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Abstract

Emerging evidence supports the notion that inflammation fosters the development of common

benign gynecologic disorders, including uterine leiomyoma, endometriosis, and adenomyosis.

Numerous cytokines, chemokines, and growth and transcription factors have indisputable roles

in the establishment and maintenance of benign gynecologic disorders by initiating complex cas-

cades that promote proliferation, angiogenesis, and lesion progression. The interaction between

inflammation and benign gynecologic disorders is orchestrated by a plethora of factors, including

sex steroids, genetics, epigenetics, extracellular matrix, stem cells, cardiometabolic risk factors,

diet, vitamin D, and the immune system. The role of inflammation in these disorders is not limited

to local pathobiology but also extends to involve clinical sequelae that range from those confined to

the reproductive tract, such as infertility and gynecologic malignancies, to systemic complications

such as cardiovascular disease. Enhanced understanding of the intricate mechanisms of this

association will introduce us to unvisited pathophysiological perspectives and guide future diag-

nostic and therapeutic implications aimed at reducing the burden of these disorders. Utilization of

inflammatory markers, microRNA, and molecular imaging as diagnostic adjuncts may be valuable,

noninvasive techniques for prompt detection of benign gynecologic disorders. Further, use of novel

as well as previously established therapeutics, such as immunomodulators, hormonal treatments,

cardiometabolic medications, and cyclooxygenase-2 and NF-κB inhibitors, can target inflammatory

pathways involved in their pathogenesis. In this comprehensive review, we aim to dissect the

existing literature on the role of inflammation in benign gynecologic disorders, including the

proposed underlying mechanisms and complex interactions, its contribution to clinical sequelae,

and the clinical implications this role entails.

Summary sentence

Reconceptualizing common benign gynecologic disorders as having inherent inflammatory patho-

biology will introduce us to previously unvisited perspectives of their development and devise

novel clinical implications aimed at reducing their burden.

https://doi.org/10.1093/biolre/ioab054
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Introduction

Inflammation has been historically known as one of the most ancient
and extensively studied pathophysiological phenomena. Once
defined by the five cardinal signs of rubor, calor, tumor, dolor, and
functio laesa, it now represents a far more complex cascade of intra-
and extracellular events in response to injury that culminate in tissue
healing, repair, or occasionally, disease [1]. Various immunologic,
neoplastic, infectious, and even atherosclerotic conditions driven and
maintained by inflammation have been recognized, where aberrant
inflammatory processes perpetuate tissue injury, and resolution does
not occur, leading a chronic disease state [2].

Considerable evidence supports the notion that chronic inflam-
mation fosters the development of benign gynecologic disorders
(BGDs), including uterine leiomyoma, endometriosis, and adeno-
myosis; conditions that were once merely considered neoplastic or
metastatic in nature. Whereas multiple experimental studies have
explored the interplay of inflammatory mediators in uterine leiomy-
oma development [3], others imply that adenomyotic and endometri-
otic lesions may also induce local and systemic inflammatory milieus,
respectively [4, 5]. A plethora of cytokines, chemokines, growth
factors, and prostaglandins are found to be key promoters of BGD
initiation, maintenance, and progression. In addition, not only does
inflammation contribute to BGD pathogenesis but also to their
manifestations that cover a wide array of local and systemic clinical
sequelae [6, 7].

While these findings represent breakthroughs in BGD patho-
genesis, the majority of evidence remains obscure and is rarely
presented comprehensively. Therefore, this exhaustive review aims to
explore various and unique perspectives of the association between
inflammation and BGDs, debate the underlying mechanisms and
complex interactions, and shed the light on the role of inflammation
in their clinical sequelae. Lastly, we introduce novel and previously
established diagnostic and therapeutic implications tailored to the
context of this association.

Ethics statement

An ethical approval was not required for this work as no human
participants or animal models were included and no new data were
generated during its production.

Pathophysiologic considerations

Local and systemic inflammation in benign

gynecologic disorders

Uterine leiomyoma. As we explore the role of inflammation in BGDs,
it remains largely elusive how and where the inciting inflamma-
tory events occur, and whether they start locally then progress
systemically, vice versa, or develop in parallel. In uterine leiomyoma,
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Figure 1. Schematic presentation of the role of inflammation in uterine leiomyoma development and its interaction with hormones, extracellular matrix, and

stem cells. In myometrial stem cells, Wnt, whose secretion is mediated by estrogen, stimulates β-Catenin, whose function is regulated by the MED12 gene. In

leiomyoma stem cells with mutated MED12, β-Catenin can result in uncontrolled proliferation of leiomyoma cells (1, 2) [244]. Leiomyoma stem cells also have

increased expression of proinflammatory cytokines, favoring local inflammation and leiomyoma development (3). TNF-α exerts various effects on leiomyoma

cells and estrogen metabolism that culminate in increased proliferation and ECM deposition (4, 7, 8). TGF β and activin A, also modulated by inflammation, medi-

ate ECM deposition and leiomyoma growth (5, 6, 8). Numeric labels are meant to guide the reader through the figure; concurrent or subsequent steps may carry

the same label. + denotes an activating function. ECM denotes extracellular matrix, ER estrogen receptor, ERK extracellular signal–regulated kinase, MMP matrix

metalloproteinase, NF-κB nuclear factor kappa-light chain enhancer of activated B cells, TGF-β transforming growth factor β, and TNF-α tumor necrosis factor α.

for example, it is demonstrated that CD68+ macrophages exist in
abundance as compared with distant autologous myometrium, sup-
porting a role for local inflammation in leiomyoma pathogenesis [3].
Local macrophages then secrete various growth factors, including
transforming growth factor β (TGF-β), a chemoattractant of more
macrophages and established key player in fibrosis and development
of leiomyoma, where it is overexpressed alongside other proin-
flammatory cytokines, including tumor necrosis factor α (TNF-α),
interleukin (IL)-11, and IL-13 [8–10]. Chronic myometrial inflam-
mation can be induced by a plethora of culprits, including infection,
ovulation, menstruation, implantation, foreign bodies, surgery, male
reproductive proteins, and even stress [11]. Chronic uterine inflam-
mation, regardless of the cause, leads to uncontrolled production of
extracellular matrix (ECM) by myofibroblasts and failure of their
apoptosis (Figure 1) [12]. Systemic evidence of inflammation was
also noted in women with uterine leiomyoma, who are found to
have twice as high serum TNF-α levels compared with controls,
with levels correlating with tumor size. In addition, not only is TNF-
α thought to contribute to leiomyoma development but also to its
clinical manifestations [13].

Endometriosis. Endometriosis is now largely recognized for being
an inflammatory disease and here, the process of local inflam-
mation is better comprehended knowing that ectopic endometrial

fragments are the likely culprit. Upon implantation, macrophages
and neutrophils are first recruited, secreting numerous cytokines
and growth factors with proinflammatory, chemotactic, and angio-
genic properties, including TNF-α, IL-1, IL-6, IL-8, and vascular
endothelial growth factor (VEGF) (Figure 2) [14, 15]. In addition,
excessive amount of retrograde menstruation and subsequent iron
overload appear to overwhelm macrophage physiology, triggering
aberrant inflammatory signaling and impaired phagocytic potential
[16]. This local inflammatory environment favors lesion establish-
ment, progression, and angiogenesis [17]. Women with stage III/IV
endometriosis have significantly higher peritoneal TNF-α levels com-
pared with stage I/II patients, which alongside IL-8, is found to
correlate with size and number of active lesions, reflecting increased
activation of peritoneal macrophages [18–20]. On the other hand,
emerging evidence shows that endometriosis establishes a state of
systemic inflammation as evidenced by high serum levels of TNF-
α, IL-1β, and IL-6 in women with the disease (Figure 3) [17, 21].
While it is not entirely clear how peritoneal inflammation pro-
gresses systemically, microRNAs (miRNA) are hypothesized to alter
cytokine expression of serum macrophages distant from the peri-
toneal lesions [21]. Specifically, miRNA 125b-5p upregulation and
miRNA Let-7b-5p downregulation correlate with increased serum
levels of proinflammatory cytokines in endometriosis [21]. The exact
mechanism underlying this correlation remains largely unknown, but
Let-7b is thought to (1) target C/EBP-δ, a transcription factor that
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Figure 2. Schematic presentation of the role of inflammation and immune cells in endometriosis. Ectopic endometrial implants evade the immune system due to

defective immunosurveillance (1, 2) and secrete various chemokines, recruiting BMSCs and inflammatory cells to the proendometriotic niche (3, 4). Inflammatory

cells, in turn, express proinflammatory cytokines, activating transcription factors and accentuating lesional proliferation, angiogenesis, and invasion (5, 6, 9, 10).

