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Abstract

We evaluated the performance of Fitbit Charge 3™ (FC3), a multi-sensor commercial sleep-

tracker, for measuring sleep in adolescents against gold-standard laboratory polysomnography 

(PSG). Single-night PSG and FC3 sleep outcomes were compared in thirty-nine adolescents (22 

girls; 16-19 years), 12 of whom presented with clinical/subclinical DSM-5 insomnia symptoms (7 

girls). Discrepancy analysis, Bland-Altman plots, and epoch-by-epoch analyses were used to 

evaluate FC3 performance. The influence of several factors potentially affecting FC3 performance 

(e.g., sex, age, body mass index, firmware version, and magnitude of heart rate changes between 

consecutive PSG epochs) was also tested. In the sample of healthy adolescents, FC3 systematically 

underestimated PSG total sleep time by about 11 min and sleep efficiency by 2.5%, and 

overestimated wake after sleep onset by 9 min. Proportional biases were detected for “light” and 

“deep” sleep duration, resulting in significant underestimation of these parameters for those 

participants having longer PSG N1+N2 and N3 durations, respectively. No significant systematic 

bias was detected for sleep efficiency and sleep onset latency. Epoch-by-epoch analysis showed 

sleep-stage sensitivity (average proportion of PSG epochs correctly classified by the device for a 

given sleep stage) of 68% for wake, 78% for “light” sleep, 59% for “deep” sleep, and 69% for 

rapid eye movement (REM) sleep in healthy sleepers. Similar results were found in the sample of 

adolescents with insomnia symptoms. Body mass index was positively associated with FC3-PSG 

discrepancies in wake after sleep onset (R2 = .16, p = .048). The magnitude of the heart rate 

acceleration/deceleration between consecutive PSG epochs was an important factor affecting FC3 

classifications of sleep stages. Our results are in line with a general trend in the literature, 

suggesting better performance for the recently introduced multi-sensor devices compared to 

motion-only devices, although further developments are needed to improve accuracy in sleep stage 

classification and wake detection. Further insight is needed to determine factors potentially 
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affecting device performance, such as accuracy and reliability (consistency of performance over 

time), in different samples and conditions.
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Introduction

The use of consumer sleep-tracking technology (CST) including wristbands, rings, and 

smartwatches able to measure sleep and other behaviors (e.g., physical activity) is rapidly 

expanding for both research and clinical applications, providing an opportunity to advance 

understanding of sleep and its role in health and disease. CST adoption clearly outpaces 

scientific support for its use, calling for a greater understanding of this technology, its 

potential, and limitations. Ultimately, accuracy and reliability of CST are key factors to 

guarantee high-quality, trusted, and meaningful large-scale longitudinal CST data (de 

Zambotti et al. 2019a; Depner et al. 2019; Khosla et al. 2018).

The use of CST could be particularly relevant in investigating the biopsychosocial changes 

occurring in adolescence, such as the progressive shifting in adolescents’ bioregulatory sleep 

processes (e.g., circadian phase delay, decline in slow wave sleep activity), and the 

interacting psychosocial factors (e.g., early school start times, academic pressure, bedtime 

autonomy, electronic media use) (Carskadon 2011; Colrain and Baker 2011). Adolescence is 

also a critical period during which sleep disturbances (e.g., insomnia disorder) and sleep-

related mental disorders (e.g., major depressive disorder) frequently emerge (de Zambotti et 

al. 2018b). Despite having a prevalence of up to 18% in 16-18-year-olds, which is 

comparable to other major psychiatric disorders (e.g., anxiety and substance use), insomnia 

in adolescents is under-recognized, under-diagnosed, and under-treated. This under-

recognition is partly due to the challenge of distinguishing insomnia from the normal 

developmental changes occurring in sleep regulation and the social and environmental 

constraints adolescents face that impact their opportunity for sleep (for a review, see de 

Zambotti et al. 2018a). In this context, CST may be helpful in identifying patterns of 

dysfunctional sleep over multiple nights in adolescents, discriminating between poor and 

good sleepers, and distinguishing poor sleep from normal developmental changes.

CST could serve as a low-cost and time-efficient alternative to polysomnography (PSG), the 

gold standard for sleep evaluation (de Zambotti et al. 2019a). Moreover, the newer 

generation of multi-sensor CST integrate accelerometry-based motion signals and 

photoplethysmography (PPG)-based heart rate (HR) and heart rate variability (HRV) 

measures to characterize sleep composition (epoch-by-epoch sleep staging, i.e., “light”, 

“deep”, and rapid-eye-movement sleep) and physiology (e.g., sleep autonomic function, 

respiration, SpO2), in addition to sleep quantity (sleep/wake patterns), providing more 

detailed information than what is available from research-grade actigraphy (de Zambotti et 

al. 2020).
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Although CST has already been used to track sleep in adolescents (e.g., de Zambotti et al. 

2016; Kuula et al. 2019), the evaluation of its accuracy in such populations is scarce, which 

is a critical barrier in CST adoption for scientific and clinical purposes (de Zambotti et al. 

2019a; Depner et al. 2019; Khosla et al. 2018). Among the few CST devices tested in 

adolescents, the motion-based trackers, Fitbit Charge HR (de Zambotti et al. 2016), Jawbone 

UP (de Zambotti et al. 2015), and Polar Electro Oy (Pesonen and Kuula 2018) showed high 

sensitivity in detecting sleep and low specificity in detecting wake, a pattern typical of 

standard actigraphs (Sadeh 2011). To our knowledge, only two studies evaluated the sleep-

stage classification accuracy of multi-sensor CST devices (Fitbit Alta HR and ŌURA ring) 

in adolescents, reporting systematic underestimation of N3 sleep and inconsistent 

estimations of N1+N2 and rapid eye movement (REM) sleep duration (de Zambotti et al. 

2019b; Lee et al. 2019). Interestingly, two studies reported CST underestimation of sleep 

time and overestimation of nocturnal awakening time in adolescents (Lee et al. 2019; 

Pesonen and Kuula 2018), a pattern opposite to that reported by most CST validation studies 

conducted in healthy adults (de Zambotti et al. 2019a).

