatmap for immune responses based on TIMER, CIBERSORT, QUANTISEQ, MCP-counter, XCELL, and EPIC 
algorithms among high and low risk groups. B, C Results for ssGSEA scores [immune cells scores (B) and immune functions scores (C)] between 
high and low risk groups in boxplots. D Expression of immune checkpoints among high and low risk groups. ns not significant; *P < 0.05; **P < 0.01
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to immunotherapies. Furthermore, findings in some 
cancer suggest that TMB may predict clinical response 
to immune checkpoint inhibitors [26]. In this study, we 
found that patients with LUAD in high risk group had 
higher TMB levels which was related to the immune 
effect.

However, several limitations of our study should be 
taken into consideration. Firstly, our study was mainly 
based on data from TCGA in which most patients were 
White or Asian. Caution must be taken when extrapolat-
ing our findings to patients from other ethnicities. Sec-
ondly, external validation of the signature in large-scale 
multicenter cohorts is necessary. Thirdly, further func-
tional experiments in our laboratory will be required to 
verify findings and elucidate the roles of FIRLs in LUAD. 
In addition to its excellent performance in differentiating 
LUAD from normal lung, the role of the signature in dif-
ferentiating normal lung, pulmonary nodules, and small 
cell lung cancer remains to be further elucidated.

In summary, the 7-FIRLs signature is a potential tool 
for predicting the OS rate of LUAD patients. Importantly, 
the signature might be associated with immune infil-
tration levels and even the TMB scores. We expect this 
robust signature will provide clues on biological behav-
iors as well as prognostic characteristics in clinical tests.

Conclusions
By and large, we successfully constructed a strong predic-
tive signature of ferroptosis and iron metabolism which 
may serve as a new biomarker and therapeutic target 
affecting the progression of LUAD. Meanwhile, the signa-
ture helps researchers deeply understand the correlation 
between ferroptosis and tumourigenesis. Furthermore, 
this study provides a promising avenue for future anti-
tumor immunotherapy.
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