
SP
EC

IA
L

FE
A

TU
RE

EC
O

N
O

M
IC

SC
IE

N
CE

S
EV

O
LU

TI
O

N

The origin of cooperation
Nihal Koduria,1,2 and Andrew W. Lob,c,1

aOperations Research Center, Massachusetts Institute of Technology, Cambridge, MA 02142; bSloan School of Management, Massachusetts Institute of
Technology, Cambridge, MA 02142; and cSanta Fe Institute, Santa Fe, NM 87501

Edited by Simon A. Levin, Princeton University, Princeton, NJ, and approved January 11, 2021 (received for review September 2, 2020)

We construct an evolutionary model of a population consisting of
two types of interacting individuals that reproduce under random
environmental conditions. We show that not only does the evo-
lutionarily dominant behavior maximize the number of offspring
of each type, it also minimizes the correlation between the num-
ber of offspring of each type, driving it toward −1. We provide
several examples that illustrate how correlation can be used to
explain the evolution of cooperation.
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Cooperation is a key feature of human evolution, and many
theories have been developed to explain its existence. These

theories typically introduce auxiliary concepts such as inclu-
sive fitness (1, 2), kin selection (3), group selection (4–10),
multilevel selection (11), and reciprocal altruism (12). These
auxiliary concepts are needed to reconcile the apparent conflict
between natural selection—which is assumed to select for self-
ish offspring-maximizing behavior—and unselfish cooperation.
Indeed, inclusive fitness, kin selection, group selection, multi-
level selection, and reciprocal altruism are all mechanisms in
which cooperation is selfish.

In this article, we develop an alternate theory for the evolution
of cooperation. We construct a simple, but general, evolution-
ary model of a population consisting of two types of interacting
individuals that reproduce under stochastic environmental con-
ditions. Without making any additional assumptions about the
nature of the individuals or their interactions, we character-
ize precisely how natural selection operates in this setting. We
show that natural selection does more than select for selfish
offspring-maximizing behavior. It also selects for behavior that
minimizes the correlation of fecundity between individuals. In
particular, we show, both theoretically and computationally, that
behaviors that decrease correlation (i.e., driving it toward −1),
cause exponential increases in population size. We argue that
correlation is an avenue by which evolution can select for coop-
eration without any auxiliary assumption that cooperation is
selfish.

Our framework also contributes to the mathematical biology
literature. Previous theories of evolution and cooperation have
their origins in evolutionary game theory (13–15) and depend on
the concept of evolutionary stability, rather than natural selec-
tion. They are also tailored to specific interactions. Economists,
similarly, have used evolutionary models to explain how humans
interact with one another, but also only in specific economic
settings (16–19). Our results provide a key step toward a gen-
eral theory of evolution when replicating units interact with one
another and affect each other’s reproductive success, assuming
nothing more than the principle of natural selection.

Theory
Our starting point is similar to that of Brennan and Lo (20) and
Zhang, Brennan, and Lo (21): A population of individuals repro-
duces asexually and only once in their lifetime, giving rise to
offspring that inherit the behaviors of their parent. “Behavior”
in this simple context is modeled abstractly as a single parameter
p for a Bernoulli trial that yields one of two possible outcomes
for the individual’s number of offspring, each of which is a ran-
dom variable. Deterministic behavior is modeled as p = 0 or 1,

and randomizing behavior is any value of p ∈ (0, 1). The evolu-
tionarily dominant behavior is then determined as the p∗ ∈ [0, 1]
that maximizes population growth.

In contrast to refs. 20 and 21, we model behavior as a general
random variable, not just a Bernoulli trial. More importantly,
instead of assuming that every individual in the population has
the same distribution of offspring, we allow for two types of indi-
viduals with different, but correlated, distributions of offspring,
which we argue is necessary and sufficient to capture interaction
between individuals.

Model
Assumptions. We assume the existence of two types of indi-
viduals, called A and B , that have different distributions of
random offspring. In generation t , each individual of type j pro-
duces a random number of offspring xj ,t , j =A,B . The vector
(xA,t , xB,t) has some well-defined, but arbitrary, joint distribu-
tion function. The only assumptions we impose on the vectors
(xA,t , xB,t) are that, across generations t , they are independently
and identically distributed (IID) and that all first and second
moments of (log xA,t , log xB,t) exist and are given by:

µA≡E[log xA,t ] , µB ≡E[log xB,t ] ,

σ2
A≡Var(log xA,t) , σ2

B ≡Var(log xB,t),

ρ≡Corr(log xA,t , log xB,t). [1]

Because individuals reproduce only once, the total population
sizes at generation T of types A and B are given by:

PA,T ≡
T∏

t=1

xA,t , PB,T ≡
T∏

t=1

xB,t . [2]

Significance

We develop a mathematical theory of how natural selection
operates in the presence of interaction between replicating
units. Our results show that with interaction, natural selection
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ing units. We argue that correlation is a mechanism by which
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tinct from standard biological explanations like kin selection,
group selection, and reciprocity, and relies only on natural
selection, and without recourse to notions of evolutionary
stability.
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Note that, because the joint distribution of (xA,t , xB,t) is arbi-
trary, reproduction of type A and reproduction of type B are
generally dependent. This dependence is both the simplest and
most general way to capture interactions between reproducing
individuals. The generality of this model of interaction can be
illustrated with the following example. Denote by Ω the set of
all possible states of nature for a given generation. In the sim-
plest case, Ω might contain just two outcomes representing the
possibility of rain or shine, each having probability, say, 1

2
. The

randomness of xA,t and xB,t then represents different reproduc-
tive possibilities in these two states of nature. Suppose that when
it rains, type A individuals become predators of type B individ-
uals, but in the absence of rain, the two types do not interact.
Therefore, in the rain state, xA,t is large and xB,t is small (say,
three and one), and in the sunshine state, xA,t is small and xB,t

is large (say, one and three). Since the probability of rain is
assumed to be 1

2
, the joint distribution of the vector of random

offspring is:

(xA,t , xB,t) =

{
(3, 1) with probability 1

2

(1, 3) with probability 1
2

.

Given that the states of nature can include not just rain or shine,
but outcomes representing many types of environmental con-
straints, as well as outcomes representing physiological traits,
foraging behavior, predator/prey relations, and so on, this frame-
work can capture a broad spectrum of behaviors and interactions
between individuals. But, as we show in the next section, despite
the complexity of behaviors that this specification can gener-
ate, the characterization of evolutionarily dominant behaviors
depends only on the five parameters (µA,µB ,σ2

A,σ2
B , and ρ) of

the joint distribution of xA,t and xB,t .
Observe that a change in behaviors (or traits) of individuals

of type A and B will induce a change in the random vector
(xA,t , xB,t). For example, in our rain/shine example, if type B
individuals are able to evade type A individuals in the rain state,
then xA,t may be smaller and xB,t may be larger in that state (say,
two and two), in which case the joint distribution of (xA,t , xB,t)
becomes:

(xA,t , xB,t) =

{
(2, 2) with probability 1

2

(1, 3) with probability 1
2

.

Therefore, analyzing a particular behavior/trait amounts to ana-
lyzing the properties of a particular random vector (xA,t , xB,t).

Results. We consider a behavior to be evolutionarily optimal if
the total population, PA,T +PB,T , grows exponentially faster
under the behavior than under any other behavior. To see why
this is the correct notion of evolutionary optimality that follows
from natural selection, suppose types A and B follow a behavior
V1. Suppose some subset of individuals of these types (by agree-
ment, chance, or some other mechanism) engages in behavior
V2, and suppose that the sum of populations under V2 grows
exponentially faster than under V1. After a few generations, the
individuals following V2 will exponentially outnumber those fol-
lowing V1, and behavior V2 dominates. This is the principle of
natural selection.

Note that this notion of evolutionary optimality is not incom-
patible with competition between types A and B . The evolu-
tionarily optimal behavior may have one type growing faster
than another type, in which case one type will dominate the
population.

We proceed to characterize the growth rate of PA,T +PB,T

in full generality for an arbitrary offspring vector, (xA,t , xB,t).
To determine which among feasible behaviors is evolutionar-
ily optimal, one can simply compare the growth rate of PA,T +

PB,T under the offspring vectors induced by each of them. The
following two theorems show that

PA,T +PB,T ≈ eαT+β
√

T [3]

for some scalars α and β (proofs for all theorems are provided in
SI Appendix).