The current study aimed at evaluating the performance of Fitbit Charge 3™ (FC3, Fitbit, 

Inc.), a recent model of the popular Fitbit Charge family, in measuring sleep against gold-

standard PSG in a sample of adolescents. Fitbit devices are among the most widely used and 

investigated CSTs (https://www.fitabase.com/research-library/). Studies evaluating previous 

Fitbit devices in various populations (mainly adults) showed, in general, an increase in the 

accuracy of multi-sensor sleep-staging compared to motion-based-only models (Haghayegh 

et al. 2019b). Based on recent recommendations from our group and others (de Zambotti et 

al. 2019a; Depner et al. 2019), standardized guidelines for assessing CST performance were 

applied via open-source R-based functions (available at https://github.com/SRI-human-

sleep/sleep-trackers-performance), covering the main analytic steps for CST validation 

(Menghini et al. 2020). We also evaluated the role of several factors potentially affecting 

CST performance (see de Zambotti et al. 2020), including demographics (sex, age, body 

weight), average HR (is FC3 accuracy different in those individuals with higher/lower HR?), 

and clinical factors (presence of insomnia), in addition to device features (firmware version). 

Finally, we explored the CST rationale of using HR data in addition to motion to 

discriminate sleep/wake states and sleep stages (see de Zambotti et al. 2020, 2018b, 2019a). 

HR is expected to vary across sleep stages, being higher in wake and REM sleep compared 

to NREM sleep (de Zambotti et al. 2018d), and PPG-derived HR data are assumed to be 

used by FC3, along with HRV data (according to https://help.fitbit.com/) to classify sleep 

stage transitions (see also Beattie et al. 2017; Matar et al. 2018). However, the rationale 

behind this has been rarely (if ever) empirically investigated. Here, we evaluated the 

relationship between the magnitude of epoch-by-epoch (EBE) HR fluctuations detected by 

FC3, with the corresponding EBE agreement between FC3 and PSG (is FC3 more accurate 
when greater HR reactivity is detected across sleep stage transitions?). We expect that “true” 

shifts between different stages (based on PSG EBE transitions) would be more easily 

detected by FC3 when accompanied by larger HR changes.
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Materials and methods

Participants

The sample included thirty-nine post-pubertal Junior and Senior (10-12th grade) high-school 

students (age: 16-19 years; 22 girls). Participants were recruited from the San Francisco Bay 

Area local high schools and community, as part of a larger study evaluating insomnia, sleep, 

and cardiovascular health in adolescence. The experimental protocol was conducted in 

accordance with accepted international ethical standards (Portaluppi et al. 2010), and the 

study was approved by the SRI International Institutional Review Board. All adult 

participants consented to participate, with minors providing written assent along with 

consent from a parent/legal guardian.

All participant had an in-lab initial visit to evaluate eligibility, including a structured clinical 

interview for DSM-5 (American Psychiatric Association 2013) disorders. All participants 

were free from severe mental disorders (e.g., Major Depressive Disorder, Post-Traumatic 

Stress Disorder) and medical conditions (e.g., Heart Diseases, Diabetes, Seizures) and were 

not currently using medications known to affect sleep (e.g., hypnotics) and/or the 

cardiovascular system (e.g., antihypertensives). Based on clinical interview, twelve 

participants (seven girls) reported insomnia symptoms (“difficulty initiating or maintain 

sleep despite an adequate opportunity to sleep, accompanied by significant daytime 

dysfunction, not due to the presence of another sleep disorder, mental or medical condition, 

or substance use”), with four of them meeting criteria for insomnia disorder and the 

remaining having sub-clinical insomnia symptoms. None of the participants had traveled 

across time zones within the prior month. Of the female participants, six healthy sleepers 

and 4 insomnia sufferers were taking hormonal contraceptives. None of the participants had 

breathing-related or leg-movement-related sleep disorders, as confirmed by in-lab clinical 

PSG. Demographic and other information are reported in Table 1.

Laboratory procedures

The study was conducted at the Human Sleep Research Laboratory at SRI International. 

After an adaptation night (i.e., first night used to get familiar with the laboratory setting and 

to exclude the presence of other sleep disorders, such as sleep-disordered breathing), 

participants underwent an additional non-consecutive standard PSG night during which they 

wore a FC3 on their wrist. On that night, upon arrival at the lab, the recording sensors were 

attached, and participants engaged in quiet activities (e.g., watching TV, reading a book) 

until bedtime. Lights-off and lights-on times were self-selected by participants, based on 

their regular sleep schedules. Electronic media use was not allowed after lights-off. When 

ready for bed, the PSG recording (time 0) was started at a time corresponding to a rounded 

FC3 time (hh:mm:00) to allow better PSG-device synchronization (de Zambotti et al. 2019a; 

see also supplemental material S1). Devices were removed upon awakening and data were 

synchronized via the Fitbit mobile App. All participants slept in sound-attenuated and 

temperature-controlled bedrooms. Participants were instructed to refrain from consuming 

caffeinated beverages and alcohol after 03:00h of the recording day, and recent alcohol/drug 

use was evaluated via breath alcohol (S75 Pro, BACtrack Breathalyzers) and urine drug test 
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(10 Panel iCup drug test, Instant Technologies, Inc.) at lab entry. Girls were scheduled 

irrespective of menstrual cycle phase.

Standard PSG sleep assessment

Standard laboratory PSG sleep assessment, i.e., electroencephalography (EEG; F3/4, C3/4, 

O1/2 referred to the contralateral mastoid; 512 Hz sampled), submental electromyography, 

and bilateral electrooculography, was performed according to the American Academy of 

Sleep Medicine (AASM) guidelines (Berry et al. 2020). Recordings were performed using 

the Compumedics Grael® HD-PSG system (Compumedics, Abbotsford, Victoria, Australia). 

Sleep records were double-scored in 30 s epochs (wake, N1, N2, N3 and REM sleep) by 

experienced scorers (inter-rater reliability ≥ 91%; Cohen's kappa = .89 ± .20).

Fitbit Charge 3 sleep data collection

FC3 (Fitbit, Inc.) is a commercially available multi-sensor wristband. It tracks several 

health-related indices including fitness measures (e.g., number of steps), exercise (e.g., 

running, walking), cardiac measures, sleep, daily calorie consumption. According to Fitbit 

(https://help.fitbit.com/), the sleep-tracking feature uses a combination of indices extracted 

from optical PPG (HR and HRV) and motion sensors to process time spent awake and asleep 

(by discriminating “light”, the equivalent of PSG N1 + N2 sleep, “deep”, the equivalent of 

PSG N3 sleep, and REM sleep) (for details about rationale and use of a multi-sensor 

approach to sleep staging, see de Zambotti et al. 2018c, 2019a; Matar et al. 2018).