These mediators also drive the local estradiol-PGE2 cycle, fueling peritoneal inflammation and disease progression (7, 8). Numeric labels are meant to guide the

reader through the figure; concurrent or subsequent steps may carry the same label. + denotes an activating function. BMSC denotes bone marrow-derived stem

cell, COX-2 cyclooxygenase-2, CXCL12 CXC motif chemokine 12 ECM extracellular matrix, ER estrogen receptor, IL interleukin, MMP matrix metalloproteinase,

MCP monocyte chemoattractant protein, NF-κB nuclear factor kappa-light chain enhancer of activated B cells, NK natural killer, PGE2 prostaglandin E2, RANTES

regulated-on-activation, normal-T-cell-expressed and -secreted, SF1 steroidogenic factor-1, StAR steroidogenic acute regulatory protein, TECK thymus-excreted

chemokine, TGF-β transforming growth factor β, TNF-α tumor necrosis factor α, Treg regulatory T cells, VEGF vascular endothelial growth factor.

sustains responsiveness to toll-like receptor (TLR) signaling, and (2)
regulate the nuclear factor kappa-light chain enhancer of activated B
cells (NF-κB) inflammatory pathway, a major transcription factor
of inflammatory cascades [22]. Thus, endometriosis is no longer
perceived as an exclusively local disease of the peritoneum but one
of extensive systemic effects [23].

Adenomyosis. Inflammation is hypothesized to actively participate
in the pathogenesis of adenomyosis. The theory of tissue injury and
repair (TIAR) has particularly received a great deal of attention as a
possible mechanism (Figure 4). This theory encompasses the notion
that mechanical strain in the form of chronic myometrial contrac-
tions may invoke microtrauma to the junctional zone, creating an
inflammatory microenvironment that stimulates basal endometrial
proliferation into the uterine wall, eventually forming the classical
adenomyotic lesions [24]. Chronic inflammation at the endometrial–
myometrial interface preceding active disease may be characterized
by an interplay of macrophages, platelets, and the cytokines they
secrete, promoting endometrial attachment and infiltration. In fact,
this theory is also proposed to explain, at least partially, the migra-
tion of endometrial implants outside the uterus and endometriosis
establishment [25]. Likewise, extrinsic adenomyosis, i.e., endometri-
otic lesions invading from outside the uterus, is more common in

patients with deep infiltrating endometriosis, the most clinically
severe form of endometriosis, and is associated with increased levels
of TNF-α, IL-1β, and IL-33 [26, 27].

Extracellular and intracellular inflammatory signaling

Inflammation in BGDs constitutes an intricate network of various
mediators that regulate a chain of extra- and intracellular sig-
nals, creating microenvironments that foster disease maintenance
and progression. These mediators comprise cytokines, chemokines,
prostaglandins, growth factors, peptides, angiogenic factors, hor-
mones, and transcription factors [28].

Uterine leiomyoma. In uterine leiomyoma, several proinflammatory
markers are found to be implicated in tumor development (Table 1).
Among others, TNF-α may have a particularly notable role
(Figure 1). TNF-α has been found to be highly expressed in leiomy-
oma cells compared with the normal myometrium [10]. The exact
mechanism by which TNF-α mediates its downstream signaling in
uterine leiomyoma remains largely unknown, but a few hypotheses
are recognized. It has been established that TNF-α contributes
to reproductive physiology through stimulating trophoblastic
proliferation and differentiation soon after implantation [29],
which raises the prospect that it may function similarly in uterine
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Figure 3. Schematic presentation of the role of inflammation in the clinical sequalae of endometriosis. (1) Proinflammatory mediators in the endometriotic

environment induce irritation and sensitization of local nerve fibers, which in turn release neuromodulators that further augment this cycle, predisposing

to pelvic pain development. Local macrophages contribute to pelvic pain via insulin growth factor 1 (IGF-1) that induces sprouting neurogenesis and nerve

fiber sensitization. (2) Through actions of inflammatory mediators and reactive oxygen species, endometriosis may predispose to ovarian malignancy. (3)

Aberrant immune cells, progesterone resistance, and peritoneal inflammation can impact fertility in endometriosis patients. (4) Endometriosis can induce a

systemic inflammatory state, potentially contributing to CVD. Numeric labels are meant to guide the reader through the figure. Dotted lines denote hypothesized

associations. CNS denotes central nervous system, CVD cardiovascular disease, IL interleukin, MiRNA microRNA, PGE2 prostaglandin E2, TNF-α tumor necrosis

factor α, and uNK uterine natural killer.

pathologies. Indeed, in vitro studies have demonstrated enhanced
human leiomyoma cell proliferation in the presence of TNF-α, with
increased expression of pro-proliferative and antiapoptotic makers
such as BCL-2, effects that were reversed on adding anti-TNF-α
antibodies [30]. Lending support to these findings, Matsuo et al.
reported an abundant cellular expression of BCL-2 in leiomyomas
relative to the normal myometrium [31], a feature by which TNF-α
may block apoptotic cascades and promote tumor development.
By contrast, TNF-α is recognized for its proapoptotic actions
elsewhere that are in fact blocked by the BCL-2 protein [32]. These
observations highlight the crosstalk between TNF-α and BCL-2 in
regulating apoptotic and tumorigenic pathways in leiomyoma cells
that are complex and not entirely comprehended, emphasizing the
need to explore other in vivo factors participating in this crosstalk.
Given the abundance of myometrial macrophages in uterine
leiomyoma [3], it may be intuitive to assume that they mediate local
TNF-α production [33]; however, as leiomyoma cells are found
to express TNF-α as well, the exact source needs to be accurately
investigated.

Another experiment has demonstrated that TNF-α promotes cul-
tured leiomyoma smooth muscle cell migration through upregulating
the NF-κB and extracellular signal–regulated kinase (ERK) pathways
(Figure 1). Using PD98059, a specific ERK inhibitor, the same study
shows that ERK signaling is required for NF-κB activation and

is therefore a critical step in TNF-α–induced smooth muscle cell
migration in uterine leiomyoma [34]. Indeed, the Ras/Raf/MEK/ERK
pathway has an established role in cellular proliferation and is
particularly implicated in leiomyoma pathobiology as shown by
other studies [35, 36]. On the other hand, NF-κB is known for
upregulating tumorigenic cytokines, such as IL-1, IL-6, and TNF-
α itself, and the BCL-2 protooncogene in certain tumors [37],
whereas the mitogen-activated protein kinase (MAPK) pathway, also
upregulated by TNF-α, is shown to promote cellular proliferation
and differentiation [2, 38–40]. In the context of leiomyoma, both
NF-κB and MAPK p38 mediate the downstream signaling of the
focal adhesion kinase pathway activated by TGF-β [41]. Although
TNF-α seems to be a chief regulator of the aforementioned signaling
cascades, whether such interconnections between inflammation and
tumorigenesis occur in uterine leiomyoma remains to be confirmed.

The convergence of inflammatory and tumorigenic pathways
in uterine leiomyoma may be further exemplified by the crosstalk
between NF-κB and Wnt/β-Catenin signaling. Wnt/β-Catenin reg-
ulates NF-κB, both positively and negatively, with the latter shown
to potentiate the mitogenic properties of Wnt/β-Catenin in some
cancers [42]. Of interest, constitutive activation of Wnt/β-Catenin
in mice is shown to induce mesenchymal tumors and myometrial
hyperplasia that are histologically and molecularly similar to uterine
leiomyoma [43], modulate leiomyoma stem cell–mature leiomyoma
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Figure 4. Schematic presentation of the role of inflammation in the theory of tissue injury and repair (TIAR) involved in the pathophysiology of adenomyosis

and endometriosis as proposed by Leyendecker. JZ injury activates local TIAR (1, 2), leading to upregulation of inflammatory mediators and local estrogen

(3, 4). Upon binding both of its receptors, estrogen perpetuates myometrial contractions and endometrial proliferation (5, 6). This amplifies the effect of TIAR

and predisposes to endometrial invagination and fragmentation, leading to adenomyosis and endometriosis, respectively (7, 8). Numeric labels are meant to

guide the reader through the figure. COX-2 denotes cyclooxygenase-2, ER estrogen receptor, IL interleukin, JZ junctional zone, PGE2 prostaglandin E2, StAR

steroidogenic acute regulatory protein.