Theorem 1 (Characterization of α). Let the vector
(log xA,t , log xB,t) be IID across t with finite first and sec-
ond moments denoted by Eq. 1. Let PA,T and PB,T be defined as
in Eq. 2. Then, as T increases without bound, we have:

log(PA,T +PB,T )

T

a.s.→ max(µA,µB ), [4]

where “a.s.→” denotes almost sure convergence.
Theorem 2 (Characterization of β). Let the vector

(log xA,t , log xB,t) be IID across t with finite first and sec-
ond moments denoted by Eq. 1. Let PA,T and PB,T be defined as
in Eq. 2. Assume that µA =µB =µ. Then, as T increases without
bound, we have:

log(PA,T +PB,T )−Tµ√
T

d→ max(NA,NB ), [5]

where “ d→” denotes convergence in distribution, NA and NB are
normally distributed random variables with means zero, variances
σ2
A and σ2

B , respectively, and correlation ρ.
Theorem 1 confirms that the key parameters in determining

the growth rate of the combined population are µA and µB .
That is, the traits or behaviors that increase the number of off-
spring of type A and B individuals separately also increase the
growth rate of the total population. To find which traits or behav-
iors dominate evolutionarily, we can analyze the effects of the
traits and behaviors on the fitness of types A and B separately.
This is already well known to evolutionary biologists. Theorem 2,
though, suggests something additional about evolution. Not only
does the number of offspring of each type matter, but the cor-
relation ρ between the reproductive output of these two types
also matters. This correlation is determined by the nature of the
interaction between the two types.

The main thrust of Theorems 1 and 2 is that evolutionarily
optimal behaviors are those that maximize µ and minimize ρ.
SI Appendix contains additional propositions that formalize this
result, but, intuitively, it is clear from Theorem 1 that increasing
µ will increase α, thereby increasing the growth rate of the total

Fig. 1. Total population growth vs. time. Values of ρ range from −0.9
(lightest) to 0.9 (darkest). The number of offspring for both types follows
a lognormal distribution with µ= 0.1 and σ= 1.0.
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Table 1. Simulated population growth rate

µ/ρ –0.9 –0.8 –0.7 –0.6 –0.5 –0.4 –0.3 –0.2 –0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.00 21% 20% 19% 18% 18% 17% 16% 15% 15% 13% 12% 11% 10% 9% 8% 7% 5% 4% 2%
0.01 22% 21% 20% 20% 18% 18% 17% 16% 15% 14% 13% 12% 11% 10% 9% 8% 7% 5% 3%
0.02 23% 22% 21% 21% 20% 19% 18% 17% 16% 16% 15% 14% 12% 12% 10% 8% 8% 6% 5%
0.03 24% 24% 23% 22% 21% 20% 19% 19% 18% 17% 16% 15% 14% 13% 11% 10% 9% 7% 5%
0.04 26% 25% 24% 23% 22% 22% 20% 20% 19% 17% 16% 16% 14% 13% 12% 11% 10% 8% 7%
0.05 26% 26% 25% 24% 23% 23% 22% 21% 19% 19% 18% 17% 16% 15% 13% 12% 11% 9% 7%
0.06 28% 27% 26% 26% 24% 24% 23% 22% 21% 20% 19% 18% 16% 16% 15% 14% 12% 10% 8%
0.07 29% 29% 27% 27% 26% 25% 24% 23% 22% 21% 20% 19% 18% 16% 16% 15% 13% 11% 9%
0.08 31% 30% 29% 28% 27% 26% 25% 25% 24% 23% 21% 20% 19% 18% 17% 15% 14% 13% 11%
0.09 32% 31% 30% 29% 28% 28% 27% 26% 25% 24% 22% 22% 21% 20% 18% 17% 15% 13% 12%
0.10 34% 32% 31% 30% 30% 29% 28% 27% 26% 25% 24% 23% 22% 21% 19% 18% 16% 15% 13%
0.11 34% 33% 33% 32% 31% 30% 29% 29% 27% 26% 25% 24% 23% 22% 19% 19% 18% 16% 14%
0.12 36% 35% 34% 34% 32% 31% 30% 29% 28% 28% 27% 26% 23% 23% 22% 20% 20% 17% 15%
0.13 37% 36% 36% 35% 34% 33% 32% 31% 30% 29% 28% 27% 25% 25% 23% 21% 20% 19% 16%
0.14 39% 38% 37% 36% 35% 34% 33% 32% 31% 30% 29% 28% 27% 25% 25% 23% 21% 19% 17%
0.15 40% 39% 39% 38% 37% 36% 35% 33% 33% 31% 30% 29% 27% 27% 25% 24% 22% 21% 19%
0.16 41% 41% 40% 39% 38% 37% 36% 35% 34% 33% 31% 31% 30% 27% 27% 25% 23% 22% 20%
0.17 43% 42% 41% 40% 39% 39% 37% 37% 36% 34% 33% 32% 31% 29% 28% 26% 25% 23% 21%
0.18 44% 43% 42% 42% 41% 39% 39% 39% 36% 36% 34% 33% 32% 30% 29% 28% 26% 24% 22%
0.19 46% 45% 44% 43% 42% 41% 39% 39% 38% 37% 35% 35% 33% 32% 31% 28% 27% 25% 23%
0.20 47% 46% 45% 45% 44% 42% 42% 40% 39% 38% 37% 36% 35% 33% 32% 30% 29% 26% 26%