The device connects to mobile platforms via Bluetooth technology and data are managed via 

a dedicated App. All devices were connected to Fitabase (Small Steps Labs LLC.), a 

research-oriented data management platform enabling continuous data collection, data 

monitoring and easy data aggregation from multi-devices. From Fitabase, individuals’ FC3 

sleep data (including timestamp and sleep stage classification) were exported in 30 s epoch 

resolution, while HR data were exported at 1 s resolution and then averaged in 30 s epochs 

to match the sleep epoch-by-epoch data resolution.

The device was placed on the participants’ dominant hand by the research staff (about an 

inch above the wrist bone, with the back of the device in contact with the skin), following 

the manufacturer’s instructions. The dominant hand was used to avoid interfering with other 

research-grade photoplethysmography sensors (not discussed in the present work) that were 

placed on the non-dominant arm. Based on previous studies of wrist actigraphy (e.g., Driller 

et al. 2017), no substantial differences were expected between wrists in terms of sleep 

measures. FC3 data were collected between Feb 2019 and March 2020. Different firmware 

versions were used between participants across the progression of the study, i.e., 1.49.45 (14 

participants), 1.60.39 (9 participants) and 1.63.5 (19 participants). Since it is not clear 

whether the FC3 sleep-tracking algorithm reflects updates in firmware versions, the 

firmware version as well as the time of data collection (i.e., day of the year, included to 

cover any other potential change in the system that is not notified to the user) were recorded 

and explored as factors in the analyses (see Depner et al. 2019).
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Data processing and statistical analyses

FC3 performance was evaluated by using a standardized framework for testing the 

performance of CST introduced by Menghini et al. (2020). The analyses were performed 

separately for the group of healthy sleepers (n = 27) and the group of adolescents with 

insomnia symptoms (n = 12), using R 3.5.1. (R Development Core Team 2018). The full 

analysis report and the script used for data analysis are publicly available from https://

github.com/SRI-human-sleep/CST-performance (Supplemental material S1).

Discrepancy analysis and Bland-Altman plot—The following PSG and FC3 sleep 

metrics were computed separately for each participant, based on EBE data recorded between 

lights-off and lights-on: total sleep time (TST, min), sleep efficiency (SE, %), sleep onset 

latency (SOL, min), wake after sleep onset (WASO, min), “light”, “deep”, and REM sleep 

duration (min). For each sleep measure, group-level discrepancies were expressed in terms 

of systematic bias (mean FC3-PSG difference) ± 95% limits of agreement (LOAs, i.e., the 

limits within which most differences are expected to lie). Based on recently published 

recommendations on the analysis of CST performance (Depner et al. 2019; Menghini et al. 

2020), discrepancies were also visualized via a modified version of the Bland-Altman plots 

(Bland and Altman 1999), in which FC3-PSG differences are plotted against PSG values. 

The significance of FC3 over- and underestimations was determined based on the 95% 

confidence intervals (CI) of the bias.

Linear regression was used to test proportional biases (i.e., increasing/decreasing bias over 

the size of measurement) and heteroscedasticity (i.e., relationship between differences 

dispersion and size of measurement) for each sleep measure. When a proportional bias was 

detected (i.e., p < .05), discrepancies were modeled as a function of the size of measurement 

(expressed by PSG-derived measures). Similarly, when heteroscedasticity was detected 

LOAs were modeled as a function of the size of measurement (for details, see Menghini et 

al. 2020).

Epoch-by-epoch analysis—EBE agreement between FC3 and PSG sleep stage 

classification was evaluated by averaging the error matrices computed for each participant. 

That is, we computed the number of epochs classified in each stage (i.e., “light”, “deep” and 

REM sleep, and wake) by the two methods, and we reported the average proportion of 

correct (sensitivity) and incorrect (specificity) FC3 classifications over PSG classifications 

(proportional error matrix), with the corresponding SD and 95% CI. Following de Zambotti 

et al. (2019a) and Depner et al. (2019), the classical definitions of sensitivity (i.e., ability to 

correctly classify sleep epochs) and specificity (i.e., ability to correctly classify wake 

epochs), reflecting a binary classification of sleep/wake patterns (0 = wake, 1 = sleep), have 

been updated to meet the need of describing non-binary sleep stages classification (e.g., 0 = 

wake, 1 = “light”, 2 = “deep”, 3 = REM). Thus, sensitivity and specificity have been 

calculated separately for wake, “light”, “deep”, and REM sleep. Sensitivity represents the 

ability of FC3 to correctly classify a given PSG stage (wake, “light”, “deep”, or REM), 

while specificity is the ability of FC3 to correctly classify all the other PSG stages (see 

Menghini et al. 2020, for the operationalization of these definitions). The Cohen’s kappa 

(Cohen 1960), quantifying from 0 to 1 the proportion of classification agreement that is not 
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due to chance, and the prevalence-adjusted bias-adjusted kappa (PABAK) coefficient (see 

Byrt et al. 1993) were computed for both wake/sleep classification and each sleep stage.

Evaluation of factors potentially affecting CST performance—In the main group 

of healthy sleepers, multiple linear regression was used to explore several factors potentially 

affecting device performance (see de Zambotti et al. 2020). Absolute FC3-PSG 

discrepancies (min) and the agreement between FC3 and PSG epoch-by-epoch classification 

(0 = misclassification, 1 = agreement) were considered as the main performance metrics and 

used as outcome variables. For each of the absolute FC3-PSG discrepancies in TST, SE, 

SOL, WASO, “light”, “deep”, and REM sleep duration, linear regression models were 

specified with the following predictors: sex (male, female), age (years), BMI (kg m−2), 

firmware version (1.49.45, 1.60.39, 1.63.5), time of data collection (number of days since 

the first PSG recording of the study, i.e., beginning of the data collection period). EBE 

agreement was modeled using logistic mixed-effects regression (LMER) with the same 

predictors, and a random intercept was included to account for individual variability. The 

average HR (bpm) measured by the FC3 between lights-off and lights-on was included as a 

further predictor of EBE agreement.

