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The large fluctuations in traffic during the COVID-19 pandemic pro-
vide an unparalleled opportunity to assess vehicle emission control
efficacy. Here we develop a random-forest regression model, based
on the large volume of real-time observational data during COVID-
19, to predict surface-level NO2, O3, and fine particle concentration
in the Los Angeles megacity. Our model exhibits high fidelity in
reproducing pollutant concentrations in the Los Angeles Basin and
identifies major factors controlling each species. During the strictest
lockdown period, traffic reduction led to decreases in NO2 and par-
ticulate matter with aerodynamic diameters<2.5 μmby –30.1% and
–17.5%, respectively, but a 5.7% increase in O3. Heavy-duty truck
emissions contribute primarily to these variations. Future traffic-
emission controls are estimated to impose similar effects as ob-
served during the COVID-19 lockdown, but with smaller magnitude.
Vehicular electrification will achieve further alleviation of NO2

levels.

COVID-19 | machine learning | air pollution | traffic emissions |
vehicular electrification

In the urban environment, vehicular traffic is a principal source
of air pollutants, including nitrogen oxides (NOx = NO +

NO2), carbon monoxide (CO), and carbonaceous particles.
Secondary ozone (O3) and particulate matter (PM) have adverse
impacts on human health (1) by inducing dysfunction and dete-
rioration of cardiovascular, respiratory, and immune systems (2).
The COVID-19 pandemic led to unprecedented decreases in
traffic-related emissions in megacities worldwide (3–5). Owing to
the short chemical lifetime of NOx and the pandemic-induced
emission changes, the well-defined and abrupt decrease in NO2
has been captured by satellites as well as ground-based obser-
vations (6–8). However, changes in secondary pollutants like O3
and a major portion of PM2.5 (PM with aerodynamic diameters
<2.5 μm) during the pandemic were diverse in different regions
(7, 9), for which the major drivers remain unclear. Atmospheric
chemical reactions serve as essential nonlinear links between
emissions and atmospheric composition. Moreover, local mete-
orological factors, such as air temperature, humidity, radiation,
and clouds, also strongly regulate photochemical formation of
ozone and multiphase chemistry of secondary PM (6, 9–11). The
response of secondary pollutants to COVID-19–induced emis-
sion changes remains poorly understood; existing studies provide
limited insight into the consequent chemistry (7). Here, we dis-
entangle the complex factors involving emissions, chemical re-
actions, pollutant transport, and meteorology to evaluate the
effect of pandemic-induced or other dramatic emission changes
on air quality.
Los Angeles (LA) has long been one of the most polluted

cities in the United States (12). Surrounded by mountains on
three sides and bounded by the Pacific Ocean, ideal conditions

exist for pollutant buildup over the LA Basin and downwind
areas (13, 14). Owing to the strict sulfur oxides (SOx) emission
control program established in 1978 and major improvements of
motor vehicle engines, SO2 and black carbon levels have signif-
icantly declined (15). However, organic aerosol concentrations,
contributing to more than half of PM2.5, have not declined as sig-
nificantly as primary emissions (16, 17). The COVID-19–induced
variability of air quality provides an opportunity to evaluate the
efficacy of traffic mitigation strategies.
Diesel-powered heavy-duty vehicles and medium-duty vehi-

cles, such as trucks and buses, comprise only a modest fraction of
the total numbers of the on-road fleet in LA but disproportion-
ately contribute to a large fraction of overall vehicle emissions (17,
18, 19). Even with installation of diesel particle filters and selective
catalytic reduction (SCR) systems, unusually high emissions of
NOx and lower SCR efficiency are still reported (20). In 2017, The
California Air Resources Board (CARB) adopted a series of
regulations including reduction of NOx emissions by 90% for new
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heavy-duty diesel trucks (21), requiring truck manufacturers to
transition from diesel trucks and vans to electric zero-emission
trucks beginning in 2024, aiming for an all-zero-emission short-
haul drayage fleet in ports and railyards by 2035 and zero-emission
“last-mile” delivery trucks and vans by 2040 (22). An assessment of
the air-quality-related benefit of the zero-emission delivery truck
plan is lacking.
Atmospheric chemical transport models have been widely