The number of offspring for both types follows a lognormal distribution with the stated µ and ρ, and with σ= 1.0. Quantities shown represent
population growth rate per generation after 10 generations, computed as eE[log(P10/P0)]/10, where PT = PA,T + PB,T .

population. From Theorem 2, increasing max(NA,NB ) increases
β, thus also increasing the growth rate. The parameter ρ comes
into play because decreasing the correlation between two nor-
mal random variables increases their maximum, so decreasing
ρ will also increase the exponential growth rate. Fig. 1 provides
computational confirmation of this relation.

An important caveat to Theorems 1 and 2 is that, because
of the IID assumption, they only apply to behaviors that are
sustainable over time. For example, one cannot use Theorem
1 to conclude that a purely altruistic behavior on the part of
type A that decreases µA and increases µB is evolutionarily
optimal through its increase of max(µA,µB ). This is because
such a behavior would lead to type B growing exponentially
faster than type A; hence, the altruistic type will be exponentially
outnumbered, and the behavior is not sustainable.

In general, a behavior is sustainable if µA =µB so that
both types are growing at the same rate, or if µA 6=µB ,
but the difference is not due to the nature of the interac-
tion, but, rather, due to better utilization of environmental
resources. Naturally, in this article, we are more interested in
the case when µA =µB and there can be sustained meaningful
interaction.

Although Theorems 1 and 2 show that the effect of ρ on the
asymptotic growth rate is second order compared to µ, simula-
tion results show that ρ is often more important than µ in its
effect on growth rates over finite time intervals. For example,

Table 1 shows that after 10 generations, decreasing ρ from 0.5 to
−0.5 has approximately the same effect as increasing µ by about
0.09. More concretely, going from (µ= 0.05, ρ= 0.5) to (µ=
0.0, ρ=−0.5) increases the growth rate, despite µ being lower.
(Additional simulation results are reported in SI Appendix.) In
the same way that the function y =

√
x grows faster than y = x

for some time before its growth rate becomes sublinear, an off-
spring vector with better ρ and worse µ can grow exponentially
faster than one with worse ρ and better µ for many generations
before being overtaken.

There is yet another reason for taking an interest in finite-
horizon growth rates besides developing an understanding of
short-term behaviors. The next theorem shows that if the
proportion of types in the population is rebalanced every
T0 generations—which could be expected in the presence of
intraspecies interaction—the finite-horizon growth rate for T0

generations becomes the asymptotic growth rate.
Theorem 3. Let T0 be a positive integer. Let the vector

(log xA,t , log xB,t) be IID across t with finite first and second
moments denoted by Eq. 1. Let P0 > 0, let PA,T and PB,T be
defined as

PA,nT0+i ≡
PnT0

2

nT0+i∏
t=1

xA,t , i = 1, . . . ,T0, n = 0, . . . ,∞,

[6]

Table 2. Simulated density-dependent population growth rate (r = 0.5)

K/ρ –0.9 –0.7 –0.5 –0.3 –0.1 0.1 0.3 0.5 0.7 0.9

5.0 –5.4% –6.3% –7.3% –8.1% –9.1% –9.8% –11.3% –12.6% –13.8% –15.5%
10.0 –0.0% –1.1% –2.2% –3.0% –4.4% –5.6% –6.6% –8.3% –9.4% –11.3%
20.0 5.0% 3.6% 2.7% 1.4% –0.1% –1.2% –2.6% –3.7% –6.1% –7.9%
40.0 9.2% 8.1% 6.9% 5.4% 3.9% 2.8% 0.9% –0.8% –3.2% –5.6%
80.0 12.4% 11.1% 10.0% 8.5% 7.1% 5.2% 4.1% 1.4% –0.6% –3.3%

The number of offspring for both types follows Eqs. 25 and 26 with the stated K and ρ, and with r = 0.5, s = 1.0, and L = K.
Quantities shown represent population growth rate per generation after 10 generations, computed as eE[log(P10/P0)]/10, where PT =

PA,T + PB,T .