Table 1. Expression and function of cytokines, chemokines, growth and transcription factors, and miRNA in uterine leiomyoma

Mediator Expression/activity in
uterine leiomyoma

Special remarks

TNF-α ↑ 1. Stimulates leiomyoma cell proliferation [30].
2. Stimulates leiomyoma smooth muscle cell migration [34].
3. Increases antiapoptotic markers (BCL-2) [30].
4. Upregulates Activin A [108].
5. Upregulates MMP-2 [34].

NF-κB ↑ 1. Involved in upregulating MMP-2 and ECM synthesis [34].
2. Stimulates leiomyoma smooth muscle cell migration [34].

Wnt/β-Catenin ↑ 1. Modulates leiomyoma stem cell–mature leiomyoma cell interaction [44].
2. Mediates sex steroid–induced leiomyomatous proliferation [44].
3. Upregulates TGF-β expression [244].

Activin ↑ 1. Activates fibroblasts and ECM synthesis [108].
2. Activates proinflammatory phenotype of macrophages [108].

TGF-β ↑ 1. Promotes tumorigenesis, ECM synthesis, and inflammation [40].
CXC motif chemokine
12 (CXCL12)

↑ 1. Recruits BMSCs to uterine leiomyoma [119].

MiRNA-200c ↓ 1. Low levels disinhibit NF-κB signaling and upregulate IL-8 expression [198].

BMSC denotes bone marrow–derived stem cell, ECM extracellular matrix, IL interleukin, MiRNA microRNA, MMP matrix metalloproteinase, NF-κB nuclear factor kappa-light chain
enhancer of activated B cells, TGF-β transforming growth factor β, and TNF-α tumor necrosis factor α.
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Table 2. Expression and function of cytokines, chemokines, miRNA, and growth, angiogenic, and transcription factors in endometriosis

Mediator Expression/activity in
endometriosis

Special remarks

IL-1β ↑ 1. Induces expression of COX-2 [245].
2. Estradiol-induced IL-8 secretion [246].
3. Induces MMP expression and promotes angiogenesis [109, 114].

IL-6 ↑ 1. Produced by peritoneal macrophages and mesothelial cells (the latter by actions of
TNF-α and IL-1β) [247].

2. Suppresses NK cell cytotoxicity [248].
3. Correlates with lesion size and number [249].
4. Promotes angiogenesis [114].

IL-8 (CXCL8) ↑ 1. Chemokine; neutrophil attractant [250].
2. Promotes MMP expression and angiogenesis [114].
3. Promotes endometriotic lesion growth [251].
4. Correlates with disease stage [252].
5. Can be produced by mesothelial cells by actions of TNF-α and IL-1α [246].

IL-9 – 1. Produced by helper T cells and induces IL-8 expression [253].
IL-10 ↑ 1. Anti-inflammatory action—suppresses NK cell cytotoxicity [254].

2. Promotes endometriotic lesion growth [255].
IL-13 ↓ 1. Inhibits proinflammatory cytokine production and regulates macrophage activation

[256].
IL-15 ↑ 1. Secreted by ESC and suppresses NK cell cytotoxicity [59].
TNF-α ↑ 1. Produced by activated macrophages, NK cells, and Th1 cells [257].

2. Correlates with endometriotic lesion size [249].
3. Induces expression of COX-2 [49].
4. Induces IL-6, IL-8, RANTES, MCP-1, and MMP expression [47, 48].
5. Promotes angiogenesis and endometriotic proliferation [48, 114].

PGE2 ↑ 1. Promotes local estradiol production [245].
2. Attenuates macrophage cytotoxicity [245].
3. Promotes cellular proliferation and angiogenesis [245].

MCP-1 ↑ 1. Chemokine; inflammatory cell attractant [46].
2. Can be produced by mesothelial cells by actions of TNF-α and IL-1α [258].
3. Hormone modulated—higher in proliferative phase; stimulated by E2-induced IL-1β

[78]; also shown to be inhibited by E2 and progesterone [79].
TGF-β ↑ 1. Suppresses NK cell cytotoxicity [60].

2. Induces MMP expression [114].
3. Induces endometrial cell invasion [259].

RANTES (CCL5) ↑ 1. Secreted by ESC and acts as an inflammatory cell chemoattractant [260].
TECK ↑ 1. Secreted by ESC and upregulates Treg cells [61].
C-C motif ligand 17
(CCL17)

↑ 1. Secreted by ESC and modulates macrophage secretion profile, leading to high IL-6
[261].

CXC motif chemokine
12 (CXCL12)

↑ 1. Secreted by ESC and recruits NK cells and BMSCs [262].

MIF ↑ 1. Promotes angiogenesis and lesion proliferation [53].
2. Stimulates PGE and estradiol synthesis [54].
3. Increases with advanced stages [56].
4. Implicated in pelvic pain and infertility [56].

VEGF ↑ 1. Key proangiogenic factor [14].
2. Induces COX-2 expression [75].

NF-κB ↑ 1. Upregulates expression of and modulates proinflammatory cytokines: TNF-α, IL-6,
IL-8, RANTES, MIF, ICAM-1, GM-CSF, MCP-1, and COX-2 [65].

2. Promotes growth, adhesion, invasion, and angiogenesis and inhibits apoptosis of
endometriotic lesions [65, 66].

3. Regulates macrophage chemoattraction through upregulating RANTES and ICAM-1
[65].

4. Constitutively activated in active lesions [64].

Continued
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Table 2. Continued

Mediator Expression/activity
in endometriosis

Special remarks

CD200 ↑ 1. Immunoregulatory factor produced by endometriotic stromal and
epithelial cells when stimulated by E2 [263].

2. Binds to its receptor on macrophages, inhibiting their phagocytic
potential and facilitating immune escape of ectopic implants [263].

MiRNA ↑ (miR-106b-3p,
-451a, -486-5p,
and -185-5p)

1. MiR-106b-3p, -451a, -486-5p correlate with disease stage [196].
2. MiRNA-185-5p has a possible role in infertility [196].
3. MiRNA-Let-7b has inflammation-attenuating properties [21].

↓
(miRNA-Let-7b)

BMSC denotes bone marrow–derived stem cell, COX-2 cyclooxygenase-2, ESC endometriotic stromal cell, E2 estradiol, ER estrogen receptor, GM-CSF granulocyte macrophage colony
stimulating factor, ICAM-1 intercellular adhesion molecule-1, IL interleukin, MCP monocyte chemoattractant protein, MIF macrophage migration inhibitory factor, MiRNA microRNA,
MMP matrix metalloproteinase, NF-κB nuclear factor kappa-light chain enhancer of activated B cells, NK natural killer, PGE2 prostaglandin E2, RANTES regulated-on-activation,
normal-T-cell-expressed and -secreted, TECK thymus-excreted chemokine, TGF-β transforming growth factor β, TNF-α tumor necrosis factor α, Treg regulatory T cells, and VEGF
vascular endothelial growth factor.

cell interaction, and mediate, at least partially, sex steroid-induced
leiomyomatous proliferation (Figure 1) [44].

Endometriosis. Endometriosis is characterized by aberrant upreg-
ulation of cytokines, chemokines, and prostaglandins in ectopic
lesions and peritoneal fluid, of which TNF-α, IL-1β, IL-6,
macrophage migration inhibitory factor (MIF), IL-8, regulated-
on-activation, normal-T-cell-expressed and -secreted (RANTES),
and monocyte chemotactic protein 1 (MCP-1) are master reg-
ulators (Figure 2) [45]. Their specific roles in endometriotic
inflammation have been extensively evaluated by various studies
and are presented in Table 2. RANTES, MCP-1, and IL-8,
which are regulated by IL-1β, function as in situ chemokines
recruiting macrophages, natural killer (NK) cells, and granu-
locytes to endometriotic lesions and appear to contribute to
angiogenesis, proliferation, and lesion remodeling by sustaining an
inflammatory niche [46]. Macrophage-secreted TNF-α promotes
endometriotic proliferation by inducing IL-8 and IL-6 [47, 48]
as well as prostaglandin (PG) E2 by means of cyclooxygenase-2
(COX-2) overexpression upon canonically activating NF-κB [49]. As
will be discussed below, PGE2 is recognized as an essential mediator
in endometriosis and together with estrogen, it creates a self-
sustaining cycle of locally overproduced estradiol and inflammatory
mediators that ensure lesion viability and proliferation. In addition,
the local pool of PGE2 is further augmented by IL-1β, MIF, and
VEGF [50–52]. MIF, a proinflammatory cytokine that regulates
innate immune responses, is also increasingly recognized for its
role in endometriosis pathogenesis, including angiogenesis, lesion
proliferation, and PGE and estradiol synthesis [53, 54]. Indeed,
peritoneal, peripheral, and lesional MIF levels are higher in women
with endometriosis [55–57].

