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Abstract

Seasonal changes in climate are accompanied by shifts in carbon allocation and phenological changes in woody 
angiosperms, the timing of which can have broad implications for species distributions, interactions and ecosystem 
processes. During critical transitions from autumn to winter and winter to spring, physiological and anatomical changes 
within the phloem could impose a physical limit on the ability of woody angiosperms to transport carbon and signals. 
There is a paucity of the literature that addresses tree (floral or foliar) phenology, seasonal phloem anatomy and seasonal 
phloem physiology together, so our knowledge of how carbon transport could fluctuate seasonally, especially in temperate 
climates is limited. We review phloem phenology focussing on how sieve element anatomy and phloem sap flow could 
affect carbon availability throughout the year with a focus on winter. To investigate whether flow is possible in the winter, 
we construct a simple model of phloem sap flow and investigate how changes to the sap concentration, pressure gradient 
and sieve plate pores could influence flow during the winter. Our model suggests that phloem transport in some species 
could occur year-round, even in winter, but current methods for measuring all the parameters surrounding phloem sap flow 
make it difficult to test this hypothesis. We highlight outstanding questions that remain about phloem functionality in the 
winter and emphasize the need for new methods to address gaps in our knowledge about phloem function.
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Introduction
In temperate environments, perennial plants exhibit cyclical 
shifts in resource allocation from the growth of flowers 
and leaves in the spring to leaf senescence and carbon 
sequestration during fall and early winter (Brüggemann et al. 
2011; Palacio et  al. 2018). These large changes in allocation 
require remobilization of carbon, water and nutrients in 
the vascular system and should be influenced by seasonal 
changes in vascular function (Fig. 1; Lechowicz 1984; Savage 
2021). The phloem is particularly important during these 
periods of seasonal change because it transports carbon, 

nutrients and signalling molecules such as hormones, small 
RNAs and electrolytes (Thompson and Schulz 1999; Ruiz-
Medrano et al. 2001; Kehr and Buhtz 2008) that can influence 
phenology directly (e.g. trigger senescence and flowering) 
or indirectly (e.g. impact circadian rhythm and apical 
dominance; Chincinska et  al. 2013; Van den Ende 2014; Kim 
et al. 2018; Kim 2019, 2019; Kumar et al. 2019). Sugar itself can 
also serve as a signal for processes such as flowering (Horacio 
and Martinez-Noel 2013; Li 2016; Cho et  al. 2018; Kim 2019). 
Therefore, understanding the capacity for signal and carbon 
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movement by the phloem during the winter-spring transition 
is vital to being able to understand spring growth. Considering 
that there are limited data documenting seasonal anatomical 
changes to phloem physiology (Savage 2020), the extent that 
phloem transport function is reduced or compromised in the 
winter for many species is unclear.

Historically, seasonal studies of anatomy have been used to 
infer changes in phloem functionality (for a review see Evert 
2006). Many studies have shown that while the classical view 
presented in even some recent plant anatomy textbooks is 
that carbon transport stops in the winter (e.g. Crang et al. 2018), 
anatomical studies suggest that there may be variation in species 
ability to transport carbon throughout the winter months (Evert 
2006). Some species retain completely open and potentially 
active sugar-conducting conduits (sieve tubes; Tucker and Evert 
1969), while others retain a reduced number of open sieve tubes 
or seal their sieve tubes with the polysaccharide callose either 
for the winter or permanently (Zamski and Zimmermann 1979; 
Fisher 1983; Evert 2006). In the late winter or early spring, new 
phloem tissue is produced by the cambium before xylogenesis 
(Tucker and Evert 1969; Lavrič et al. 2017) and in some species 
there are open sieve tubes adjacent to the cambium before 
division begins (Davis and Evert 1970; Aloni and Peterson 1997). 
In general, phloem development and re-activation is prioritized 
over xylem development in the early spring and new phloem 
in the stem is always produced before leaf-out (for review of 
vascular phenology, Savage and Chiune 2021).

Despite the prevalent assumption that sieve elements are 
often closed in the winter, there could be benefits to retaining 
some phloem function all winter to allow for transport of 
signals and resources throughout the plant body. For example, 
the phloem could support changes in carbon allocation leading 
to starch accumulation in floral buds as seen in Prunus and Olea 
during the winter (De la Rosa and Rallo 2000; Fadón et al. 2018). It 
could also support other types of growth including development 
of leaf primordia which continue to grow slowly throughout the 
winter in some species (Gordon et al. 2006). Overall, the greatest 
demand on the phloem is during peak growth in the early spring. 