Koduri and Lo
The origin of cooperation

PNAS | 3 of 7
https://doi.org/10.1073/pnas.2015572118

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015572118/-/DCSupplemental
https://doi.org/10.1073/pnas.2015572118


Table 3. Simulated density-dependent population growth rate (r = 0.6)

K/ρ –0.9 –0.7 –0.5 –0.3 –0.1 0.1 0.3 0.5 0.7 0.9

5.0 –3.1% –3.9% –4.5% –5.4% –6.0% –7.0% –8.0% –8.9% –10.4% –11.7%
10.0 3.1% 2.3% 1.4% 0.4% –0.5% –1.7% –2.7% –4.2% –5.4% –7.5%
20.0 9.2% 8.2% 7.0% 5.9% 4.9% 3.6% 2.4% 0.8% –1.0% –2.7%
40.0 15.0% 13.7% 12.4% 11.2% 9.7% 8.1% 6.8% 5.1% 3.1% 0.7%
80.0 19.8% 18.3% 16.6% 15.5% 13.8% 12.4% 10.8% 9.1% 6.9% 4.1%

The number of offspring for both types follows Eqs. 25 and 26 with the stated K and ρ, and with r = 0.6, s = 1.0, and L = K.
Quantities shown represent population growth rate per generation after 10 generations, computed as eE[log(P10/P0)]/10, where PT =

PA,T + PB,T .

and

PB,nT0+i ≡
PnT0

2

nT0+i∏
t=1

xB,t , i = 1, . . . ,T0, n = 0, . . . ,∞,

[7]

and let PT be defined for multiples of T0 as

PnT0 =PA,nT0 +PB,nT0 , n = 1, . . . ,∞. [8]

Then, as n increases without bound, we have:

log(PnT0)

nT0

a.s.→ E [log (PT0/P0)]

T0
. [9]

This theorem implies that if the types in Table 1 are rebalanced
every 10 generations, then the population under behavior (µ=
0.0, ρ=−0.5) grows faster asymptotically than under behavior
(µ= 0.05, ρ= 0.5).

Although we did not assume group selection as a primitive,
the fact that, even asymptotically, ρ can be more important
than µ illustrates when and how group selection can appear to
occur. When a particular behavior decreases ρ enough to offset a
decrease in µ, it can appear that selection is happening at a level
other than that of the individual.

Idiosyncratic Risk. So far, we have assumed that reproductive
risk—as represented by the random variables {xj ,t}—is purely
systematic, meaning that all type-j individuals have an identical
number of random offspring xj ,t in a given state of the world.
Suppose we assume that reproductive risk is, instead, partly
idiosyncratic, so that type-j individuals can have different num-
bers of offspring in a given state of the world. Namely, we allow
the number of offspring of a type-A individual i at time t to be
the sum of xA,t and x̄A,i,t , where x̄A,i,t are independent across
individuals i in the same generation. In this setting, populations
of type A and B at time T can be written

PA,T ≡
PA,T−1∑

i=1

xA,T + x̄A,i,T , [10]

PB,T ≡
PB,T−1∑

i=1

xB,T + x̄B,i,T . [11]

The analogue of Theorem 1 for the case with idiosyncratic
reproductive risk is:

Theorem 4. Assume the following. For j =A,B

1. The random variable xj ,t is IID across t ;
2. For some Cl > 0 and Cu >Cl , Cl ≤ xj ,t ≤Cu ;
3. The random variable x̄j ,i,t ≥ 0 is IID across i and t ;
4. The expectations E[x̄j ,i,t ] and E[log(E[x̄j ,i,t ] + xj ,t)] exist; and
5. E[log xj ,t ]> 0.

Let PA,T and PB,T be defined as in Eqs. 10 and 11. Then, as T
increases without bound, we have:

log(PA,T +PB,T )

T

a.s.→ max (E[log(E[x̄A,i,t ] + xA,t)],

E[log(E[x̄B,i,t ] + xB,t)]). [12]

We see that idiosyncratic risk gets averaged out over time. Any
idiosyncratic component to the number of offspring of a given
type modifies the growth rate identically to adding a constant
number of offspring. It is important to keep in mind that, by
definition, idiosyncratic risk cannot be correlated, so when we
refer to correlation of fecundity throughout the article, we mean
correlation due to systematic risk. In SI Appendix, we repeat
the simulation in Table 1 for the case with idiosyncratic risk.
Adding enough idiosyncratic risk to make the growth rate of
(µ= 0.0, ρ=−0.5) equal to 131% decreases the impact of cor-
relation such that decreasing ρ from 0.5 to −0.5 is equivalent to
increasing µ by 0.07 (instead of 0.09, as in Table 1).

Random Matching. We can also extend the model to use random
matching, a more specific mechanism of interaction that allows
explicitly for different behaviors to exist in the same environment
and for intermixing of individuals with different behaviors. We
show that, even in this case, correlation still plays a key role in
determining the evolutionarily dominant behavior.