Although inflammatory cells secrete many of these mediators,
it is now thought that endometriotic lesions themselves participate
in priming the local peritoneal environment, the proendometriotic
niche, by secreting a plethora of cytokines and chemokines. In fact,
not only does this phenomenon contribute to local inflammation
but also to creating an immunosuppressed milieu that favors initial
lesion persistence and progression (Figure 2) [58]. For example, it
has been shown that endometriotic stromal cell (ESC)-derived IL-
15, alongside platelet-derived TGF-β, plays a role in suppressing
NK cell cytotoxicity [59, 60] whereas ESC-derived thymus-expressed
chemokines upregulate T-regulatory (Treg) cells, promoting local

immune tolerance and lesion invasiveness [61]. In addition, Wang
et al. have demonstrated that the crosstalk between ESCs and
immune cells augments the inflammatory and immunosuppressive
effects produced by each player alone. On the one hand, ESC-
monocyte (MO) co-culture stimulates Treg chemotaxis by upregulat-
ing CCL22 and CCL17 as well as Treg-mediated TGF-β production,
promoting immune tolerance and angiogenesis, respectively. On the
other hand, ESC-MO co-culture induces local expression of IL-1β

and TNF-α, which synergistically with TGF-β, are also angiogenic
[62]. Intriguingly, endometriosis-associated haptoglobin (ENDO-1),
an extrahepatic haptoglobin expressed by endometriotic lesions, is
postulated to alter peritoneal macrophage function, possibly con-
tributing to the disease [63], but its role beyond these speculations
warrants further investigation.

Intracellularly, NF-κB is a crucial transcription factor in
endometriotic inflammation and manifests increased constitutive
activation in peritoneal macrophages and red (active) peritoneal
lesions compared with black lesions [64]. Not only has NF-κB
been implicated in early development of in vivo endometriosis
but also in promoting ongoing lesion proliferation, adhesion,
angiogenesis, and invasion (Figure 2) [65]. TNF-α and IL-1β, on
the one hand, and iron overload, on the other hand, seem to
activate the canonical and atypical NF-κB pathways, respectively,
in macrophages and ectopic endometrial cells, amplifying local
cytokine expression and generating a positive feedback loop of
autocrine signaling that facilitates lesion progression [64, 65].
Although may differ in other cell types, NF-κB confers resistance
against apoptosis and promotes survival of endometriotic cells, an
effect when blocked shown to reverse these phenomena, both in
vivo and in vitro, through downregulating IL-8, MIF, BCL-2, and
Bcl-XL and activating caspases [65, 66]. Nevertheless, NF-κB role
in endometriosis is far more complex and involves the interaction of
various cofactors, depicting the unique functionality of NF-κB in this
disorder.

Adenomyosis. Expanding on the aforementioned TIAR theory of
adenomyosis development, microtrauma to the junctional zone
at the fundo-cornual raphe generates myocyte and fibroblast
injury, upregulating inflammatory cascades, mainly involving IL-1β,
which induce COX-2 and in turn PGE2 overexpression (Figure 4).
Inflammatory cascades then go on to activate local hormonal
production as will be explained in the next section, perpetuating the
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injurious cycle and lesion development as proposed by Leyendecker
et al. [24]. Indeed, intramural lesions are also found to increasingly
express COX-2 and lipoxygenase-5 (LOX-5) that correlate with
local IL-6 and IL-8 levels, lending support to the inflammatory
hypothesis of adenomyosis pathogenesis [4]; however, the exact
roles of these cytokines in regulating adenomyotic inflammation
merit further investigation. Another study concluded that TNF-
α and VEGF can induce CXCL1 chemokine release in human
endometrial epithelial cells derived from the endometrium of
adenomyosis patients. This effect is more robust with VEGF and
mediated by several pathways, including NF-κB activation and IκB
phosphorylation. In turn, CXCL1 attracts vascular endothelial cell
migration, promoting local neovascularization and adenomyosis
progression [67].

Sex steroids

Female sex steroids have inflammation-modulating properties that
may explain, at least in part, the link inflammation has with BGDs
(Figure 5). Estrogen regulates immune responses and influences,
both genomically and nongenomically, proinflammatory cytokine
production [68]. Nevertheless, there is a conflicting body of evi-
dence as to whether estrogen promotes or ameliorates inflammation.
Whereas estrogen is known for its anti-inflammatory properties and
suppressive effects on major proinflammatory transcription factors
such as NF-κB [68] that are known contributors to some BGDs
[64], it can alternatively promote inflammatory milieus of the same
array of diseases [69]. This intriguing paradox was thoroughly
addressed by Straub in his review, where the effects of estrogen on
inflammation have been demonstrated to be reliant on many factors,
including immune stimuli, cell types involved, afflicted organ and
surrounding microenvironment, as well as variable expression of
estrogen receptors α and β [70].

Endometriosis. In women with endometriosis, peritoneal fluid
macrophages manifest higher expression of IL-6, IL-1β, and TNF-
α that significantly correlate with macrophage estrogen receptor
(ER) expression. For ERβ, however, this correlation was also seen in
women without the disease, whereas for ERα, it was exclusively
noted in endometriosis. This may suggest a particular role for
ERα in mediating inflammation in endometriosis as opposed to
ERβ that may rather maintain a baseline inflammatory status in
the nondiseased peritoneum [71]. ERα is known to modulate IL-6
through CEBPβ and NF-κB pathways [72, 73], and Burns et al. have
indeed shown the importance of this crosstalk in endometriotic
lesion development (Figure 5) [74]. However, this demarcation
between the inflammatory properties of ERα and ERβ is not always
clear-cut in endometriosis. For instance, ER expression in ESCs is
unique in that ERβ expression is markedly higher compared with
ERα at a ratio of almost 16:1, which may point to a possible role
for ERβ in endometriotic inflammation. ERβ participates in the
local estradiol-PG production cycle by mediating estrogen induction
of COX-2 and contributes to a state of progesterone resistance
seen in endometriosis, aggravating the imbalance between pro- and
anti-inflammatory pathways [75]. In addition, ERβ overexpression
in ESCs appears to inhibit TNF-α–mediated apoptosis through
interaction with the cytoplasmic apoptotic machinery and induce
IL-1β expression, enhancing cell survival through interaction with
the cytoplasmic inflammasome [76].

Intriguingly, local estradiol may be indirectly linked to neutrophil
chemotaxis through enhancing epithelial and stromal endometriotic

cell responsiveness to IL-1, thus increasing the secretion of the
chemokine IL-8 [77]. Estradiol is also shown to enhance IL-1β–
mediated production of MCP-1 in endometriotic lesions, in turn
promoting chemoattraction of immune mediators, particularly
macrophages (Figure 5) [15, 78]. Nevertheless, Arici et al. has shown
that estradiol rather inhibits MCP-1 expression in ESC possibly
via a receptor-mediated mechanism [79]. This discrepancy in the
estrogenic effect on MCP-1 may be attributed to various in vivo
factors, including aberrant estrogen receptor expression, that may
modulate this interaction and would be difficult to account for in
vitro. In line with this observation, cotransfection of endometrial
epithelial cells with ERα and ERβ dampens ERβ-mediated IL-1β

production, suggesting an inhibitory role for ERα that may attenuate
ERβ-promoted inflammation and MCP-1 production [80].

Progesterone resistance is hypothesized to additionally contribute
to a proinflammatory phenotype in the setting of endometriosis
(Figure 5). Together with estrogen, progesterone can exert anti-
inflammatory properties by inhibiting MCP-1 [79]. However,
endometriotic lesions are limited in progesterone receptor (PR)
expression, possess progesterone receptor (PR) gene polymorphisms
and altered miRNA expression, and harbor epigenetic modifications
to PRs and downstream targets. Thus, deviant progesterone signaling
may be an additional driver of endometriotic inflammation [15,
81]. The interplay of hormones and inflammation in endometriosis
does not only involve cytokines and extracellular signaling but also
extends to influence transcriptional function. On the one hand,
ERs in ESCs inhibit the assembly of NF-κB subunits, whereas the
latter, once activated, decreases ERα responsiveness to estrogen
in these cells [82], which may be counterintuitive knowing that
both NF-κB and estrogen have crucial roles in endometriosis. On
the other hand, Shen et al. have concluded that increased NF-κB
activation and decreased PR-B immunoreactivity, in the context
of their close relationship, jointly constitutes a good biomarker to
predict recurrence of ovarian endometrioma [83]. This observation
may imply an inverse association between progesterone action
and NF-κB activation that is accentuated in endometriosis due to
progesterone resistance.