used to examine the response of air pollutant concentrations to
the changes of emissions and meteorological conditions. How-
ever, the challenge in preparing high-temporal-resolution emis-
sion profiles in a timely manner has limited a dynamic analysis of
air-quality impacts resulting from the abrupt emission changes
through the pandemic period. Recent studies have demonstrated
the capability of predictive machine-learning (ML) models to
capture the timing, magnitude, and major factors influencing real-
time atmospheric responses to emission control measures (23–25).
Compared with traditional chemical transport modeling, the ML
technique has more flexibility in leveraging real-world data and
possesses higher computational efficiency. Here, real-time data
including traffic information from the California Department of
Transportation (Caltrans), in situ surface-level pollutant concen-
trations and meteorology from the CARB, and population density
and points of interest (physical location of compressed natural gas
stations, power plants, landfills, etc.) at the city level are used
within an ML framework to develop a model that can directly link
atmospheric composition with societal factors. A supervised ML
algorithm, the random-forest (RF) model, is employed to account
for the nonlinear interactions between different input parameters
without specifying any form of their relationships. We use this
model to assess the sensitivity of NO2, O3, and PM2.5 in the LA
Basin to traffic emission changes at different stages of the
COVID-19 lockdown by comparing predicted concentrations un-
der different traffic emission scenarios. Moreover, by considering
future climate changes and traffic emissions, we assess the possible
benefits of future traffic evolution, including vehicular electrifi-
cation, in 2035 and 2050.

Results
Identifying Key Factors Using RF Models. Machine-learned geo-
statistical models are developed here to predict the concentra-
tions of three major pollutants: NO2, O3, and PM2.5 in the LA
basin, using traffic information, meteorological conditions, and
other socioeconomic factors as inputs (SI Appendix, Fig. S1). The
models account for the nonlinear relationships among traffic
emissions, atmospheric chemistry, and meteorological conditions.
Additional model and data descriptions can be found in SI Ap-
pendix, Extended Methods. To evaluate the performance of the RF
models, a commonly used fivefold cross-validation method is used
(26, 27). As shown in Fig. 1, the models exhibit high fidelity in
reproducing the observed NO2 and O3 concentrations, with co-
efficients of determination (R2) of 0.88 and 0.86, respectively. The
root-mean-square errors (RMSE) of the predicted NO2 and O3
concentrations are 3.45 and 4.32 ppb, respectively. The predicted
PM2.5 concentrations also show reasonable agreement with the
ground-based observations, but with a smaller R2 of 0.65. An
underestimation of PM2.5 starts to emerge when the PM2.5 con-
centrations exceed 20 μg/m3, corresponding to the 90th percentile
in the PM2.5 probability distribution function over LA. It is noted
that RF models tend to have larger biases in predicting the ex-
treme values due to fewer training data samples (28).
An important output of the RF model is a ranking of the

relative importance of all input parameters. For NO2, the three
major governing factors are wind direction, nontruck vehicle miles
traveled (VMT), and wind speed. The prominent rank of wind
direction reflects the prevailing role of northwesterly and onshore
winds in determining the spatially variable flow of pollutants re-
ceived in the LA basin (29). The concentration of NO2, which is a