Instead of types A and B , suppose that there are types 1 and
2. Each generation, all individuals in the population are ran-
domly paired with each other. If a type 1 is paired with a type

Table 4. Simulated density-dependent population growth rate (r = 0.7)

K/ρ –0.9 –0.7 –0.5 –0.3 –0.1 0.1 0.3 0.5 0.7 0.9

5.0 –1.3% –1.9% –2.4% –2.9% –3.7% –4.6% –5.3% –6.0% –7.5% –9.0%
10.0 5.5% 4.8% 3.9% 3.1% 2.4% 1.8% 0.7% –0.5% –2.1% –3.4%
20.0 12.2% 11.4% 10.4% 9.5% 8.5% 7.5% 6.6% 5.0% 3.5% 1.6%
40.0 19.2% 17.9% 17.1% 16.0% 14.5% 13.3% 11.5% 10.8% 8.6% 5.8%
80.0 25.2% 24.0% 22.7% 21.5% 20.1% 18.4% 16.8% 15.3% 13.1% 10.4%

The number of offspring for both types follows Eqs. 25 and 26 with the stated K and ρ, and with r = 0.7, s = 1.0, and L = K.
Quantities shown represent population growth rate per generation after 10 generations, computed as eE[log(P10/P0)]/10, where PT =

PA,T + PB,T .
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Fig. 2. Total density-dependent population growth vs. time (K = 10). Val-
ues of ρ range from −0.9 (lightest) to 0.9 (darkest). The number of
offspring for both types follows Eqs. 25 and 26 with r = 0.6, K = 10, L = 10,
and s = 1.0.

1, the offspring vector of the pair is (xA,1,t , xB,1,t). Otherwise,
the offspring vector of the pair is (xA,2,t , xB,2,t). We see that,
as suggested by the notation, the random pairings determine
which individuals play the role of type A and type B from the
original model. The new types 1 and 2 represent different behav-
iors. When two individuals of type 1 are paired, the behavior
(xA,1,t , xB,1,t) occurs, but otherwise, the behavior (xA,2,t , xB,2,t)
occurs. We use the variable q to denote the pair that each indi-
vidual is in. For example, in generation T , if individual i of type
1 is matched with type 1 as the first component of the pair, then
q1,i,T =A1. The population sizes at generation T of types 1 and
2 are defined recursively:

P1,T ≡
P1,T−1∑

i=1

1{q1,i,T−1=A1}xA,1,T + 1{q1,i,T−1=B1}xB,1,T

+1{q1,i,T−1=A2}xA,2,T + 1{q1,i,T−1=B2}xB,2,T ,

[13]

P2,T ≡
P2,T−1∑

i=1

1{q2,i,T−1=A2}xA,2,T + 1{q2,i,T−1=B2}xB,2,T .

[14]

The next theorem provides a sufficient condition for type 1 indi-
viduals to exponentially outnumber type 2 individuals in the
limit. We assume a law of large numbers for random matching.
As noted by Duffie and Sun (22), such laws of large num-
bers are nontrivial to prove, but have been assumed without
proof by evolutionary biologists dating back to Hardy (23) and
Weinberg (24).

Theorem 5. Assume the following:

1. For j =A,B and k = 1, 2, the random variable xj ,k ,t is IID
across t .

2. For j =A,B and k = 1, 2, for some Cl > 0 and Cu >Cl , Cl ≤
xj ,k ,t ≤Cu .

3. For k = 1, 2, the expectations E
[
log
(

1
2
xA,k ,t + 1

2
xB,k ,t

)]
exist.

4. (Law of large numbers for random matching) As T→∞,
P1,T

a.s.→∞, P2,T
a.s.→∞, and∑P1,T

i=1 1{q1,i,T=A2}∑P1,T

i=1 1{q1,i,T=A2}+ 1{q1,i,T=B2}

a.s.→ 1

2
.

In words, the proportion of type 1 individuals matched with type 2
in the left side of the pairing converges almost surely to 1/2.

Let P1,T and P2,T be defined as in Eqs. 13 and 14. Then, if

E
[
log

(
1

2
xA,1,t +

1

2
xB,1,t

)]
>E

[
log

(
1

2
xA,2,t +

1

2
xB,2,t

)]
,

[15]

as T increases without bound, we have:

log(P1,T/P2,T )

T

a.s.→ E
[
log

(
1

2
xA,1,t +

1

2
xB,1,t

)]
−E

[
log

(
1

2
xA,2,t +

1

2
xB,2,t

)]
. [16]

The condition Eq. 15 has a close connection to cor-
relation. Decreasing the correlation between xA,k ,t and
xB,k ,t decreases the second-order Taylor approximation of
E
[
log
(

1
2
xA,k ,t + 1

2
xB,k ,t

)]
. Thus, in general, unless the distribu-

tions are highly skewed, if xA,1,t and xB,1,t have the same means,
but lower correlation, than xA,2,t and xB,2,t , then 1-types will
grow exponentially faster than 2-types. In other words, even with
random matching, behaviors that result in lower correlation will
dominate the population. It is also significant that in the random
matching model, correlation is a first-order factor, impacting the
coefficient of T in the growth rate and not only

√
T .