During this time, the size of floral tissue in buds can increase 
four 100-fold (Savage 2019). Phloem transport capacity in the 
spring may be especially important for seasonally precocious 
species that undergo floral bud burst during the persistent 
threat of winter frost before there are leaves on the plant.

There is limited research that has attempted to directly link 
phloem anatomy with phloem function in the spring (Aloni and 
Peterson 1991) partly because the methods necessary to do so 
are limited. There has been a renewed interest in developing 
and optimizing methods for studying in situ phloem transport 
(Savage et al. 2013; Knoblauch et al. 2015; Ray and Savage 2020). 
Recent efforts have improved our ability to overcome problems 
with wounding and manipulation (Knoblauch et al. 2014; Howell 
et al. 2020), but studying the phloem during winter in temperate 
climates presents an added challenge because most trees do 
not have leaves and the source-sink dynamics utilized by many 
phloem physiological methods are reduced.

In this review, we consider what is known about how changes 
in phloem anatomy and plant physiology could impact transport 
of carbon throughout a plant in the winter and its potential 
implications for spring growth. Transport in sieve tubes is driven 
by a pressure differential created by local osmotic gradients in 
source and sink tissues (Münch 1930). We will consider how 
linear sap velocity (ν) is influenced by several key components: 
the pressure gradient (Δp), sieve tube lumen area (A) and the 
tube resistance (R):

ν =
∆p
RA

 (1)

We will discuss the ramifications of changes to hydraulic 
resistance and the source-sink differential, highlighting how the 
composition of the phloem sap, sieve element structure and sap 
viscosity could change seasonally with a focus on the winter. Our 
goal is to demonstrate that carbon transport in the winter is likely 
dynamic and there may be species-specific differences that could 
have implications for spring growth. Our analysis includes an 
in-depth discussion of the literature and a consideration of how 
methodology has shaped our perception of phloem physiology.

Figure 1. The effects of changes in anatomical and physiological parameters on phloem sap flow during the year. Polygon width indicates the relative change to the 

parameter listed in the left column and colours indicate relative effect on sap flow where orange is a moderate flow, green is optimal flow and red is little to no flow. 

SPP = Sieve plate pore.
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Pressure Gradient
Movement of osmolytes into and out of the sieve tubes can occur 
either by active transport in the apoplast, or by active or passive 
transport in the symplast (Gamalei 1989; Lalonde et  al. 2003; 
Rennie and Turgeon 2009). As osmolytes are loaded into sieve 
elements (the individual cells that make up the sieve tubes), 
high osmolyte concentration or low water potential draws water 
in, creating positive pressure to push the phloem sap to areas 
of low pressure where osmolytes are unloaded (sinks; Münch 
1930). Because the pressure gradient that drives phloem sap 
flow is influenced by local processes in the source and sink 
tissue, understanding seasonal changes in phloem transport 
requires knowledge about source and sink activity, osmolyte 
concentration and composition, membrane permeability and 
enzyme activity in the phloem and adjacent cells.

Source and sink activity

Studies of photosynthesis, growth, non-structural carbohydrate 
allocation and enzyme activity have shown dynamic shifts in 
source and sink activity during and between seasons (Gruber 
et al. 2013; Jyske and Hölttä 2015). In the fall, low photosynthetic 
rates can slow carbon transport by decreasing the sugars 
available for loading into the phloem sap (Ho 1976), which could 
impact pressure in the source tissue. However, phloem pressure 
does not have to change directly in proportion to changes in 
carbon fixation. In leaves after carbon is fixed, sucrose must be 
synthesized before sugars are loaded into sieve tubes. Anything 
that impacts the rate of carbohydrate synthesis could decouple 
photosynthetic rates and phloem transport. For example, at low 
temperatures, the activity of sucrose phosphate synthase, the 
enzyme that catalyses sucrose synthase, increases resulting in 
higher sucrose concentrations in Spinacia leaves (Guy et al. 1992). 
Similar complications may arise in the winter in species that 
can fix carbon when conditions become more favourable but are 
unlikely to matter once deciduous species become endodormant 
(Ogren 1997).