short-lived species, closely follows that of the traffic emission
patterns. For example, NO2 concentration is negatively correlated
to wind speed due to the dilution effect and slightly increased as
temperature decreases because of lower SCR efficiency at low
temperatures (30). In contrast to NO2, ozone variations are largely
regulated by meteorological conditions. Moreover, the top five
factors are all meteorology-related. Among them, the near-surface
temperature (T2m) exerts the largest influence through photo-
chemical reactions forming ozone (31) and biogenic volatile or-
ganic compound (VOC) emission rates (32). Solar irradiance is a
limiting factor that influences ozone-related photochemistry. For
PM2.5 prediction, ozone ranks as the most prominent, indicating
the secondary source of aerosols in LA. Boundary layer height is
the most relevant meteorological factor with PM2.5 in the Gini
importance ranking (see SI Appendix, Extended Methods), followed
by relative humidity (RH), T2m, and wind direction. Such a
ranking of meteorological influence on PM2.5 in LA is consistent
with current understanding (9). Notably, a recent study on 8-y
ground-based observations in Beijing, China showed the same
importance ranking of meteorological factors (33). By using the
points of interest (SI Appendix, Fig. S2) in the RF model, the
influence of spatial contribution from crucial industrial locations
(e.g., airport, wastewater treatment plants, power plants, and
natural gas compressor stations) on air quality is identified. The
model-predicted importance of airport-related emissions for NO2
corroborates that air quality impacts of major airports need to be
addressed for emission control (34). Volatile consumer and in-
dustrial chemical products are estimated to be a significant source
of reactive VOCs and secondary organic aerosol formation in the
LA Basin (35). To test the importance of different predictors on a
time scale longer than hours, we rebuild the RF models using the
daily means of the input data. The results from those models show
generally similar ranking of predictors. The daily mean models
retain 60%, 80%, and 80% of the top five most important pre-
dictors for NO2, O3, and PM2.5, respectively, compared with the
hourly models (SI Appendix, Fig. S3).

Role of Traffic Emissions during COVID-19. During the COVID-19
pandemic traffic was abruptly reduced in late March and early
April and then gradually recovered to the pre-COVID-19 level in
LA (SI Appendix, Fig. S4). The time series of NO2 generally
followed the temporal variation of traffic in LA during the
COVID-19 period. O3 and PM2.5 concentrations remained at a
relatively low level in March and early April due to rainy and
windy weather conditions. We conduct the RF model predictions
with COVID-19 meteorology and pre–COVID-19 traffic infor-
mation from on-road sensors (VMT, automobile type, etc.), so
the differences between these model predictions and the observed
pollution levels reflect the influence of the COVID-19–induced
traffic emission reductions (Fig. 2A). During the strictest lock-
down period (6 April to 12 April), traffic reduction led to de-
creases in the daily averaged NO2 and PM2.5 concentrations by 2.9
ppb and 1.1 μg/m3, corresponding to fractional changes of –30.1%
and –17.5%, respectively. These results are consistent with an
independent chemical transport model assessment which reported
that COVID-related emission reductions caused the population-
weighted mean concentrations of PM2.5 and NO2 to decrease by
1.2 μg/m3 (−14%) and 2.4 ppb (−22%) during 19 March to 20
April, respectively (36). In the later recovery period (8 May to 30
June), the all-traffic-induced fractional changes of NO2 and PM2.5
decrease to –19.0% and –6.0%, respectively. The traffic impacts
on ozone differ from those of NO2 and PM2.5. A 2.1-ppb (5.7%)
increase in maximum daily 8-h average (MDA8) O3 by all traffic
occurred during the strictest lockdown period. The ozone en-
hancement is mainly caused by the alleviation of the ozone titra-
tion by NO. There is also a contribution from the nonlinearity of
ozone formation chemistry. The ozone production in LA is in the
NOx-saturated/VOC-limited regime under the traffic-as-usual
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scenario. Excessive NOx can serve as a sink for OH radicals, thus
retarding the oxidation of VOC, sequestering ozone, or sup-
pressing its production (7). Note that the LA Basin has a large
portion of background ozone produced from local biogenic sources
or transboundary transport (37). Hence, the fractional change of
the COVID-19–induced ozone enhancement can be higher, if the
anthropogenic ozone is used as a reference. We further differen-
tiate the impacts from truck and nontruck vehicles by altering only
the on-road truck activities according to the observations from
different time periods (Fig. 2B). During the strictest lockdown
period, truck emission reductions account for 61.1%, 81.6%, and
70.4% of all-traffic-induced changes in NO2, MDA8 O3, and
PM2.5, respectively. This result reinforces the fact that diesel trucks
are a major source in the entire traffic sector.
To build a direct linkage between pollutant concentrations and

traffic activity we also develop an emulator for each species based
on our RF model results. The emulator can predict the relative
changes of emissions as a function of the fractional changes in
truck and nontruck VMT relative to the year 2019 level. NO2
monotonically decreases along with the reduction in either truck
or nontruck VMT (Fig. 3A). The reduction slope is steeper for
trucks, indicating the larger emission factor of NOx for diesel
engines. MDA8 O3 generally increases with the reduction of truck