Density Dependence. In this section, we study the effect of corre-
lation on population growth when population growth is density-
dependent. We do this by extending the standard biological
model of density-dependent population growth—in which pop-
ulation at any point in time is the solution to a system of ordinary
differential equations (ODEs)—to the stochastic case so that the
population size is a solution to a system of stochastic differential
equations (SDEs).

To see more clearly the analogy we make between ODEs and
SDEs, we consider first a model of population growth with no
density dependence. Given types A and B , the standard model is
given by:

dPA,t = rAPA,t dt , [17]

dPB,t = rBPB,t dt . [18]

Fig. 3. Total density-dependent population growth vs. time (K = 40). Val-
ues of ρ range from −0.9 (lightest) to 0.9 (darkest). The number of
offspring for both types follows Eqs. 25 and 26 with r = 0.6, K = 40, L = 40,
and s = 1.0.
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Fig. 4. Specialization.

We add randomness by introducing (possibly correlated) Wiener
processes, WA,t and WB,t , and converting the standard model to
the following SDE:

dPA,t = rAPA,t dt + sAPA,t dWA,t , [19]

dPB,t = rBPA,t dt + sBPB,t dWB,t . [20]

Whereas an equation of the type Eq. 17 implies that for small ∆,

PA,t+∆−PA,t = rAPA,t∆,

an equation of the type Eq. 19 implies that

PA,t+∆−PA,t = rAPA,t∆ + sAPA,T (WA,t+∆−WA,t),

where WA,t+∆−WA,t is normally distributed with mean zero
and variance ∆. Eqs. 19 and 20 have closed-form solutions, from
which we can derive continuous-time versions of Theorems 1 and
2, namely:

log(PA,T +PB,T )

T

a.s.→ max

(
rA−

1

2
s2
A , rB −

1

2
s2
B

)
, [21]

and (when r ≡ rA = rB and s ≡ sA = sB )

log(PA,T +PB,T )−
(
r − 1

2
s2
)

√
T

d→ max(NA,NB ), [22]

where NA and NB are normally distributed random variables
with means zero, variances s2, and the same correlation as the
Wiener processes, WA,t and WB,t .

Adding density dependence, the standard population-growth
model becomes:

dPA,t = rAPA,t

(
1− PA,t

KA
− PB,t

LA

)
dt , [23]

dPB,t = rBPB,t

(
1− PB,t

KB
− PA,t

LB

)
dt , [24]

and the stochastic counterpart is simply:

dPA,t = rAPA,t

(
1− PA,t

KA
− PB,t

LA

)
dt + sAPA,t dWA,t , [25]

dPB,t = rBPB,t

(
1− PB,t

KB
− PA,t

LB

)
dt + sBPB,t dWB,t . [26]

The key issue in this setting is how the impact of ρ changes with
K . (We assume L is fixed to K .) Tables 2–4 show the population

growth rate after 10 generations for different values of K and ρ
when r = 0.5, r = 0.6, and r = 0.7, respectively. As K increases
without bound, Tables 2–4 approach continuous-time versions of
Table 1 with µ= 0.0, µ= 0.1, and µ= 0.2, respectively.

It is apparent that correlation has a significant impact on the
growth rate, even with density dependence extreme enough to
cause the population decline over time. In an absolute sense, the
impact of correlation appears to decrease with density depen-
dence. But in a relative sense, it appears to increase. For exam-
ple, to achieve the same impact on the growth rate as increasing
r from 0.5 to 0.6, ρ must be decreased from 0.5 to −0.3 when
K = 80, but only from 0.5 to−0.1 when K = 5. Figs. 2 and 3 show
that when density dependence increases, correlation matters
more for earlier time horizons and less for later time horizons.

Behavioral Implications
Having shown that evolutionarily optimal behaviors minimize
the correlation of fecundity (ρ) along with maximizing fecundity
(µ), we now give two examples of behaviors that decrease ρ. The
first behavior, which we call “specialization,” causes good out-
comes for the two types to occur in different states. The second
behavior, “sacrifice,” decreases fecundity for one type in a given
state, while increasing fecundity for the other type in the same
state. In SI Appendix, we provide a third and more abstract exam-
ple, which we call “coordination,” where an uncertain action of
one type becomes conditionally certain given the action of the
other type. Specialization, sacrifice, and coordination can all be
considered forms of cooperation.