On the contrary, the reciprocal effects of inflammation on estro-
gen are similarly elucidated in endometriosis. As previously dis-
cussed, cytokine-driven production of PGE2 plays a central role in
lesional inflammation. Unlike the eutopic endometrium, endometri-
otic stromal cells possess exceptionally high levels of P450arom
(aromatase) and steroidogenic acute regulatory protein (StAR) that
are induced by PGE2 to produce estradiol de novo [84]. The latter,
in turn induces PGE2 production, which goes on to produce more
estradiol [85]. This positive feedback loop of local estradiol overpro-
duction is now recognized as one of the hallmarks of endometriosis
pathobiology, characterizing the complex interplay of estrogen and
inflammation in this disorder (Figure 2).

Uterine leiomyoma. The role of estrogen and progesterone in
inflammation is just as complex in uterine leiomyoma. Similar
to endometriosis, differential expression of ERs may play a role
in myometrial inflammation. Uterine ERβ is shown to modulate
the proinflammatory actions of ERα by inhibiting its stimulatory
effect on IL-1 secretion [86]. This role-reversal of ER function
as compared to what happens in ectopic endometrial implants of
endometriosis is not fully understood. It has been demonstrated
that ERα mRNA is highly expressed in leiomyoma cells but
further studies are necessary to verify its role in promoting a
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Figure 5. Schematic presentation of the interplay between sex steroids and inflammation in the pathogenesis of endometriosis and associated pelvic pain.

Estrogen and progesterone modulate IL-β-mediated MCP-1 expression, which acts as a macrophage chemoattractant (1) whereas estrogen also enhances IL-β-

mediated IL-8 secretion by endometriotic cells (2) and modulates IL-6 actions on these cells (3). Progesterone resistance deprives the local peritoneal environment

of progesterone anti-inflammatory actions and facilitates endometriosis progression (4). (5) Represents the crosstalk between estrogen receptor (ER) β and

inflammatory mediators in endometriotic stromal cells. (6) Estrogen stimulates nerve fibers to produce CCL-2, attracting macrophages, which release BDNF and

NT-3. These mediators promote neurite growth, increasing pain sensitivity. Estrogen and progesterone actions shown here are largely modulatory in nature as

hormone-mediated activation or inhibition can be receptor-dependent. Numeric labels are meant to guide the reader through the figure. + denotes an activating

function. BDNF denotes brain-derived neurotrophic factor, CCL-2 C-C motif ligand 2, IL interleukin, MCP monocyte chemoattractant protein, NT-3 neurotrophin-3,

and PR progesterone receptor.

downstream inflammatory pathway in these tumors [87]. Besides
its proven tumorigenic properties in uterine leiomyoma [88],
progesterone is found to exert anti-inflammatory actions by
decreasing TNF-α expression [10]. Nevertheless, high TNF-α levels
in leiomyomas may imply the intrusion of other mediators that
counteract progesterone action [40]. On the other hand, TNF-α
induces aromatase activity and influences estrogen metabolism,
rendering the latter more available, potent, and tumorigenic
(Figure 1) [89, 90].

Adenomyosis. In adenomyosis, intramural chronic inflammation
potentiates local production of estrogen by estrone sulfatase and
aromatase [91]. Aromatase and StAR upregulation is mediated
by COX-2, and the locally overproduced estrogen induces ERβ

overexpression, which alongside ERα, stimulates local angiogenesis
and endometrial proliferation (Figure 4) [24]. Estrogen, through
actions of ERα, upregulates oxytocin and oxytocin receptor expres-
sion, inducing a state of persistent myometrial hyperperistalsis likely
originating from the junctional zone. This hormone-driven action
further augments autotraumatization, creating a self-perpetuating
vicious cycle that culminates in endometrial invagination into the
uterine wall [24, 92].

Genetics

Uterine leiomyoma. A genetic link between inflammation and BGDs
has been documented in the literature. Multiple studies show that
uterine leiomyomas are associated with polymorphisms in IL-6,
IL-1β, and TNF-α genes [93–95], which may be used to predict
susceptibility to myoma development [94]. In addition, somatic gain-
of-function mutations in the mediator complex subunit 12 (MED12)
gene are found to play a critical role in leiomyoma pathogenesis [96].
Al-Hendy et al. have demonstrated that MED12-knockdown human
leiomyoma cells have less proliferative activity, fibrogenesis, and sex
steroid receptor expression, highlighting the tumorigenic properties
of MED12 [97]. Interestingly, MED12 is additionally involved in
NF-κB signaling [98], suggesting a mechanism by which mutated
MED12 may link tumorigenesis and inflammation.

Endometriosis. Antiñolo et al. have postulated that gene variants
encoding for CCR5 and CCR2, the receptors for RANTES and
MCP-1, respectively, may alter the transcription and expression of
these receptors in the endometrium and, hence, the interaction with
their ligands, contributing to endometriosis; however, no associ-
ation has been detected in their study [99]. On the other hand,
Ahn et al. have explored gene signatures involved in inflammation
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in endometriosis patients. They have concluded that endometri-
otic lesions are molecularly distinct compared with the eutopic
endometrium of healthy women and detected 396 genes significantly
different in ectopic tissues, including those involved in cytokine–
cytokine receptor interaction (IL-18, CCL5, CCR2), NK cell cyto-
toxicity (NFIL3, GNLY, IL-15), and TNF and MAPK signaling
(TRAF4, MAPK1, DUSP4) [100].

Epigenetics

Epigenetic phenomena have been reported between inflammation
and BGDs. As previously discussed, MED12 may be implicated
in both leiomyoma and inflammatory pathways, and mutations in
this gene may be, in part, subsequent to epigenetic alterations in
myometrial cell DNA [101]. Trimethylated histone 3 at lysine residue
27 (H3K27me3), on the other hand, has been studied for its role
in endometriosis pathogenesis. This repressive mark is created by
epigenetic methylation, a process remarkably noted in endometrio-
sis, and found to halt endometrial progression from a prolifer-
ative to a decidual phenotype [102]. However, Colón-Caraballo
et al. have not detected significantly different H3K27me3 levels
between healthy women and those with endometriosis but detected
higher levels in the secretory eutopic endometrium of both cohorts
[103]. Of particular importance, H3K27me3 can be induced by
inflammatory environments, such as colitis, as demonstrated by
Takeshima et al. [104], possibly implying inflammation-induced
epigenetic changes in endometriosis that merit future investigation.
Another inflammatory mediator shown to epigenetically modu-
late expression of genes involved in endometriotic pathogenesis
is PGE2, as part of the local estradiol-PG cycle (Figure 2). PGE2

mediates these actions via the transcription factor steroidogenic
factor-1 (SF1), which binds to P450arom and StAR promoters,
upregulating their expression and fueling local estradiol synthesis
[84]. This further symbolizes the intricately regulated cointeraction
between inflammation and hormones that exists on many levels in
endometriosis.

Intriguingly, endometriosis is shown to reciprocally induce gene
expression in peripheral leukocytes already delineated in nongyneco-
logic inflammatory diseases (Figure 3). Gentilini et al. have demon-
strated that endometriosis upregulates 26 genes involved in inflam-
mation, including pre–B-cell colony enhancing factor 1 (PBEF1)
and dual specificity phosphatase 1 (DUSP1), which are linked to
rheumatoid arthritis and insulin resistance, disease states known for
their core inflammatory components. Notably, this gene expression
is ameliorated after surgical removal of endometriosis [105]. These
observations depict endometriosis as having epigenetic modulating
properties and suggest a causative, lesion-autonomous role in sys-
temic disease.

Extracellular matrix and stromal elements

Uterine leiomyoma. A growing body of evidence suggests an impact
of chronic inflammation on ECM remodeling in BGDs. Inciting
myometrial events may induce a microinflammatory state that
promotes fibrogenesis and leiomyoma development [28]. Tissue
macrophages appear to actively participate in attempting tissue
repair and activating myofibroblasts, a key event in leiomyomatous
fibrogenesis (Figure 1) [106]. Myofibroblasts are collagen-producing
fibroblasts recruited and transformed by actions of growth factors,
of which macrophage-secreted TGF-β is chief [8]. Being a pleiotropic
cytokine and growth factor, TGF-β is involved in various processes
in uterine leiomyoma, including tumorigenesis, ECM synthesis,

and inflammation [40]. In fact, the aforementioned NF-κB–
regulated Wnt/β-catenin pathway is shown to stimulate TGF-
β3 expression and fibronectin deposition [43, 107], implying
another mechanism by which inflammation and fibrogenesis are
cross-regulated.