If a pressure gradient is maintained in the winter, it needs 
to be supported by different sources and sinks than during 
the growing season. Potential sinks that can drive flow include 
respiration, seed or fruit filling and leaf or flower growth which 
have different phenologies (Patrick 1997). In winter, developing 
flowers or leaves and respiration are the most likely active sinks 
but they should be weak. Stem respiration rates are greatly 
reduced in the winter (Ceschia et  al. 2002; Damesin 2003), 
while leaf and floral buds appear to be varied in their winter 
growth and development. Bud growth often occurs in the final 
dormancy stage, ecodormancy, thus buds are more likely to be a 
sink near the end of winter (Faust et al. 1997; Horvath et al. 2003). 
As previously mentioned, some species appear to accumulate 
starch during the winter (De la Rosa and Rallo 2000; Fadón et al. 
2018), creating a potential sink, but whether the carbon required 
for this process is supplied locally or transported in the vascular 
system remains unclear. It seems likely that sink strength 
decreases considerably in early winter and begins to increase in 
late winter as metabolism and growth begin in the buds.

Throughout the year, the relative proportion of sugars in the 
phloem sap fluctuates as carbon is allocated between different 
sources and sinks (Fisher 1983; Gruber et  al. 2013; Jyske and 
Hölttä 2015). Phloem sugar concentrations within an individual 
tree may even vary when sampled at different heights during 
the same season (Pate 1998), suggesting that the winter 
dynamics of sugar transport may also vary by sampling location 
within an individual. The primary cause of changes in phloem 

sap composition during spring is the conversion of starch 
into soluble sugars through re-mobilization of stored carbon 
in stems, trunks and roots. In autumn and winter, phloem 
sap sugar concentration sampled by stylectomy increased to 
concentrations as high as double that of the spring and summer 
(Fisher 1983).

Osmolyte composition

Species that produce flowers or leaves early in spring before 
freezing danger has passed need mechanisms to protect them 
from damage (Lineberger and Steponkus 1980; Peters and Keller 
2009; Charrier et al. 2013) and the composition of the phloem sap 
may assist in the cryoprotection of sieve tubes. The contents of 
the phloem sap are complex, consisting of sugars, amino acids, 
proteins and small RNAs. Sugars (sucrose, glucose, fructose, 
mannose, galactose and raffinose) are present in the highest 
concentrations and likely confer some freezing tolerance 
(Dinant et al. 2010; Hijaz and Killiny 2014; Hijaz et al. 2016). For 
example, sucrose typically makes up the largest fraction of the 
phloem sap, and could provide cryoprotection for some species. 
The freezing point depression of 17 % sucrose (w/v), the optimal 
sucrose concentration for flow within the phloem (Jensen et al. 
2013), is ~1.1 °C (Lide 2009). If the phloem sap sugar concentration 
were doubled, the freezing point would be depressed 3.37  °C 
(Lide 2009), possibly explaining the phloem transport range 
for Salix viminalis (−4  °C; Weatherley and Watson 1969). Many 
species can transport carbon at lower temperatures (Salix exigua 
−13 °C; Fisher 1983) indicating that there must be other forms of 
cryprotection in the phloem. Sieve elements can supercool when 
plunged in liquid nitrogen, though the process of supercooling 
appears to be reliant on hardening at cool temperatures prior to 
the onset of winter (Froelich et al. 2011). It is often assumed that 
if ice forms inside sieve tubes it is lethal, but it is also possible 
that there could be the formation of amorphous, uncrystallized 
ice allowing for vitrification of the tissue in some species (Hirsh 
et al. 1985; Debenedetti 1996).

Raffinose is another phloem osmolyte that confers 
osmoprotection (dos Santos et  al. 2011), cryoprotection 
(Bachmann et  al. 1994; Stushnoff et  al. 1998; Pennycooke et  al. 
2003; Peters and Keller 2009), and inhibits the tendency of 
sucrose solutions to crystalize at low temperatures (Caffrey et al. 
1988; Lipavská et al. 2000). The proportion of raffinose to sucrose 
in the phloem increases in autumn (Bachmann et al. 1994) and 
under cold conditions (Hinesley et al. 1992) and in frost resistant 
species (Parker 1963; Sakai and Larcher 1987; Lintunen et  al. 
2018), in response to changes in photoperiod and temperature 
(Wiemken and Ineichen 1993). The ratio of raffinose to other 
phloem sugars is highest at colder latitudes in both angiosperms 
and gymnosperms in Europe (Lintunen et al. 2018). Raffinose is 
present in minor leaf veins (Haritatos et  al. 2000) of polymer-
trapping species (Rennie and Turgeon 2009), some apoplastic-
loading species, conifers (Hinesley et al. 1992), and can be made 
from sucrose as a response to abiotic stress (ElSayed et al. 2014). 
It is possible raffinose could also be made from sucrose within 
the phloem sap rather than being transported into the sieve 
tubes. It is not clear how the presence of raffinose affects the 
viscosity of the phloem sap at low temperatures, but modelling 
suggests that raffinose and similar sugars found in the phloem 
sap are more favourable to viscosity than sucrose (Lang 1978). 
Also, sucrose and raffinose solutions in glycine of the same 
concentration have similar viscosities (Ali et al. 2019).