traffic in a monotonic manner (Fig. 3B), while an overall decrease
in MDA8 O3 is found for the reduction of nontrucks. The dis-
tinctive impacts on ozone are likely explained by the fact that
diesel trucks emit higher levels of NOx than nontrucks (38), but
they share the similar nonmethane VOC emission factor (39, 40).
Therefore, truck and nontruck emissions fall in NOx-saturated and
NOx-limited regimes, respectively. This is also consistent with
larger NO2 susceptibility to reductions of truck than of nontruck
emissions. The PM2.5 linkage with traffic is more complicated,
especially with regard to nontruck emissions. In contrast with the
monotonic decrease of PM2.5 in response to the reduction in truck
VMT, the bended-curve (Fig. 3C) response of PM2.5 is found
along with the nontruck VMT reduction. Similar to MDA8 O3,
the overall magnitude of fluctuation of PM2.5 is also smaller for
nontruck (less than 0.1 μg/m3) than that for truck. In general,
regulation of trucks can be a more efficient way to lower PM2.5
concentration than other vehicles.

Air-Quality Benefit for Future On-Road Traffic Decarbonization. The
Paris Agreement aims to increase the percentage of zero emis-
sion vehicles to 25% by 2025, 80% by 2035, and 100% by 2050.
Under the “Green New Deal” LA would build a clean and reliable
power grid to empower the next generation of green transportation.

Fig. 1. Model performance and variable importance for three species: (A) NO2, (B) O3, and (C) PM2.5 in LA. Cross-validated model R2 and RMSE are calculated
by using a fivefold cross-validation modeling performance for 24-h average concentrations. The color indicates the sample size for each dot. The variables are
listed in order of importance from top to bottom. The horizontal axis represents the Gini index from the RF model. A larger value represents higher im-
portance. The definitions of all predictors are provided in SI Appendix, Table S2.
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The baseline future traffic emission changes are provided by the
2017 version of the EMission FACtor (EMFAC), a model that
estimates the official emission inventories of on-road mobile
sources in California from 2000 to 2050 (41). Here we introduce
three degrees of fleet electrification (also including other zero-
emission vehicles like hydrogen fuel cell vehicles) based on the
EMFAC emission inventories (SI Appendix, Extended Methods and
Table S1). All the fractional changes in the truck or nontruck

vehicles for the future scenarios are within their ranges in our RF
training dataset, i.e., hourly observations during 2019 and 2020.
The EMFAC model assumes that nontruck emissions will

decrease by 54% in 2035 and 58% in 2050 as compared with
2019 (SI Appendix, Fig. S5). For truck emissions, CARB recently
estimated that the low-NOx omnibus regulation would lead to
29% of NOx emission reduction in 2050 as compared with the
original EMFAC results, which have been used as the baseline

Fig. 2. Comparison of observations and predictions. (A) Comparison of observations and predictions of normal traffic scenario and (B) the impact of traffic
reduction from total fleet and truck fleet on NO2, O3, and PM2.5 concentrations during the lockdown period of the COVID-19 pandemic in LA. Each data point
represents a weekly mean. The error bars are SDs from daily results in each week.
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truck emissions without additional electrification (42). On the
other hand, the EMFAC inventories assume greater truck ac-
tivity caused by increases in intensity of consumer goods deliv-
ery in 2050 than in 2035. Therefore, compared to 2019, truck
emissions would have comparable decreasing ratios in 2035

(by 55%) and 2050 (by 54%). The impacts of the future traffic
emission reduction are pronounced: Compared to 2019, NO2
would be reduced by 13.7% ± 1.3% in 2035 and 14.4% ± 0.9% in
2050. PM2.5 would be reduced by 3.1% ± 0.4% in 2035 and
2.9% ± 0.4% in 2050 (Fig. 4 A and F). Similar to its behavior
during the lockdown period of COVID-19, MDA8 O3 is pre-
dicted to exhibit a reverse trend with a 0.6% ± 0.4% increase in
2035 and a 0.4% ± 0.3% increase in 2050. This result is also a
combination of the NOx-saturation regime and the ozone titration
effect. Of note, the reduction ratios of NO2 and PM2.5 concen-
trations increase significantly from 2020 to 2035 due to the effi-
cient reduction of traffic emissions, while the reductions slow
down and even slightly rebound from 2035 to 2050 with the rel-
atively limited emission reductions (SI Appendix, Fig. S6).
To further assess the impacts of fleet electrification on air