Activin A is another central profibrotic mediator in the TGF-β
family secreted by proinflammatory macrophages and upregulated
by TNF-α in leiomyomas [108]. Not only is activin A postulated
to induce myofibroblast transition and fibrogenesis but also shown
to inhibit the anti-inflammatory macrophage phenotype and acti-
vate the proinflammatory phenotype in a positive feedback mech-
anism that perpetuates local inflammation and ECM deposition
[108]. TNF-α modulating role in ECM may be mediated, at least
partially, via ERKs, which exert mitogenic properties through the
Ras/Raf/MEK/ERK signaling cascade, a proposed pathway in uterine
leiomyoma pathogenesis [35, 41].

Endometriosis. Inflammation has demonstrated the ability to alter
ECM physiology in endometriosis, facilitating central disease
processes, such as invasion and lesion progression. Locally produced
TNF-α, TGF-β, and IL-1 stimulate matrix metalloproteinases
(MMPs) 1, 2, and 3 expression, which are essential for ECM
remodeling and peritoneal invasion (Figure 2) [109]. Further,
NF-κB has an additional role in promoting cell adhesion and
invasion of endometriotic cells into the submesothelial space by
positively modulating MMP-9 expression [47]. Indeed, increased
activation of NF-κB and expression of MMPs and activins in deep
infiltrating endometriosis as compared with ovarian endometriosis
and superficial peritoneal endometriosis correlate with a more
invasive phenotype [110]. Although NF-κB seems to also positively
regulate plasminogen activators involved in ECM remodeling, this
particular effect is yet to be proven in endometriosis [111]. As local
inflammation intensifies, mesothelial-to-mesenchymal transition
of the peritoneal lining can also be seen, a process that triggers
peritoneal fibrosis, adhesion, and angiogenesis [112]. Angiogenesis,
although beyond the scope of this review, is inarguably an essential
process in the progression of early disease and is similarly regulated
by proangiogenic cytokines, including TNF-α, IL-1, IL-6, and IL-8,
to name a few [113, 114], which are in turn modulated by NF-κB as
well. For example, NF-κB–regulated MIF manifests proproliferative
properties in endothelial cells in vitro [115, 116] whereas in vivo,
it is more expressed in red lesions compared with black lesions
[57], emphasizing the versatile yet central role NF-κB plays in
endometriosis.

Stem cells

Uterine leiomyoma. Undifferentiated myometrial stem cells are
proposed as potential culprits in uterine leiomyoma development
[117]. Of importance, they are postulated to maintain a chronic
inflammatory microenvironment that favors tumor sustainability
by means of immune cell modulation and cytokine regulation
(Figure 1). Indeed, Orciani et al. [118] have documented a
significant differential expression of Th2 and Th1/Th17 pathways
in myometrial progenitor cells (MPCs) and leiomyoma progenitor
cells (LPCs). In LPCs, greater expression of Th2 pathway cytokines
is noted, including IL-4, IL-5, IL-10, and IL-13, as opposed to lower
expression of Th1/Th17 pathway cytokines, TGF-β in particular.
The latter mediates differentiation of naïve T cells to Treg cells, which
are essentially involved in suppressing inflammation whereas Th2
cells are implicated in promoting chronic inflammation. Therefore,
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these observations suggest that LPCs may actively promote
leiomyoma development and maintenance of a proinflammatory
state. Embryologically, it is still unclear as to whether LPCs intrinsic
to the myometrial stroma are responsible for the initial generation
of leiomyomas, although the evidence above suggests that LPCs
participate in at least the maintenance phase of tumor growth. It
would be interesting to determine whether LPCs could be identified
during development well before their clinical manifestation in
adulthood. Besides local stem cells, uterine leiomyoma is capable
of secreting the chemokine CXCL12, which recruits bone marrow–
derived stem cells (BMSCs) to the tumor, perhaps facilitating tumor
growth through engrafting stem cells into the leiomyoma [119].

Endometriosis. A role for BMSCs is also observed in endometrio-
sis (Figure 2). Particularly, CXCL12 is found to promote BMSC
recruitment to the peritoneal cavity where they undergo cellular
transformation under the influence of various in situ cytokines [58,
120]. This process is further enhanced by estradiol, which is shown
to upregulate CXCL12 expression [121]. Additionally, BMSCs are
found to secrete VEGF, MCP-1, as well as other proinflammatory
cytokines and MMPs, accentuating angiogenesis and lesion migra-
tion and contributing to local inflammation and disease progression
[122].

Cardiometabolic risk factors

Our group has previously reviewed the association of car-
diometabolic risk factors (CMRFs) with BGDs and addressed the
role of inflammation in this association [123]. Briefly, CMRFs,
including obesity, hypertension, hyperlipidemia, and diabetes
mellitus, may result from or contribute to local and systemic
inflammatory milieus [124]. In obese individuals, for example,
adipose tissue secretes various proinflammatory cytokines and
adipokines, introducing the concept of metabolic inflammation or
metaflammation, i.e., low-grade, chronic inflammation regulated by
metabolically active cells in response to excess nutrients and energy
[125]. Relating to BGDs, it is found that human leiomyoma cells
demonstrate increased proliferation when cultured in adipocyte-
conditioned media or co-cultured with human adipocytes, observa-
tions attributed to TNF-α [30]. In particular, visceral adipose tissue is
the major contributor to obesity-induced inflammation and insulin
resistance [126]. Indeed, Sun et al. have concluded that increased
visceral adipose tissue correlates relatively weakly, however, with the
risk and size of uterine leiomyoma in women [127].

Adipokines are specific cytokines secreted by adipose tissue.
Evidence suggests that a dysregulated adipokine profile manifested
by obesity leads to chronic inflammation, promotes angiogenesis
and cellular proliferation, and alters antitumor immune responses
[128]. Key adipokines, including leptin and adiponectin, are impli-
cated in leiomyoma pathophysiology. Evidence reveals that the lep-
tin gene and protein, along with the leptin receptor, are prefer-
entially expressed in uterine leiomyoma but absent in the normal
myometrium [129], whereas serum adiponectin is significantly lower
among women with the tumor [130]. Besides its proinflammatory
properties, leptin is found to promote cellular proliferation and
angiogenesis while suppressing apoptosis in leiomyoma cells [126].
Conversely, adiponectin manifests anti-inflammatory and antineo-
plastic properties. With the former being elevated in obesity and the
latter being reduced, aberrant adipokine alterations may in fact be
linked to inflammation and subsequent leiomyoma tumorigenesis
[126].

Addressing the association between hypertension and uterine
leiomyoma, multiple hypotheses are raised to explain a role for
inflammation via the renin–angiotensin–aldosterone system. First,
angiotensin II and aldosterone contribute to cellular proliferation,
fibrosis, and inflammation by inducing proinflammatory cytokine
production. In particular, angiotensin II is proposed to activate
the NF-κB signaling pathway via angiotensin II receptor 2 [131].
Isobe et al. have documented that angiotensin II can additionally
induce leiomyomatous proliferation, however, via angiotensin II
receptor 1 [132]. Reciprocally, proinflammatory cytokines are
also hypothesized to regulate hepatic and renal production of
angiotensinogen, predisposing to angiotensin II-dependent hyperten-
sion [133]. Regardless of angiotensin II direct actions, hypertension
may induce smooth muscle injury and proinflammatory milieus,
promoting leiomyomatous development possibly through TGF-β
[134], a mechanism reminiscent of atheromatous plaque formation.
From a clinical perspective, Faerstein et al. have concluded that
hypertensive women are more likely to have uterine leiomyoma
compared with their nonhypertensive counterparts, and that women
with the tumor have longer durations of hypertension [135]. Further
support has come from genetic analysis showing that angiotensin
converting enzyme (ACE) gene polymorphisms, specifically, the I/D
and D/D genotypes, confer a 2–3 times higher risk of leiomyoma
development as compared with the I/I genotype [136]. Nevertheless,
further studies are warranted to verify these observations and
elucidate a causal role for inflammation.