Given its cryoprotective effects, raffinose could be a major 
contributor to the pressure gradient during temperate winters, 
as it appears to allow the phloem sap to remain at a viscosity 
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conducive to flow longer than predicted for a simple sucrose 
solution. Raffinose has more carbon than sucrose, so fewer 
raffinose molecules are made for the same amount of carbon. If 
we assume a discrete level of carbon, having a greater proportion 
of raffinose in the phloem sap than sucrose would decrease 
its osmotic potential and therefore reduce source pressure. As 
a result, phloem sap flow could be altered as the temperature 
drops if sugar concentrations were modified in the source and 
sink sap. It is possible that during the winter genera with a 
portion of their sieve tubes open contain more raffinose in their 
phloem sap than species that completely occlude their sieve 
tubes, but we are not aware of any studies that have investigated 
the phloem sap contents and phloem overwintering strategies. 
Species that retain open and seemingly active sieve tubes in 
the winter should be studied to better understand the contents 
of the phloem sap and their contribution in sieve element 
cryoprotection.

Hydraulic Resistance
Phloem hydraulic resistance within sieve tubes (R) can be 
affected by several variables that change seasonally including 
conduit anatomy and sap viscosity. Some of the resistance to 
flow in a sieve tube comes from the sieve element lumen (Rlumen), 
which can be expressed as:

Rlumen =
8ηL
πr4

 (2)

where η is the sap viscosity, L is the path length from source 
to sink and r is the radius of the sieve tube lumen. Equation 
(2) demonstrates that anatomy (sieve tube radius) has a major 
effect on flow rate due to the fourth power relationship, i.e. 
narrower sieve tubes are significantly more resistant to flow 
than wider ones. Longer path lengths can also increase the 
resistance in this model, but sieve tube elements taper in 
diameter as a function of distance from base of the trunk to 
the tips of branches, which minimizes resistance conferred by 
conduit radius along the flow path (Petit and Crivellaro 2014; 
Liesche et al. 2016; Savage et al. 2017).

At least half of the resistance in sieve tubes is caused by 
the sieve plates, which occur at the ends of each sieve element 
(Savage et al. 2017; Stanfield et al. 2019). Jensen (2012), modified 
Equation (2) for a single sieve element, adding terms to account 
for the resistance of the sieve plate pore radii by using the mean 
pore diameter and standard deviation:

Rtotal =
8ηL
πr4

+
3η
rp3

1
N

ï
1

1+ 3β2 +
α

1+ 6β2 + 3β4

ò
 (3)

where N is the total number of pores in a sieve plate, rp is the 

radius of the sieve plate, α =
8lp
3πrp

, and β = σ
rp

, where lp is the length 

of the pore lumen, i.e. the plate thickness, rp  is the average pore 
radius and σ is the standard deviation. As such, the resistance 
for an entire sieve tube is the sum of the resistances for each 
sieve element (Rtotal) that are stacked to form a sieve tube.

Sieve element anatomy and cross-sectional area

There are several ways that sieve element anatomy changes 
during the year. First, sieve elements produced in a single 
growing season are not always uniform in diameter. Elements 
produced during the fall are narrower and have a higher 
resistance to flow than those produced in the spring (Evert 2006; 
Prislan et al. 2013). It is not clear if this pattern is advantageous 
or is a result of developmental ties between the phloem and 

xylem (Jyske and Hölttä 2015; Ray and Jones 2018). Second, sieve 
plate resistance is increased when callose is deposited on the 
sieve plates (Mullendore et al. 2010; Jensen et al. 2012), a process 
that occurs seasonally in some species (Evert 2006). Plants 
with callose-occluded sieve plates either re-activate them by 
removing callose in the spring or differentiating new sieve tubes 
in the late winter and early spring. If callose only partially covers 
pores, it may reduce the sieve plate pore diameter, but still allow 
flow to occur. It is unclear if callose is present in sieve tubes 
under normal conditions because most anatomical studies of 
sieve tubes in woody trees use methods that cause mechanical 
damage eliciting a callose response and fix the collected tissue 
too slowly resulting in callose artefact (Esau and Cheadle 1961; 
Evert and Derr 1964). Clearly more work focussed on callose and 
its presence seasonally within the phloem is needed (Montwé 
et al. 2019).