For each model, we assessed the underlying assumptions and the presence of influential 

cases (Nieuwenhuis et al. 2012), and we visually inspected the bivariate distributions of each 

predictor and outcome variable. To evaluate the contribution of each potential factor, each 

was hierarchically included to a null model (with outcomes being regressed only on 

intercept and residual variance). Only predictors showing stronger evidence than the null 

model (as indexed by the Aikake information criterion weight, AICw; see Wagenmakers & 

Farrell 2004) were included in the following models and statistically tested, with a level of 

significance set at p < .05.

Finally, we explored the relationship between the FC3 accuracy in classifying EBE 

transitions (e.g., light → light, light → wake) and the corresponding changes in FC3 HR. 

For each couple of consecutive epochs, the EBE transition was considered as accurately 

classified only if both epochs were equally scored by FC3 and PSG (see Table 2). Since HR 

sensitivity to ‘true’ shifts between different stages is a necessary condition to justify its use 

in sleep stage classification (see de Zambotti et al. 2018d), a first set of LMER models was 

used to initially evaluate FC3 HR differences across PSG sleep stages. Then, a second set of 

LMER models was specified to predict EBE transition agreement by the corresponding 

absolute percent change in FC3 HR. The type of PSG EBE transition (i.e., between PSG 

epochs classified with the same stage vs. different stages) and its interaction with FC3 HR 

changes were included as additional predictors in the models. Based on our hypothesis (i.e., 

higher likelihood of classifying shifts between different stages in EBE transitions associated 

with greater HR changes), we expected lower EBE transition agreement for consecutive 

epochs classified with the same stage by the PSG (e.g., light → light) but associated with 

larger HR changes compared to cases associated with smaller HR changes, and vice versa.
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Results

Discrepancy analysis and Bland-Altman plots

Group-level discrepancies are summarized in Table 3, and the corresponding Bland-Altman 

plots are shown in Figure 1. Two healthy sleepers (both females) were identified as 

influential cases (see Nieuwenhuis et al. 2012), and, thus, they were excluded from the 

analyses of TST, SOL, SE, and WASO due to extreme PSG values and FC3-PSG differences 

(more than two SD distant from the sample mean, with both participants showing SE < 70% 

not attributable to detected technical failure in the recordings), whose inclusion led to false 

positives in bias significance. One girl with insomnia symptoms was excluded from the 

analysis of SOL for the same reason (see supplemental material S1 for details, in which 

outliers are graphically highlighted and additional analyses are performed by also including 

these cases).

In the sample of healthy sleepers, FC3 systematically underestimated TST and SE, whereas 

it overestimated WASO (see Table 3). A significant proportional bias was detected for 

“light” and “deep” sleep duration, with higher discrepancies (underestimation) for cases 

with longer duration of PSG-derived measures (i.e., N1 + N2 duration longer than about 225 

min, and N3 duration longer than about 80 min) compared to cases with lower measures. No 

systematic biases were detected for REM sleep duration and SOL, with the former showing 

relatively wide LOAs, and the latter showing tighter LOAs for cases with shorter PSG SOL 

compared to cases with longer SOL (i.e., heteroscedasticity). Similar trends were shown in 

the group of adolescents with insomnia symptoms (see Figure 1), with FC3 underestimating 

TST and SE (but only for cases with higher PSG SE), and overestimating WASO with about 

twice the bias found in healthy sleepers. Contrary to what found for the main group, no 

proportional biases were found for “light” and “deep” sleep durations, with the latter being 

systematically underestimated by FC3.

Epoch-by-epoch analysis

Table 4 reports the mean proportion of correctly (diagonal) and incorrectly classified epochs 

(upper and lower triangle) over the total number of epochs classified in each stage by the 

PSG (i.e., proportional error matrix), whereas the matrix reporting the absolute number of 

epochs in each condition (i.e., absolute error matrix) is included in the supplemental material 

S2. In the sample of healthy sleepers, FC3 showed a better sensitivity to “light” and REM 

sleep detection (about 75-80%) compared to “deep” sleep and wake detection (about 

60-70%), with about 40% of N3 epochs and 20% of wake epochs being erroneously 

classified as “light” sleep. On average, 20% of PSG REM epochs were also misclassified as 

“light” sleep. “Deep” sleep is the stage for which FC3 showed the lowest sensitivity. By 

combining sleep stages, FC3 shows an overall sensitivity of 94.75 ± 2.70%. Adolescents 

with insomnia symptoms showed a similar pattern of results, although sensitivity to wake 

was slightly higher (about 80%) compared with the group of healthy sleepers (about 70%). 

Again, the lowest FC3 sensitivity was found for “deep” sleep. Overall, sensitivity to sleep 

was 94.19 ± 1.78%.
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The estimated kappa and PABAK coefficients for sleep/wake and sleep stages classifications 

are also shown in Table 4. Both coefficients indicate higher agreement between FC3 and 

PSG in classifying wake and REM sleep compared to both “light” and “deep” sleep. Wake 

and REM sleep showed the largest discrepancies between kappa and PABAK, with the latter 

reaching .83-.86 and .73-.74, respectively. Kappa and PABAK coefficients were similar in 

adolescents with and without insomnia symptoms.

Factors potentially affecting CST performance

The inclusion of BMI in the model was associated with a higher AICw compared to the null 

model only when predicting absolute FC3-PSG discrepancies in TST (AICw = .67) and 

WASO (AICw = .76), although the estimated parameter was significant only in the latter, 

indicating larger WASO discrepancies in adolescents with higher BMI compared to those 

with lower BMI (Coeff. = 1.21 (.58), R2 = .16, t(23) = 2.09, p = .048). In contrast, BMI was 

not significantly associated with TST discrepancies (Coeff. = 1.01 (.55), R2 = .13, t(23) = 

1.82, p = .08). None of the remaining factors (i.e., sex, age, firmware version, and time of 

data collection) was associated with stronger evidence (higher AICw) than the null model 

for predicting absolute discrepancies in any of the considered outcomes. Similarly, averaged 

nocturnal FC3 HR did not show substantial relationships with FC3 performance (AICw 

= .40, R2 = .002). Results were similar when statistically controlling for the PSG measures 

of each sleep parameter (see supplemental materials S1 and S3 for details).