Diet and vitamin D

A role for diet is implicated in both inflammation and BGDs.
The literature reveals that nutritional deficiencies, such as folic
acid, vitamin B12, zinc, and choline deficiencies, may result in
epigenetic changes that predispose to endometriotic inflammation.
CpG hypomethylation, for example, can upgrade the expression
of SF1 and ERβ, and therefore, estradiol and PGE2, fueling local
estrogen production and disease progression [137]. Parazzini et al.
have demonstrated an increased risk of endometriosis with trans-
unsaturated fat and palmitic acid consumption but not with other
components of animal fats, including saturated and monosaturated
fats [138]. From a pathophysiological perspective, trans fatty acids
increase serum levels of proinflammatory cytokines, such as TNF-
α and IL-6 [139], which are established players in endometriosis.
In addition, trans fatty acids downregulate peroxisome prolifera-
tor–activated receptor γ (PPAR γ ) expression, a nuclear receptor
that modulates anti-inflammatory functions. Notably, PPAR γ can
promote the regression of surgically induced endometriosis in rats,
possibly conferring a protective mechanism against the disease [140].

Vitamin D can downregulate proinflammatory cytokine pro-
duction, such as TNF-α and IL-6 [141], and suppress endometrial
COX-2 expression and prostaglandin synthesis [137]. Women with
endometriosis have lower vitamin D levels [141], possibly implying
that vitamin D deficiency may allow proliferative and inflammatory
processes in endometriosis to progress uninhibited. Similarly, vita-
min D deficiency is associated with increased incidence of uterine
leiomyoma. Elhusseini et al. have provided evidence that vitamin D
deficiency may promote a chronic inflammatory state in the murine
myometrium and induce DNA damage, facilitating tumorigenesis
[142]. Moreover, vitamin D ameliorates the effects of TGF-β3 and
collagen 1 expression and modulates MMPs, suggesting a role for
vitamin D deficiency in inducing ECM deposition in leiomyomatous
growth [143].
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Immune mechanisms

Endometriosis. Immune cells are key masters of inflammation, and
dysregulation of the immune system has been implicated in BGD
pathobiology. Aberrancies in NK and Treg cell function are of partic-
ular interest (Figure 2). Decreased NK cell cytotoxicity may result in
impaired immunosurveillance and defective lesion clearance [144].
The lymphocyte function–associated antigen-1 (LFA1)–intercellular
adhesion molecule-1 (ICAM-1) pathway is another mechanism by
which NK function is altered. Normally, lymphocytes expressing
LFA1 bind to peritoneal endometrial cells expressing ICAM-1, facil-
itating their clearance by NK cells; however, endometriotic cells shed
a soluble form of ICAM-1 that competes for LFA1 binding, rendering
endometriotic lesions less recognizable by NK cells [145]. While their
function may be impaired, some studies found an increased number
of NK cells peripherally [146] and higher expression of chemokines,
namely CXCL12 and CX3CL, involved in NK chemotaxis locally
[144]. This may be explained by an unsuccessful attempt of the
immune system to eliminate ectopic implants leading to lesion persis-
tence. Further, it is proposed that dominance of Foxp3+ Treg cells in
the eutopic endometrium of women with endometriosis may dampen
the ability of immune cells to recognize and mount a response against
shed endometrial cells, facilitating ectopic implantation. Treg cells
mediate this effect by secreting inhibitory cytokines that suppress
immunosurveillance by NK cells, macrophages, and CD4+ and
CD8+ lymphocytes [147].

Uterine leiomyoma and adenomyosis. In uterine leiomyoma, local
chronic inflammatory microenvironments are hypothesized to occur
due to systemic dysfunction of the immune system. In contrast to
endometriosis, this dysfunction is characterized by low levels of
Treg cells, which essentially inhibit improper inflammatory signals
that would otherwise contribute to leiomyoma development [11].
In adenomyosis, a role for the immune system was reported, but
the exact biological mechanisms are yet to be fully explored. Gui
et al. were first to investigate Th17 and Treg cell involvement in
patients with adenomyosis. They found a significantly higher level of
Th17 cells in women with focal and diffuse adenomyosis as opposed
to a significantly lower level of Treg cells, suggesting a Th17–Treg
cell imbalance [148]. Although the contribution of this finding to
adenomyosis pathophysiology remains undefined, it resembles what
has been previously seen in autoimmune diseases [149], providing
plausible analogies that may ground future experimental studies.

Clinical manifestations and sequelae

Pelvic pain

Pelvic pain is a common symptom and presentation of BGDs, and
inflammation may contribute to its complex biology. In uterine
leiomyoma, TNF-α may be a key regulator given its well-documented
role as a pain inducer [150]. In addition, TNF-α facilitates pro-
duction of prostaglandins, including PGE2 and PGF2α [151], which
are strongly implicated in dysmenorrhea. In endometriosis, local
inflammation mediates pain through nerve ending irritation, and in
turn nerve fibers modulate release of proinflammatory neuromod-
ulators, further contributing to pelvic pain in a process known as
neurogenic inflammation (Figure 3) [152]. Various proinflammatory
cytokines, chemokines, and growth factors directly induce peripheral
nerve sensitization and participate in feedback loops, perpetuating
the inflammation–pain cycle [7]. In addition, chronic inflammatory
milieus, including those of endometriosis, may induce nerve fiber

redistribution, wherein local sensory fibers increase and sympathetic
fibers are lost, possibly to preserve local inflammatory microenvi-
ronments while increasing pain signaling [153].

Intriguingly, disease-modified macrophages appear to assume a
role in pelvic pain pathophysiology in endometriosis mediated by
insulin-like growth factor 1 (IGF-1), a possible neurotrophic and
sensitizing agent (Figure 3) [154]. Indeed, peritoneal IGF-1 levels
are found to be elevated in women with endometriosis and posi-
tively correlated with their pain scores. IGF-1 mechanistic role in
endometriotic pain seems to occur through sprouting neurogenesis
and nerve sensitization as shown in vitro by Forster et al. Further,
pain behaviors in mice with endometriosis were reversed by lin-
sitinib, an IGF-1 receptor inhibitor [154]. As shown by another
study, macrophage–nerve crosstalk in endometriosis is modulated
by locally produced estradiol. Estradiol induces nerve fiber pro-
duction of the chemokine C-C motif ligand 2 (CCL-2), recruiting
macrophages, which in turn express brain-derived neurotrophic
factor (BDNF) and neurotrophin-3 (NT-3) (Figure 5) [155]. These
mediators promote ganglionic neurite outgrowths, potentially con-
tributing to increased pain sensitivity and highlighting, once again,
the complex interaction between hormones and inflammation in
endometriosis. On the other hand, gene expression of TLRs is found
to be increased in the eutopic endometrium of adenomyosis patients
reporting debilitating dysmenorrhea and heavy menstrual bleeding
[156]. TLRs are key players in activating the endometrial innate
immune system and inflammatory pathways and may therefore
be implicated in modulating pelvic pain severity in adenomyosis
[156]. Nonetheless, this association remains largely hypothetical, and
additional research is needed to elucidate its validity.

Abnormal uterine bleeding

Abnormal uterine bleeding (AUB) is a prevalent and bothersome
symptom of BGDs, such as uterine leiomyoma and adenomyosis, that
may be associated with inflammation [157]. Women with AUB have
increased endometrial levels of TNF-α, an angiogenic cytokine [158].
In vivo and in vitro studies show that transmembrane expression of
TNF-α exerts permissive properties by sensitizing endothelial cells to
VGEF, increasing their vascular permeability [159]. Tabibzadeh et al.
suggest that TNF-α may be a key mediator of endometrial shedding
and bleeding through inhibition of endometrial proliferation and
apoptosis induction, promotion of epithelial cell–cell dissociation,
and disruption of vascular integrity. Epithelial dyscohesion is medi-
ated by leukocyte infiltration and trafficking, which are greatly
facilitated by TNF-α [160]. In fact, Shalaby et al. have demonstrated
that TNF-α administration in mice leads to vascular damage and
endometrial hemorrhage, an event reminiscent of human menstrual
bleeding [161]. As stated previously, TNF-α, alongside IL-1, pro-
motes release of PGE2 and PGF2α in cultured human luteal phase
endometrial cells, thus facilitating vasoconstriction and endometrial
shedding [151]. Although these observations point to a notable role
for inflammation in AUB, whether it truly occurs in BGDs remains
to be investigated.

Infertility

Infertility afflicts a significant proportion of women with endometrio-
sis, uterine leiomyoma, and adenomyosis, and inflammation may
contribute to its occurrence. Although mechanisms of endometriosis-
associated infertility (EAI) remain largely unknown, a few hypothe-
ses are suggested (Figure 3). Infertile women with endometriosis have
increased density of immature CD16+ cytotoxic uterine NK cells
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in their eutopic endometrium [162]. These cells can influence the
development of placental vasculature and secrete proinflammatory
cytokines implicated in trophoblastic invasion [163]. Aberrancies
in these cells may create inflammatory environments that hinder
decidualization and successful implantation and are observed in
recurrent pregnancy loss and EAI [162]. In addition, progesterone
resistance in endometriosis deprives the endometrium of proges-
terone anti-inflammatory properties and may induce production
of proinflammatory cytokines, prostaglandins, and reactive oxygen
species, leading to implantation failure [164].