The total phloem conducting area changes seasonally and 
likely varies by the ability to keep sieve elements open in the 
winter. In species that retain open sieve tubes throughout the 
year, transport capacity would be similar in the winter and 
summer months, whereas in species that occlude all sieve tubes 
during the winter, all flow would stop during winter. Those 
species that retain a small number of seemingly open sieve 
elements, however, would have less conducting area during the 
winter and likely a lower capacity for carbon transport in early 
spring (Savage 2020). Seasonal anatomical changes are likely 
coordinated with sink and source strength, ensuring flow when 
it is necessary. Smaller diameter sieve tubes produced at the 
end of the season may allow flow to continue in the winter by 
facilitating easier build-up of pressure to drive flow. Research 
specifically focussed on such changes is needed to better 
contextualize the seasonal changes of anatomy in the sieve 
tubes and its implications for the winter-spring transition.

Changes in viscosity

Viscosity increases exponentially with concentration in sucrose 
solutions indicating that sap concentration could easily impact 
resistance to flow in sieve tubes (Morison 2002; Sevanto 2014). 
Considering the viscosity in sucrose solutions also increases at 
lower temperatures and with higher concentrations of solutes 
(Telis et al. 2007), viscosity should build up during the transition 
from fall into winter when phloem sap osmolyte concentrations 
increase (Fisher 1983). If this increase is high, viscosity could be 
a limiting factor for movement of signalling molecules as well 
as carbon in the winter, similar to what may theoretically occur 
in the phloem during drought (Sevanto et al. 2013; Sevanto 2014; 
Gaylord et al. 2015).

The Effects of Winter on Phloem Sap Flow
To directly illustrate how seasonal changes in sieve tube 
anatomy, callose deposition and changes in source and sink 
activity impact phloem sap flow, we modelled phloem transport 
velocity using a simplified model and published values for 
Quercus rubra (Savage et  al. 2017). We calculated theoretical 
flow rates for a single sieve tube within a 27 m tall individual 
assuming that the sieve tube is the length of the tree. We chose 
this species because all of the parameters required to calculate 
resistance, including the number of sieve elements per metre, 
sieve pore area and diameter and sap flow using a pipe-flow 
model have been previously measured (Münch 1930; Huber 
et al. 1937; Savage et al. 2017). Our model considers the viscosity 
of an aqueous sucrose solution within a single sieve tube and 
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demonstrates the effects on flow that result from changes in 
sap viscosity, the pressure gradient, and sieve plate callose 
occlusion at a variety of temperatures.

We calculated viscosities for an aqueous sucrose solution 
at a range of temperatures experienced by trees in temperate 
climates using the relation from Mathlouthi (1995), linear sap 
velocity using Equation (1) and resistance using Equation (3), 
which accounts for both the sieve plate pores and sieve element 
lumen. To account for the widening of sieve elements from the 
tree apex towards the base of the trunk (Savage et al. 2017), we 
divided our 27 m tall tree into three 9-m segments calculating the 
resistance first for a single sieve element within each segment 
and then for the sum of resistances for all the sieve elements 
within that segment. The sum of each segment was added 
together to calculate the resistance for an entire sieve tube as in 
Clerx (2020). Finally, to convert values from volumetric sap flow 
to the more commonly used linear sap velocity, we divided the 
volumetric sap velocity by the area of a circular sieve element of 
radius ~24 µm, the radius of a sieve tube at approximately the 
midpoint of the tree (see Equation (1)). This assumption ignores 
the widening of sieve elements from branch tip to tree base 
and represents only a single point measurement, though the 
maximal velocity in the model (~100 µm s−1; Fig. 2) is near what 
has been reported for Q. rubra (Huber et al. 1937).