Magnitude of the heart rate acceleration/deceleration between consecutive 
PSG epochs—Higher FC3 HR was found in PSG epochs classified as wake compared to 

“light” (χ2(3) = 3,843.93, p < .001; Coeff. = 8.14 (.13), t = 63.37) “deep” (Coeff. = 6.90 

(.14), t = 48.61), and REM sleep epochs (Coeff. = 5.78 (.14), t = 40.01), with no significant 

differences between sleep stages (see Figure 2a). Similar results were found by matching 

FC3 HR with FC3-based epoch classifications (see supplemental material S1 for details). 

Higher FC3 HR was found in girls compared to boys (χ2(1) = 7.16, p = .007, AICw = .99; 

Coeff. = 7.37 (2.61), t = −2.67). 196 epochs (0.82%) and 203 transitions between 

consecutive epochs (0.84%) were excluded from the analysis due to missing FC3 HR data.

Most EBE transitions were accurately classified by FC3 (67.03 ± 8.21%) and consisted of 

consecutive epochs scored with the same stage by the PSG (91.75 ± 2.26%), with “light → 
light” being the most frequent transition (47.04 ± 7.19%). Most transitions between equally 

scored PSG epochs (e.g., light ↔ light) were accurately classified by FC3 (71.41 ± 8.16%), 

whereas the opposite pattern was found for transitions between differently scored PSG 

epochs (e.g., wake → light), with only 17.89 ± 7.59% of them being correctly classified by 

FC3 (the number of epochs in each transition and the corresponding absolute FC3 HR 

change are reported in supplemental material S4).

EBE transition agreement was significantly predicted by absolute FC3 HR changes to PSG 

EBE transitions (χ2(1) = 249.09, p < .001), by the type of PSG EBE transition (χ2(1) = 

1,904.05, p < .001), and by their interaction (χ2(1) = 71.27, p < .001, AICw = 1.00). As 

shown in Figure 2b, higher HR changes predicted lower agreement in classifying transitions 

between PSG epochs classified with the same stage (Coeff. = −.03 (.004), OR = .97, t = 
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−8.49), whereas the opposite pattern (greater HR changes predicter better agreement) was 

found for PSG transitions between different stages (Coeff. = .06 (.007), OR = 1.07, t = 8.74). 

Overall, EBE transition agreement was lower in PSG transitions between different stages 

compared to transitions between the same stage (Coeff. = −2.85 (.08), OR = .06, t = −34.82) 

(see also Supplemental material S4).

Discussion

CST is increasingly seen as an opportunity to advance sleep and circadian research. CST can 

be particularly useful in populations like adolescents, when continuous sleep monitoring is 

needed to capture change and variability in an individuals’ sleep patterns and behaviors. A 

need for further data validation to promote better use and understanding of CST 

performance and outcomes in clinical and research settings has been advocated (de Zambotti 

et al. 2019a; Depner et al. 2019; Khosla et al. 2018). Here, we evaluated the performance of 

FC3 in measuring sleep in adolescents with and without insomnia symptoms. Our results 

indicate that FC3 systematically underestimated TST and SE, and overestimated WASO, 

whereas it underestimated PSG N1+N2 (“light”) and N3 (“deep”) sleep duration in 

participants/nights with longer time in that PSG-defined sleep stage compared to 

participants/nights showing shorter durations (proportional bias). Sensitivity to sleep stages 

varied from 60-70% for “deep” sleep and wake detection to 75-80% for “light” and REM 

sleep detection.

Our results are in line with the general trend highlighted for CST performance, suggesting 

an increasing accuracy for the newer generation of CST (de Zambotti et al. 2019a, 

Haghayegh et al. 2019b), possibly due to the implementation of a multi-sensor approach 

(integration of motion and PPG-derived data to quantify sleep and wake duration) (de 

Zambotti et al. 2020), and advancement in algorithm refinement. Indeed, over recent years 

several studies suggested better agreement in detecting sleep/wake patterns between PSG 

and multi-sensor CST devices than between PSG and motion-based devices (e.g., Chinoy et 

al. 2020; Haghayegh et al. 2020b; Pesonen and Kuula 2018). In the present study, the 

absolute biases we observed for TST (about 11 min), SE (about 2.5%), and WASO (about 9 

min) were in the lower tail of bias distributions shown by motion-based Fitbit devices (i.e., 

7-67 min for TST, 2-15% for SE, 6-44 min for WASO) (Haghayegh et al. 2019b), and in line 

with previous attempts to use Fitbit accelerometry-based and PPG-derived features for 

staging sleep (e.g., Beattie et al. 2017). Also, we observed relatively high accuracy in 

classifying sleep/wake patterns, with an overall sensitivity to sleep approaching 95% (vs. 

87-99% for motion-based devices) and a sensitivity to wake >65% (vs. 10-52%) (Haghayegh 

et al. 2019b). Compared to recent studies reporting sleep-stage sensitivity of CST devices 

(Chinoy et al. 2020; Cook et al. 2019; Haghayegh et al. 2020b), our results suggested a 

slightly better performance of FC3 than other devices in detecting “light” and REM sleep, 

but not “deep” sleep.

To our knowledge, only two studies assessed the performance of multi-sensor CSTs in 

adolescents (de Zambotti et al. 2019b; Lee et al. 2019). In those studies, both devices 

underestimated “deep” sleep duration, similarly to the FC3 performance shown in our study, 

particularly for adolescents with longer PSG N3 duration. Moreover, in both those previous 
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studies and in our study, “deep” sleep was the least accurately classified stage, whereas 

sleep-stage sensitivity was higher for “light” and REM sleep, similar to findings reported in 

adult populations (e.g., Beattie et al. 2017; de Zambotti et al. 2018a). It is unclear whether 

CST is approaching a plateau when combining motion and PPG data for sleep staging.

Our results are also in line with previous studies showing different performance behavior 

between adolescents and adults, with CST overestimating WASO in the former (Lee et al. 

2019; Pesonen and Kuula 2018) and generally overestimating TST in the latter (de Zambotti 

et al. 2019a). Sleep overestimation is a typical limitation of actigraphs, at least partially 

associated with a misclassification of motionless wake as sleep (low specificity) (de 

Zambotti et al. 2020). In contrast, overestimation of WASO might be associated with other 

factors, including “light” epochs being misclassified as wake (accounting for about 10% of 

“light” sleep classification here and in Lee et al. 2019), or contextual factors, such as sleep 

opportunity. For instance, Lee and colleagues (2019) manipulated the length of time in bed 

and found different patterns of discrepancies depending on sleep opportunity, with “light” 

sleep being underestimated in adolescents with longer sleep opportunity and overestimated 

in adolescents with shorter sleep opportunity.