quality we independently alter the electrification rates of total
fleet mileage from the remaining parameters in EMFAC. Three
scenarios are assessed here, representing moderate to aggressive
electrification rates (SI Appendix, Table S1 and Fig. S7). Our first
electrification scenario (E1) assumes moderate electrification
rates, i.e., 10% and 5% for nontrucks and trucks in 2035. The 2035
electrification rate of the truck fleet is close to the Advanced-
Clean-Trucks regulation benefit estimated by CARB, because
more than 60% of class 8 trucks operating in California are reg-
istered as out-of-state vehicles that will not be mandatory to be
electrified according to current federal plans (42). In 2035, as
compared with 2019, E1 corresponds to emission reduction rates
of 57% for both nontruck and truck. In 2050, the electrification
rates of E1 are 20% for nontruck and 10% for truck, corre-
sponding to emission reduction rates of 65% for nontruck and 59%
for truck. As shown in Fig. 4 B and G, the RF model predicts that
NO2 will decrease by 14.7% ± 1.0% in 2035 and 15.8% ± 0.6% in
2050 under E1. Also, PM2.5 will drop by 3.0% ± 0.3% in 2035 and
2.9% ± 0.4% in 2050. MDA8 O3 is predicted to increase by 0.6% ±
0.4% in 2035 and 0.3% ± 0.3% in 2050. The other two future
scenarios (E2 and E3) are more aggressive in electrifying vehicles
than E1. Therefore, the magnitudes of the NO2 reduction are
enlarged in E2 and E3, and the reduction ratio achieves 19.1% ±
1.1% in 2050 under E3 with the most aggressive electrification
ratios [i.e., 80% for nontrucks, which is close to the estimated
electrification rate from California’s Advanced Clean Cars pro-
gram (43), and 40% for trucks]. The increasing ratio of MDA8 O3
shrinks with higher electrification rates in both 2035 and 2050
(Fig. 4 H and I). Such a change in MDA8 O3 reveals that LA
would be evolving to less-NOx-saturated conditions with further
reduction of NOx. However, PM2.5 levels are less sensitive to
progressive electrification. One possible reason is the unbalanced
emission reduction in truck and nontruck fleets for future electri-
fication. According to Fig. 3, PM2.5 is more sensitive to trucks than
to nontrucks. The relative higher emission contribution of trucks in
the total fleet from E1 to E3 may explain the decrease in PM2.5
reduction.

Regional Climate Change on Air Quality. The effect of climate
change on meteorological conditions is a key factor in modu-
lating urban pollution. The responses of different pollutants to
four key meteorological variables are probed here via idealized
perturbation experiments using the RF models (SI Appendix, Fig.
S8). The model shows that PM2.5 is enhanced by RH via the
promotion of heterogeneous chemistry to form secondary aerosols
in aerosol water (9). Increasing photochemistry via solar radiation
tends to increase PM2.5 and O3 at the expense of NO2. Both NO2
and PM2.5 concentrations are elevated by a lower boundary layer
height. O3 shows the opposite responses due to concurrent O3
titration and lower boundary layer height at nighttime. Higher
surface temperature fosters ozone production and further pro-
motes secondary aerosol formation. Our RF model is capable of
capturing the monotonic increasing relationship between MDA8