We note that these equations, while used in many complex 
modelling studies (Jensen et  al. 2013; Knoblauch et  al. 2016; 
Savage et  al. 2017; Clerx et  al. 2020) are only applicable under 
specific conditions: they consider a single sieve tube that is 
continuous along the length of the tree that is loaded at the 
branch tip, widens from branch tip to tree base, and is unloaded 
at the trunk base. The resistance equation considers an empty 
pipe (no organelles) with no lateral water movement along 
the flow path. This model also assumes a sieve tube with 
impermeable walls, which may not be the case for the sieve 
tubes (Phillips and Dungan 1993; Sevanto 2014; Stanfield et al. 
2017). While simple, this model allows us to illustrate the factors 

that impact flow within the phloem and understand the factors 
that may allow some species to undergo the transition to spring 
more quickly than others.

The sap concentration of Q. rubra, was reported as 17.1 % in 
the summer (Münch 1930; Jensen et al. 2013) and we used that 
as our base value for viscosity calculations (Fig. 2, black line). We 
considered the additive effect of three possible changes to the 
phloem in the winter and their combined effect on velocity. First, 
phloem viscosity likely increases due to lower temperatures 
and an increase in phloem sap sugar concentrations. In Salix, 
sugar content of the phloem sap doubles in the winter (Fisher 
1983). If similar sap concentration changes occur in Q. rubra, the 
sucrose concentration would be near 34 % in the winter (Fig. 2 
orange line). Next, compounding with the increase to the sap 
concentration, we added a reduction in the size of the sieve 
plate pores due to callose accumulation (Fig. 2 blue line). We 
used a 50 % reduction in the sieve plate pore radius of all sieve 
plate pores throughout the phloem but note that the degree to 
which the sieve plates become occluded in functional winter 
sieve elements during the winter is not documented. Finally, 
with the loss of leaves in autumn, the pressure gradient within 
sources and sinks is likely greatly altered. Here we used a 75 % 
reduction in the pressure gradient (Fig. 2 purple line), but again 
note that more seasonal studies are necessary to determine the 
pressure gradient within trees during the winter.

Our model suggests that sap flow within a sieve tube can 
continue below freezing if any one variable considered by the 
model is reduced in value, but the compounding effects to 
all variables appear to reduce the capacity for sap flow below 
freezing temperatures. At 0  °C, for example, the calculated 
velocity considering an increased sap concentration, 
partially occluded sieve plate pores, and a reduced pressure 
gradient is ~3  µm/s, when compared with ~45  µm/s at the 
same temperature with open sieve elements and a ‘normal’ 
pressure gradient within the sieve tube. Our model supports 
the dominance of the pressure gradient in limiting sap 

Figure 2. The theoretical effects of sucrose concentration, sieve plate pore occlusion and pressure gradient changes on linear sap flow in the phloem. Under optimal 

conditions, such as in the summer, phloem sap concentration is around 17 % sucrose, sieve plate pores are not occluded and the pressure gradient is unchanged (black 

line). Linear sap velocity is reduced if sucrose concentration is doubled as may happen in the winter (orange line). Further decreases in linear sap velocity occur if the 

sieve plate pores become partially occluded with callose (blue line) in the late fall or winter. The lowest linear sap velocities occur when the pressure differential is also 

reduced (25 % of normal) as may occur when leaves are not present during late fall and winter (purple line).
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velocity (Fig. 2). Our model suggests flow is possible well below 
0  °C if the pressure gradient is maintained. Thus, local flow 
could occur over shorter distances if a pressure gradient could 
be generated, for example within a portion of a single branch, 
rather than between the tips of the branches and base of the 
tree. Flow could also occur in regions of the plant body where 
wider diameter sieve tubes occur such as in a tree trunk, 
where sieve elements are wider when compared with distal 
stems (Savage et al. 2017; Clerx et al. 2020), especially if there 
are differences in early versus late sieve element diameter, a 
factor not included in our model.

Our model also suggests that in order to restore flow, even 
in temperatures below zero, trees need only to alter their sink 
activity. When put into context with the various overwintering 
strategies, this model suggests that retaining some open sieve 
tubes may allow species to quickly re-activate in the spring 
because flow could be restored by expanding leaves or flowers in 
buds acting as sinks. Species that must differentiate and mature 
new sieve tubes to resume phloem function in the spring may 
not be able to transport a high enough quantity of resources 
to support growth early in the spring. Alternatively, species 
could restart phloem flow if the xylem becomes a carbon sink. 
Sucrose may, for example, be moved into the xylem to reduce 
the likelihood of spring embolism within the xylem (Zwieniecki 
et al. 2015; Konrad et al. 2019).