With regards to LOAs (i.e., expressing the limits within which most differences between 

FC3 and PSG measures are expected to lie), the absence of standard criteria to establish their 

acceptability in sleep assessment implies some difficulties in their interpretation. For 

instance, Werner et al. (2008) arbitrarily defined satisfactory agreement between sleep 

measures as LOAs < ∣30 min∣, a cut-off criterion that would classify as unsatisfactorily the 

wide LOAs we found for TST, REM sleep duration, and for cases with shorter “light” and 

longer “deep” sleep durations. Alternatively, Haghayegh et al. (2020) suggested providing 

estimates of the “minimal detectable change” (i.e., the smallest change in a given measure 

detected by a method that exceeds measurement error), computed as one-half the difference 

between the upper and lower LOAs. In our study, this would be 30.67 min, 6.87%, 30.32 

min, and 42.19 min for TST, SE, WASO, and REM sleep duration, respectively, whereas it 

would depend on the size of measurement for SOL, ‘light’ and ‘deep’ sleep duration. 

However, the interpretation of these values depends again on the definition of a priori criteria 

of “minimal clinical important change”, the specific application, and the target population of 

the device under assessment. Future research efforts should be made to standardize the 

acceptability of LOAs. What is certain is that excessively wide LOAs would imply a poor 

performance even when the bias is nonsignificant.

These results highlight the importance of evaluating CST performance in specific 

populations. The adolescents’ increasing preference for later bedtimes as they get older 

(Colrain and Baker 2011), combined with factors such as early school start time and high 

homework load, might lead to changes in TST, possibly playing a role in CST accuracy in 

relation to age. A relationship between adolescents’ age and the performance of a CST 

(Jawbone UP) was found by de Zambotti and colleagues (2015). In their sample, TST was 

overestimated in adolescents 12-14 y of age and underestimated (with higher absolute 

discrepancies) in adolescents older than 16 y of age. Similarly, other studies highlighted 

greater discrepancies, especially in TST, SE, and WASO, in adolescents compared to school-

age (6-12 y) and preschool children (3-5 y) (Meltzer et al. 2015; Toon et al. 2016). In 
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contrast, such a relationship was not found in our study, possibly due to the narrow age 

range (16-19 y) or differences in performance between motion-based (e.g., Jawbone UP) and 

multi-sensor (FC3) sleep-tracking algorithms.

In our study, the only potential confounder shown to play a role in device performance was 

BMI, with higher bias in WASO for adolescents with higher BMI compared to adolescents 

with lower BMI. This result might be associated with inaccuracies in HR-driven sleep 

classification due to sensor placement in individuals with large wrist circumferences. Indeed, 

BMI and wrist circumference were highly correlated and both were predictive of reduced 

HR accuracy in both commercial (Shcherbina et al. 2017) and research-grade PPG 

wristbands (Menghini et al. 2019). Even the presence of insomnia symptoms did not play a 

substantial role in device performance, with a few differences mainly concerning the size of 

bias in WASO (about twice that found in healthy sleepers) and the classification accuracy for 

wake epochs (80% vs.70% of healthy sleepers). This result is partially in contrast with 

previous studies highlighting larger biases for insomnia disorder patients than for healthy 

sleepers. For instance, Kang et al. (2017) reported a bias in TST and SE that was more than 

double in the insomnia than in the control group. In addition to considering differences in 

terms of target population (adolescents vs. adults) and device used (FC3 vs. Fitbit Flex), this 

inconsistency should be interpreted in light of a limitation of our study, in that we used a 

single-night protocol, making it more difficult to discriminate poor sleep between groups, 

especially in adolescents (e.g., PSG SE was on average 90% in both groups). Moreover, the 

number of recruited adolescents with insomnia symptoms was too low for testing differences 

between subject groups with acceptable statistical power. Future studies with larger and 

balanced sample sizes and using multiple-night protocols are warranted for better 

characterization of sleep patterns in adolescents with insomnia, as well as for better 

understanding of CST performance in sub-populations.

Finally, we explored the FC3 features we believed to be more relevant in its performance. 

First, we tested the role of firmware version and time of data collection since proprietary 

algorithms and their continuous update have been identified as critical factors to be 

considered when using CST (de Zambotti et al. 2019a; Depner et al. 2019). Indeed, since the 

algorithms are undisclosed, the scientific community is not aware, for instance, of potential 

updates affecting device performance during an ongoing study. While in the current study 

we found no significant relationships with any of the considered performance outcomes, 

these factors may become relevant in longitudinal assessments lasting a year or more, and 

need further consideration. Second, we provided a first attempt to explore the rationale of 

CST (and specifically FC3) in using HR data to classify sleep/wake patterns and sleep stages 

(see de Zambotti et al. 2020). Previous studies reported satisfactory accuracy of Fitbit 

devices in measuring HR during sleep in both healthy adolescents (de Zambotti et al. 2016) 

and healthy adults (Haghayegh et al. 2019a), a necessary condition for using HR data in 

sleep staging. A further condition (only partially met in the present study) is the FC3 HR 

sensitivity to sleep stages. At the individual level, we did not find a substantial relationship 

between EBE agreement and mean HR measured by the FC3 between lights-off and lights-

on. At the EBE level, we explored the relationship between the FC3 accuracy in classifying 

EBE transition and the corresponding changes in FC3 HR.
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Our results showed that the FC3 accuracy in classifying EBE transitions was positively 

associated with the magnitude of the corresponding HR changes, but only for transitions 

between different stages (e.g., light → deep). In contrast, transitions between epochs 

classified with the same stage by the PSG (e.g., light → light) were less accurately classified 

when associated with higher compared to lower changes in FC3 HR. This finding is possibly 

due to the algorithm “expectancy” of high HR stability between equally scored epochs, and 

when this is not the case (e.g., due to short awakenings, arousals, or changes in breathing 

patterns) the classification system fails. However, FC3’s algorithm is proprietary, and the 

type of features (e.g., motion, tonic HR, short-term HRV), as well as their timing and 

integration, used to classify sleep/wake and sleep stages is unknown. In particular, HRV 

changes between epochs might be more informative of shifts between different sleep stages, 

compared to HR changes between epochs (for a recent discussion, see Radha et al. 2019). 