Fig. 3. Predicted annual-average concentrations. Distribution of (A) NO2,
(B) MDA8 O3, and (C) PM2.5 with different combinations of nontruck and
truck activity fractional changes relative to the annual average level of 2019.
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O3 concentration and ambient temperature. The d(O3)/d(T) in
2019 is ∼1.5 ppb/°C, which is generally consistent with a previous
study (44) which reported a post-2002 climate penalty factor
(CPF) of 2 ppb/°C for the eastern United States, and the CPF is
expected to decrease as NOX emissions have been greatly reduced
since then.
Additional model predictions were performed to assess the

impacts of future regional climate change on air quality in LA.
Future meteorological variables near 2035 and 2050 are pro-
jected from the multimodel ensemble simulations of the Climate
Model Intercomparison Project Phase 6 (CMIP6; see SI Appendix,
Extended Methods and Fig. S9), while the same traffic level as 2019
will be adopted. Our RF models predict that the annual mean
concentrations of NO2 and MDA8 O3 will decrease while PM2.5
will increase at different rates around 2035 and 2050 (Fig. 4 E and
J). The rates of change for the three species in 2050 are not in
proportion with the changes in 2035, reflecting the highly non-
linear relationship of climate change and with air pollution over a
few decades. Future climate changes are estimated to exert a
higher influence on O3 and PM2.5 concentrations than traffic
amount and type in 2035, demonstrating the pronounced impacts
of meteorology on these two species. This result is also consistent
with the ranking of variable importance in the RF models (Fig. 1).
The uncertainty of future climate change is estimated by the
spread among different CMIP6 models and different ensemble
members.
In summary, we leverage the unprecedented large variations of

road traffic spanning a few months in LA during the COVID-19
pandemic to probe the impacts of future decarbonization poli-
cies. An ML model is developed for LA to predict NO2, O3, and
PM2.5 concentrations based on real-time traffic data and mete-
orological measurements. Capitalizing on the high fidelity and
computing efficiency of this predictive RF model, we demonstrate
the significant contribution of traffic, especially from heavy-duty
trucks, to pollutant variations in the first few months of the
COVID-19 pandemic. Future decarbonization policies are esti-
mated to impose effects on air quality similar to COVID-19, but
with smaller magnitude. Large-scale fleet electrification will
achieve further alleviation of NO2 levels and is likely to transition

LA to a less-NOx-saturated regime of O3 formation. However, the
benefit from fleet electrification on PM2.5 may be not attained if it
is focused only on mitigation of on-road emissions. Moreover,
emission standards of out-of-state vehicles should be aligned with
those of the local fleet under federal efforts, and off-road emis-
sions and those of volatile chemical products need to be more
strictly regulated.

Methods
Hourly data over 1.5 y (January 2019 to June 2020) serve as input to the RF
models. Key input parameters include processed traffic activity (truck/non-
truck VMT), meteorology (wind speed/direction, near-surface temperature,
boundary layer height, precipitation, solar radiation, pressure, and RH),
temporal information (weekday/weekend and holiday), population density,
distance to nearby points of interest, etc. Complete information can be
found in SI Appendix. A wide range of temporal variability is explicitly con-
sidered, from diurnal, daily, weekly, and seasonal timescales. The hourly
temporal resolution of the training data is sufficiently high to capture the
lifetimes of the three targeted species. The predictive capability is separately
developed at 11 sites for PM2.5, 18 sites for O3, and 22 sites for NO2, covering
the populous urban areas in the LA Basin (SI Appendix, Fig. S2). Additional
data description and experiment designs can be found in SI Appendix. Note
that our training dataset include both NOx-limited and NOx-insensitive regimes
over certain locations and time periods. Therefore, our site-specific RF models
do reproduce the signs of NOX-insensitive or NOX-limited regimes outside
urban areas (SI Appendix, Fig. S12). A recent study used two-decade air-quality
data from the same sites to identify the long-term photochemical regimes
over the LA area and reported a subset of air quality sites in periurban areas or
downwind areas represent NOx-insensitive or even NOx-limited regimes during
the afternoon period (31).

Data Availability.All study data are included in the article and/or SI Appendix.
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Fig. 4. Reduction ratios of NO2, MDA8 O3, and PM2.5 concentrations under different traffic scenarios in 2035 and 2050 relative to 2019. A and F represent
baseline traffic emission scenarios from EMFAC; B–D and G–I represent three electrification scenarios; E and J future climate change scenarios in 2035 and
2050, respectively. The error bars represent uncertainty of model predictions calculated by the Monte Carlo method. Random sampling was repeated for
100 times considering uncertainty of each variable in prediction of each scenario.
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