It is likely that many different strategies are utilized to 
facilitate phloem sap flow in late winter and are currently 
unrecognized due to our limited knowledge of species-specific 
phloem overwintering and phenology. Acer negundo, for 
example, flowers precociously early in the season and does 
not appear to occlude or otherwise close sieve tubes in the 
winter (Tucker and Evert 1969), while Populus tremuloides, which 
also flowers precociously often before A.  negundo appears to 
produce new phloem from overwintered, partially differentiated 
phloem ‘mother cells’ (Davis and Evert 1968). Broad seasonal 
studies that measure phloem flow while documenting phloem 
overwintering strategies and phenology are necessary to fully 
understand the advantages and disadvantages to open sieve 
elements, but those studies will require methods that allow for 
seasonally repeated measures on large numbers of species or 
individuals.

Outstanding Questions about Phloem 
Seasonality
Before plants can invest in significant new growth in the spring, 
they need to have a partially functional vascular system, 
but the timing and mechanics of the phloem’s transition 
from winter to spring is still understudied. Our knowledge 
of seasonal changes to phloem physiology is limited to a 
small number of studies documenting phloem functional 
area, sieve tube pressure and sap flow change during the 
winter and spring. One reason for this gap in knowledge is 
long-recognized methodological challenges that arise from 
studying the phloem, a pressurized, membrane-bound system 
(Knoblauch and van Bel 1998). Further limitations in studying 
phloem seasonally arise from a high level of among-species-
variation in seasonal responses and the need for time-series 
data. To determine whether seasonal changes in the phloem 
have implications for spring phenology, we need to answer 
three key questions, outlined below. With each question 
we consider challenges and potential future direction for 
expanding our knowledge in these areas.

How much does sieve element conducting area 
change seasonally?

A critical part of understanding seasonal changes in flow is 
determining the area of conducting sieve tubes in the phloem. 
In our model, differences in the conducting area would 
influence the volumetric sap flow in the phloem (product of 
sap velocity and conducting area). While not explicitly explored 
in our model, the total conducting area directly affects the 
sap volume that can be conducted through the plant body. 
Current methods for identifying functional sieve tubes using 
TEM or light microscopy can be time consuming and complex 
to interpret (Knoblauch and Oparka 2012). More targetted 
approaches with a higher specificity to active sieve tubes are 
necessary to get enough replication of time-series data to 
examine seasonal changes in phloem transport area. Transgenic 
expression of fluorescent proteins specific to sieve tube walls 
is used in Arabidopsis (Yang and Russell 1990; Thompson and 
Wolniak 2008). This method allows for rapid assessment of 
sieve tube area but does not indicate whether conduits are 
functional and would, therefore, require a subsequent screening 
using aniline blue or immunogold staining and detection with 
TEM to confirm functionality (Prislan et  al. 2013). The recent 
discovery of a monoclonal antibody, LM26, that binds to the 
epitope on a pectin specific to sieve tube cell walls of herbaceous 
crop species, also appears promising (Torode et  al. 2018). This 
epitope appears to be present in the sieve tube walls of two 
species of Populus only at times when the sieve tubes have been 
previously described as actively conducting (Ray and Savage 
2020). Immunostaining to detect the LM26 epitope is relatively 
straightforward and can be conducted on fresh or fixed tissue 
and completed in less than a day, which could allow for analysis 
of more samples and more accurate measurements of active 
sieve tubes. The LM26 antibody may become even more powerful 
if combined with Fourier Transformed Infrared Spectroscopy 
(FTIR), which involves the analysis of infrared absorption to 
identify individual chemical components of a sample. In plants, 
FTIR has been used to identify cell wall components in Phaseolus 
(Alonso-Simón et  al. 2004) and was recently used to map the 
sucrose gradients of frozen cross-sections in cereal crops and 
Arabidopsis at resolutions of near 12 µm (Guendel et al. 2018). If 
applied to woody plants using plunge frozen microcores, FTIR 
spectroscopy could be used to discern the sugar composition 
of actively transporting sieve elements. Next steps should test 
the applicability of these techniques to larger samples sizes 
and a wider variety of species and growth forms. The FTIR 
work should also be replicated in conjunction with techniques 
that can identify active sieve elements, such as the sap flow 
measurements to confirm the results of the FTIR technique can 
provide reliable results specific to sieve tubes and to compare 
those results to those of other more established methods such 
as stylectomy. If such confirmational studies suggest that FTIR 
is able to discern the sugar contents within the sieve tubes, it 
could be used to analyse the seasonal change in the phloem sap 
sugar content across entire cross-sections.