While motion is reasonably indicative of wake (Sadeh 2011), understanding the interplay of 

PPG-derived and accelerometry-based features used in sleep staging is more challenging 

(for promising attempts, see Beattie et al. 2017; Matar et al. 2018). Future studies should 

better characterize the CST’s sleep-staging rationale, accounting for variables at both the 

EBE and individual level (see de Zambotti et al. 2018c).

Conclusion

In conclusion, while our findings support a positive trend for CST performance, they should 

raise awareness for researchers using CST to track sleep in adolescents, highlighting the 

potential sources of bias (BMI for WASO estimations, the range of measurement for “light” 

and “deep” sleep duration), and providing information (bias and LOAs) that can be used to 

calibrate the measurements collected in future studies using the FC3 device. CSTs may 

ultimately help advance understanding of adolescents’ sleep patterns, including integration 

and evaluation of the presence of objective sleep deficits, quantification of circadian phase 

shifting across age, and night-to-night and week-weekend variability in sleep.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Bland-Altman plots of sleep measures in the sample of healthy sleepers (black dots) and 

adolescents with insomnia symptoms (blue triangles). PSG, polysomnography; REM, 

Rapid-Eye-Movement. Red solid lines indicate bias, whereas gray solid lines indicate the 

95% limits of agreement (LOAs), both with their 95% confidence intervals (dotted lines), 

computed from the group of healthy sleepers. Density diagram on the right side of each plot 

represents the distribution of FC3-PSG differences among healthy sleepers.
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Figure 2. 
Fitbit Charge 3™ heart rate by polysomnographic sleep stage (a) and predicted probability 

of epoch-by-epoch (EBE) transition agreement by absolute Fitbit Charge 3™ heart rate 

changes to polysomnographic EBE transitions (b), in the sample of healthy sleepers. FC3, 

Fitbit Charge 3™, PSG, polysomnography, HR, heart rate; bpm, beats per minute; “light”, 
PSG-based N1 + N2 sleep; “deep”, PSG-based N3 sleep; REM, Rapid-Eye-Movement 

sleep. Figure (a) shows the distribution of FC3 HR values averaged by participant (gray 

dots) for each PSG sleep stage (error bars indicate 95% confidence intervals). Figure (b) 

shows the predicted probabilities (with 95% confidence intervals) of EBE transition 

agreement depending on absolute percent FC3 HR change to transitions between 

consecutive epochs classified with the same stage (solid red line) or with different stages 

(solid blue line) by the PSG.
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Table 1.

Sample characteristics reported as mean (SD).

Healthy sleepers Insomnia group

Sample, No. 27 12

Sex, No. M/F 12/15 5/7

Age, y 17.7 (.6) 17.6 (.8)

Caucasian, No. 25 11

BMI, kg m−2 22.5 (3.7) 23.3 (5.3)

PSQI, total score 3.4 (2.2) 6.5 (2.1)

BMI, Body Mass Index; PSQI, Pittsburg Sleep Quality Index. BMI was calculated based on in-lab measurements of height and weight. The 
PSQI(Buysse et al. 1989) is a 19-items questionnaire investigating habitual sleep over the past month, with higher scores reflecting poorer sleep 
(total score ranging from 0 to 21).
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Table 2.

Agreement between polysomnographic and Fitbit Charge 3™ classification of epoch-by-epoch transitions by 

considering the corresponding cardiac reactivity (absolute percent change in heart rate).

… Epoch 234 Epoch 235 Epoch 236 Epoch 237 Epoch 238 …

PSG epoch classification … Light Light REM REM Wake …

PSG EBE transition (current vs. 
previous epoch) … … Light → Light Light → REM REM → REM REM → Wake

Type of PSG EBE transition … … Same stage Different stages Same stage Different stages …

FC3 epoch classification … Light Light REM Light Wake …

FC3 EBE transition (current vs. previous 
epoch) … Light → Light Light → REM REM → Light Light → Wake

EBE transition agreement … … 1 1 0 0 …

FC3 HR (bpm) … 50 52 54 49 58 …

Absolute FC3 HR change (%) (current 
vs. previous epoch) … … 4.00 3.85 9.26 18.37 …

PSG, Polysomnography; FC3, Fitbit Charge 3™; HR, Heart rate; REM, Rapid-Eye-Movement. EBE transitions between consecutive epochs were 
used to evaluate the relationship between EBE transition accuracy and FC3 HR changes to PSG EBE transitions. EBE transition agreement was 
considered as accurate (1) when both the current and the previous epoch were equally classified by FC3 and PSG, inaccurate (0) otherwise. The 
type of PSG EBE transition (same stage vs. different stages) was used as a further predictor of EBE transition agreement.
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Table 3.

Sleep measures and group-level discrepancies in the sample of healthy sleepers and adolescents with insomnia 

symptoms.

Fitbit 
Charge

3™
Mean (SD)

PSG
Mean (SD)

Bias
Mean (SD) [95% CI]

Lower LOA
[95% CI]

Upper LOA
[95% CI]

TST 
(min)

Healthy 
Sleepers

396.76 
(51.40)

407.72 
(53.03)

−10.96 (15.65)

[−17.42, −4.50]*
−41.63

[−52.82, −30.44]
19.71

[8.52, 30.90]

Insomnia 
Symptoms

410.21 
(60.17)

426.46 
(64.46)

−16.25 (12.55)

[−23.17, −9.50]*
−40.85

[−47.72, −34.05]
8.35

[1.68, 15.10]

SE (%) Healthy 
Sleepers 89.46 (4.23) 91.89 (4.02)

−2.43 (3.51)

[−3.87, −.98]*
−9.30

[−11.80, −6.79]
4.44

[1.94, 6.95]

Insomnia 
Symptoms 86.98 (5.96) 90.42 (6.83)

14.32 - .20 × PSG
b0 = [3.19, 70.71], b1 = 

[−.80, −.01]*
Bias - 4.58
[1.70, 5.71]

Bias + 4.58
[1.70, 5.71]

SOL 
(min)

Healthy 
Sleepers 9.36 (7.39) 7.40 (7.46) 1.96 (5.16)

[−.17, 4.09]