Specialization. Let there be two states of the world, ωr and ωs ,
representing rain and shine. Consider the two behaviors in Fig. 4.
Behavior 1 implies no specialization because the good outcomes
for types A and B both occur in the rain state. Behavior 2
implies specialization because the good outcomes occur in differ-
ent states. Since max(µA,µB ) is the same under both behaviors,
according to Theorems 1 and 2, ρ determines which action is evo-
lutionarily optimal. It is clear that ρ is smaller under Behavior 2;
hence, Behavior 2 is evolutionarily optimal. It is worth noting
that although Theorems 1 and 2 suggest that a behavior can only
be evolutionarily optimal on the basis of ρ if it is not dominated
on the basis of µ, the finite-horizon results and Theorem 3 sug-
gest that a behavior can be evolutionarily optimal on the basis of
ρ, even if it is dominated on the basis of µ. In other words, there
exists some δ sufficiently small such that it could be subtracted
from v , w , z , and y in Behavior 2 and still leave Behavior 2 to be
evolutionarily optimal.

Sacrifice. We continue with our two states, ωr and ωs , represent-
ing rain and shine, each with probability 1

2
of occurring. Consider

Fig. 5. Sacrifice.

6 of 7 | PNAS
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the two behaviors in Fig. 5. Under Behavior 2, type B individuals
sacrifice for type A in state ωr , and type A individuals sacrifice for
type B individuals in state ωs . On the other hand, under Behavior
1, both types have the same number of offspring in both states.

We claim that sacrifice is the evolutionarily optimal behav-
ior according to Theorems 1 and 2 when γ≥ v2

v−ε − v . When

γ > v2

v−ε − v , max(µA,µB ) under Behavior 2 is larger than under
Behavior 1, which means that Behavior 2 is evolutionarily opti-
mal. However, we are particularly interested in the case γ=
v2

v−ε − v . In this case, neither type benefits from sacrifice, which
is to say that µA is the same under Behavior 1 and Behavior 2,
and µB is the same under Behavior 1 and Behavior 2. Yet, simply
by inducing negative correlation, Behavior 2 becomes evolution-
arily optimal. Moreover, as in the case of specialization, if we
expand our definition of evolutionary optimality by considering
finite-horizon results and Theorem 3, Behavior 2 can be evolu-
tionarily optimal if γ < v2

v−ε , in which case µA and µB would be
smaller under Behavior 2 than Behavior 1, and both types would
individually be harmed by sacrifice.

Discussion
We propose to resolve the apparent conflict between natural
selection and cooperation by showing that natural selection is not
necessarily selfish, giving rise to not only behaviors that increase
fecundity, but also behaviors that decrease the correlation of
fecundity between individuals. We use a simple model of evo-
lutionary dynamics without any strategic interactions, assuming
nothing about the knowledge, intelligence, or even sentience
of individuals in the population. Our principal result (Theo-
rem 2) shows that in a population with two types of individuals,
a decrease in correlation of fecundity between the two types
increases the exponential growth rate of the population. This

result shows that correlation of fecundity has a second-order
effect on the growth rate, as compared to the separate fecun-
dity of each type. However, we also show that correlation has
a first-order effect in certain situations, including with periodic
rebalancing of type proportions (Theorem 3) or in a random
matching setting (Theorem 5). Simulation results also suggest
that correlation matters relatively more over finite time horizons
and if population growth is density-dependent.

We conclude by discussing some limitations of our work. First,
our most general model assumes that offspring vectors are IID
over time. As we have mentioned, this means that our model
is silent regarding behaviors that cannot be sustained, such as
purely altruistic behaviors of one type that result in the other
type growing exponentially faster. Second, although our results
show that correlation of fecundity can play a significant role in
determining growth rates, we have not attempted to quantify
how much correlation (or systematic risk in general) exists in
real-world settings, and whether this is enough to drive natu-
ral selection. Finally, while the framework we have developed
implies that the evolution of cooperation can be explained with-
out a separate theory of group selection, the fact that correlation
can confer survival benefits shows why it is so tempting to identify
groups within a given population. Accordingly, there may still be
conceptual benefits from viewing selection as operating at multi-
ple levels, even if not strictly necessary from a purely theoretical
perspective. We hope to explore these issues in future research.

Data Availability. All study data are included in the article and/or supporting
information.
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