How does the phloem pressure gradient change 
seasonally?

Our model suggests that the pressure gradient in the phloem 
may play a critical role in regulating seasonal changes in sap 
flow. A  large reduction in the pressure gradient during winter 
is likely for winter deciduous species, because the leaves are 
the primary source of sugar production most of the year. We 
assumed a 25 % reduction in the phloem pressure gradient, but 



Copyedited by: SU

Ray and Savage – Seasonal changes in temperate woody plant phloem anatomy and physiology | 7

the actual value is unknown. There is currently limited data on 
phloem pressure (Hammel 1968; Wright and Fisher 1980; Lee 
1981; Knoblauch et al. 2016; Savage et al. 2017) and less research 
that relates to seasonality (except see Mencuccini et  al. 2013). 
Sieve tube pressure has been measured with three techniques: 
sap-feeding insects using stylectomy, pressure sensors and 
more recently with pico gauges (Hammel 1968; Wright and 
Fisher 1980; Lee 1981; Knoblauch et al. 2014, 2016; Savage et al. 
2017). Pico gauges are currently the most promising technique 
for directly measuring phloem turgor pressure and they work in 
some woody species (Knoblauch et al. 2016; Savage et al. 2017). 
More widespread use of these gauges could yield insights into 
the seasonal dynamics of sources and sinks, but they require 
very finely pulled pipettes and the ability to visualize their 
insertion into the sieve elements, making this technique difficult 
to implement at the sample sizes necessary for survey-level 
studies. Future studies should apply the pico gauge technique 
to more species and investigate the diurnal and seasonal trends 
of sieve tube turgor with a focus on winter. This could provide 
crucial empirical data about the location and strength of the 
sources and sinks during times when leaves are not present.

How does the sap flow rate change seasonally?

The clearest way to understand seasonal changes in phloem 
function is to measure or visualize flow rate directly. Our model 
suggests that sap flow can continue below freezing temperatures 
only if the pressure gradient is able to be maintained and 
if the phloem sap concentration remains relatively close to 
that for optimal flow (17 %) rather than doubling as has been 
documented in Salix (Wright and Fisher 1980). The ideal approach 
to answer this question would be directly measuring sap flow 
during seasonal studies. Unfortunately, many common methods 
require highly specialized equipment (Magnetic Resonance 
Imaging, isotope studies, microCT) that in some cases must 
be customized to the specific individual being studied. While 
these techniques have provided essential information on 
phloem function (Windt et al. 2006; Homan et al. 2007; Devaux 
et al. 2009; Brüggemann et al. 2011; Brodersen and Roddy 2016), 
they are not amenable to the large sample numbers (and large 
sampling areas) required for measuring seasonal changes in 
phloem function in multiple species. Other methods that utilize 
phloem-mobile fluorophores may allow for greater replication, 
but currently exhibit variation in their species-specificity, which 
may be related to phloem loading type (Savage et  al. 2013; 
Knoblauch et al. 2015). Because there is currently no technique 
that would allow for a wide-scale screening of winter sap flow 
across species, future work should focus on testing the validity 
of using different anatomical techniques to assess function. If 
future research could demonstrate a clear connection between 
seasonal changes in phloem function and anatomy, it would be 
possible to better judge differences in phloem function across 
species.

Conclusions
Carbon and nutrients are mobilized in the phloem along with 
a host of signalling molecules that support the seasonal pulses 
of growth and senescence (van Bel et al. 2013). Though seasonal 
carbon allocation is well studied, anatomical and physiological 
changes to the phloem are not well documented. In this paper, 
we highlight the dynamic nature of phloem transport and the 
diversity of factors that could influence phloem transport in the 
winter and during the winter-spring transition from seasonal 

changes in source and sink activity to changes in sieve tube 
anatomy. We use a simple model to demonstrate the importance 
of phloem pressure in determining flow at low temperatures and 
consider the implications for different overwintering strategies 
for the timing of phloem re-activation in the spring. Future work 
should focus on gathering more time-series data on phloem 
anatomy and physiology and overcoming methodological 
barriers to collecting this type of data. In a time when plant 
phenology is changing in response to climate change, it is 
critical that we develop a more comprehensive perspective on 
seasonal changes in plant physiology and resource allocation.
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