Bias - 2.46(1.10 + .33 
× PSG)

c0 = [−.17, 2.37], c1 

= [.20, .45]*

Bias + 2.46(1.10 
+ .33 × PSG)

c0 = [−.17, 2.37], c1 

= [.20, .45]*

Insomnia 
Symptoms 13.62 (8.99) 16.25 

(22.79)
−2.62 (17.64)
[−13.50, 5.54]

−37.21
[−47.66, −29.33]

31.96
[21.12, 39.83]

WASO 
(min)

Healthy 
sleepers 37.46 (19.99) 28.46 

(14.91)
9.00 (15.47)

[2.61, 15.39]*
−21.32

[−32.38, −10.26]
39.32

[28.26, 50.38]

Insomnia 
Symptoms 47.00 (22.60) 28.12 

(20.69)
18.88 (15.48)

[10.75, 27.62]*
−11.46

[−19.59, −2.76]
49.21

[41.09, 57.76]

Light 
(min)

Healthy 
Sleepers

241.89 
(34.49)

225.41 
(43.26)

170.26 - .68 × PSG
b0 = [101.18, 239.35], b1 

= [−.98, −.38]*
Bias - 62.00

[49.74, 80.23]
Bias + 62.00

[49.74, 80.23]

Insomnia 
Symptoms

234.62 
(34.51)

230.21 
(35.78)

4.42 (35.93)
[−15.46, 23.83]

−66.00
[−86.79, −47.59]

74.84
[54.88, 93.63]

Deep 
(min)

Healthy 
Sleepers 72.2 (21.26) 94.65 

(24.28)

56.93 - .84 × PSG
b0 = [22.32, 91.54], b1 = 

[−1.19, −.48]*
Bias - 40.96

[34.16, 52.17]
Bias + 40.96

[34.16, 52.17]

Insomnia 
Symptoms 78.04 (29.44) 103.58 

(25.20)
−25.54 (25.01)

[−38.29, −11.04]*
−74.55

[−87.05, −60.22]
23.47

[10.93, 37.68]

REM 
(min)

Healthy 
Sleepers 82.15 (28.63) 80.11 

(23.94)
2.04 (21.53)

[−6.48, 10.55]
−40.16

[−54.91, −25.41]
44.23

[29.48, 58.98]

Insomnia 
Symptoms 97.54 (46.87) 92.67 

(28.05)
4.88 (30.14)

[−11.58, 20.79]
−54.19

[−71.03, −38.28]
63.94

[47.32, 79.82]

TST, Total sleep time; SE, Sleep efficiency; SOL, Sleep onset latency; WASO, Wake after sleep onset; Light, “light” sleep duration (i.e., PSG-
derived N1 + N2); Deep, “deep” sleep duration (i.e., PSG-derived N3); REM, Rapid-Eye-Movement sleep; SD, standard deviation; PSG, 
polysomnography; LOA, limit of agreement; CI, confidence intervals (computed using percentile bootstrap for the group with insomnia symptoms 
due to skewed distributions and small sample size)

*,
cases showing a significant bias, proportional bias or heteroscedasticity. When a proportional bias was detected, a linear model predicting the 

discrepancies by the corresponding PSG measures was specified, and 95% CI were reported for the model’s intercept (b0) and slope (b1). When 
heteroscedasticity was detected, a linear model predicting the absolute residuals of the previous model by PSG-derived measures was specified, and 
95% CI were reported for the model’s intercept (c0) and slope (c1).
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Table 4.

Group-level proportional error matrix in the sample of healthy sleepers and adolescents with insomnia 

symptoms.

Fitbit Charge 3™

Wake “light” “deep” REM kappa PABAK

PSG

Wake

Healthy 
sleepers

.68 (.18) 
[.60, .75]

.21 (.15) 
[.16, .27]

.01 (.02) 
[.00, .02]

.10 (.11) 
[.06, .14]

.52 (.14) 
[.47, .58]

.83 (.10) 
[.79, .87]

Insomnia 
symptoms

.81 (.12) 
[.74, .87]

.12 (.08) 
[.08, .17]

.00 (.01) 
[.00, .01]

.07 (.07) 
[.03, .10]

.59 (.14) 
[.52, .66]

.86 (.03) 
[.84, .87]

“light”

Healthy 
sleepers

.08 (.05) 
[.06, .09]

.78 (.07) 
[.75, .81]

.07 (.04) 
[.05, .09]

.07 (.05) 
[.05, .09]

.48 (.14) 
[.43, .54]

.48 (.14) 
[.42, .54]

Insomnia 
symptoms

.08 (.02) 
[.06, .09]

.71 (.13) 
[.64, .78]

.08 (.08) 
[.04, .12]

.13 (.10) 
[.08, .19]

.42 (.18) 
[.32, .52]

.43 (.18) 
[.33, .52]

“deep”

Healthy 
sleepers

.02 (.02) 
[.01, .02]

.39 (.24) 
[.29, .48]

.59 (.25) 
[.50, .69]

.00 (.01) 
[.00, .01]

.48 (.14) 
[.43, .54]

.48 (.14) 
[.42, .54]

Insomnia 
symptoms

.02 (.02) 
[.01, .03]

.40 (.17) 
[.31, .49]

.57 (.17) 
[.48, .66]

.01 (.03) 
[.00, .03]

.42 (.18) 
[.32, .51]

.43 (.18) 
[.33, .52]

REM

Healthy 
sleepers

.03 (.03) 
[.02, .04]

.20 (.17) 
[.14, .27]

.01 (.03) 
[.00, .02]

.76 (.18) 
[.68, .83]

.56 (.25) 
[.47, .66]

.74 (.14) 
[.68, .79]

Insomnia 
symptoms

.05 (.06) 
[.02, .09]

.26 (.17) 
[.17, .36]

.00 (.01) 
[.00, .01]

.69 (.19) 
[.58, .79]

.56 (.18) 
[.47, .66]

.73 (.12) 
[.68, .80]

“light”, PSG-based N1 + N2; “deep”, PSG-based N3; REM, Rapid-Eye-Movement sleep; PSG, polysomnography; PABAK, prevalence-adjusted 
bias-adjusted kappa. Results are reported as mean (standard deviation) [95% confidence intervals]. Bold type indicates sleep-stage sensitivity 
(device’s ability to correctly detect a given stage), whereas the remaining cells indicate percentages of misclassifications. Confidence intervals were 
computed using percentile bootstrap for the group with insomnia symptoms due to skewed distributions and small sample size.
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