In addition, inflammation in endometriosis is shown to upreg-
ulate ER and aromatase expression, altering estrogen metabolism.
This combination of progesterone resistance and estrogen dom-
inance, if proven to occur in the eutopic endometrium, can be
detrimental to implantation [165]. The effect of inflammation in
endometriosis is also observed on gametes. Peritoneal inflammation
can be directly toxic to oocytes and sperm by means of proin-
flammatory cytokines. For example, IL-1 and MIF, alongside other
cytokines, can impair sperm mobilization [166, 167] whereas TNF-α
can interfere with sperm–oocyte fusion and induce sperm apoptosis
and DNA damage through oxidative stress [167, 168]. Endometri-
omas have similar effects on adjacent ovarian follicles. Cystic fluid
of an endometrioma is rich with proinflammatory cytokines and
can contribute to follicular atresia and decreased density as well
as stromal fibrosis, decreasing ovarian reserve and possibly fertility
[169, 170]. Of note, surgical ovarian endometrioma excision does
not positively impact antral follicle count, although it is associated
with improvement in spontaneous conception rates of up to 30–50%
among women with EAI [171], implying that endometrioma may
have permanent effects on fertility possibly through inflammation
and reactive oxygen species.

Local inflammation in uterine leiomyoma may similarly establish
an endometrial milieu that disfavors sperm transport and zygote
implantation. TNF-α and IL-1 seem to play a substantial role in
inhibiting decidualization of endometrial stromal cells by inhibiting
cAMP-stimulated prolactin production [172]. Leiomyomatous and
adenomyotic uteri have significantly higher expression of cytokines,
including TGF-β1, and MMPs, which may influence the uterine
decidua and endometrial receptivity [173]. Obesity, regardless of a
BGD diagnosis, may also induce ovarian inflammation and reduce
oocyte quality and fertility potential. Innate immune cells populate
the ovaries of obese women and animal models, with evidence
of inflammatory signaling and oxidative stress. TNFα, IL-6, and
IL-8 expression and NF-κB signal transduction are increased in
ovaries from obese women and mice that may occur on similar
pathophysiological grounds in BGDs [174]. Nevertheless, research
is needed to further explore the mechanisms, implications, and
treatment strategies addressing the role of inflammation in infertility.

Cardiovascular disease

Systemic inflammation in endometriosis is suggested to predispose
to cardiovascular disease, and endometriosis may be perceived as a
cardiovascular risk factor [5, 123]. In a large cohort study designed to
examine the prospective association between laparoscopically con-
firmed endometriosis and subsequent coronary heart disease, women
with endometriosis had higher risk of various adverse cardiovascular
outcomes, including angina, myocardial infarction, coronary angio-
plasty, and coronary artery bypass graft surgery [175]. Whether these
observations are causal or merely confounded by common genetics,
therapeutic agents used for, or stress associated with endometriosis

remains to be determined; nevertheless, underlying biological mech-
anisms are suggested. It has become well established that atheroscle-
rosis is largely driven by inflammation either directly by induction
and maintenance of endothelial injury or indirectly by contributing
to insulin resistance and lipid derangements [176]. It is shown that
European women with endometriosis have significantly higher rates
of subclinical atherosclerosis, increasing their risk of cardiovascu-
lar disease, and are more likely to have endothelial dysfunction
even in the absence of structural atherosclerotic lesions [177]. In
another study, regression of endothelial dysfunction was documented
in women after surgical resection of endometriotic lesions [178],
reinforcing the plausibility of this hypothesis.

Gynecologic cancer

Some BGDs are now recognized as precursors to gynecologic malig-
nancies, and inflammation may mediate part of this association.
Whereas endometriosis has long been known as a benign disease, evi-
dence shows its contribution to low-grade serous, endometrioid, and
clear cell ovarian carcinoma development (Figure 3) [179]. Experi-
mental studies have, in fact, detected mutations in endometriosis-
associated cancers that are also found in adjacent endometriotic
lesions [180]. It is postulated that inflammation in endometriosis
may allow tissue exposure to reactive oxygen species and iron,
inducing DNA damage and mutagenesis [16, 181]. In particular,
ovarian clear cell carcinoma is often attributed to microsatellite
instability with the mismatch repair system being particularly sus-
ceptible to oxidative stress-induced damage in the setting of chronic
inflammation [182, 183]. In addition, ovarian endometrioid adeno-
carcinoma is commonly found to have KRAS mutations, correlating
with similar mutations in deep infiltrating endometriosis lesions in
the same patients, suggesting a common mechanism. Although it is
unclear whether these mutations are inflammation induced, NF-κB
dysfunction evident in this tumor may be another mechanism that
links inflammation to carcinogenesis [182, 183]. The relationship
between ovarian low-grade serous carcinoma and endometriosis can
often be linked via BRAF mutations often found in cancer cells,
eutopic endometrium, and ectopic endometrium from these patients,
although a potential role for inflammation in this particular cancer
subtype remains less clear [183].

Proinflammatory cytokines are also demonstrated to promote
epithelial ovarian cancer development and progression [184], and
TNF-α involvement in particular was studied in vitro. TNF-α mRNA
is found to be expressed up to 1000 times more in cultured ovarian
cancer cells compared with normal ovarian epithelium [185]. Addi-
tionally, TNF-α gene expression appears to take part in cell cycle
regulation, adhesion, and angiogenesis possibly through NF-κB–
mediated induction of CXCR4, a chemokine receptor expressed in
epithelial ovarian cancer [186]. PGE2, another crucial inflammatory
mediator in endometriosis, can also influence cellular prolifera-
tion and angiogenesis and suppress apoptosis in ovarian cancer by
increasing expression of the antiapoptotic protein BCL-2 [187]. Nev-
ertheless, it remains an unsolved mystery as to why certain inflamma-
tory states found in BGDs lead to carcinogenesis while others lead to
benign growths without significant risk of malignant transformation.

Clinical implications

Diagnostic implications

Inflammatory markers. Various inflammatory markers have been
evaluated in the search for potential noninvasive diagnostic adjuncts
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for BGDs. To begin with, serum TNF-α levels may help diagnose
uterine leiomyoma and differentiate it from other pathologies, such
as smooth muscle tumors of uncertain malignant potential (STUMP
lesions) and leiomyosarcoma, using a level cutoff point [13, 40]. In
addition, TNF-α levels may assist in evaluating the risk of clinical
symptoms and tumor occurrence as well as treatment effectiveness
[40]. While using TNF-α solely may not be of sufficient specificity,
addition of other markers, including 25-hydroxyvitamin D or TGF-
β3, may enhance test specificity [188]. In endometriosis, serum IL-6
and peritoneal fluid TNF-α levels are suggested as reliable diagnostic
indicators given their high sensitivity and specificity [189]. Other
advantages include lack of variation with the menstrual cycle or
disease stage, allowing for their use as qualitative tests. A minimally
invasive approach by peritoneal fluid sampling can be achieved
through transvaginal ultrasound-guided aspiration and may ideally
avoid the need to confirm the disease laparoscopically [189] whereas
for early stages, elevated serum levels of soluble TNF-α receptor
II and IL-1β may be potential beneficial indicators [190]. Another
marker that may be valuable in infertile women with endometriosis
is the neutrophil:lymphocyte (N:L) ratio measured as the ratio of
absolute neutrophil to absolute lymphocyte counts in peripheral
blood. An elevated N:L ratio is associated with worse overall sur-
vival in several solid tumors likely due to (1) neutrophilic response
suppressing tumor-infiltrating cytotoxic T cells or (2) increased neu-
trophilic activity signifying increased cytokine/chemokine release by
the tumor [191]. Further, N:L ratio is found to be an independent risk
factor for infertility and positively correlates with disease stage, tubal
adhesion, and diameter of ovarian endometrioma. Furthermore, it
may differentiate between endometriosis and other benign ovarian
tumors by increasing diagnostic sensitivity when used with CA-125
[6]. Another study showed that quantitative detection of endometrial
cell autoantibodies may serve as a novel technique for noninvasive
diagnosis of endometriosis in infertile women [192]. Prognostically,
elevated levels of anti-inflammatory cytokines, including IL-4, IL-
10, and IL-1Ra, may be possible indictors of endometriosis out-
comes [193]. MIF is also showing promising results as a potential
biomarker and severity indicator as women with endometriosis,
especially if infertile, have more than 3-fold increase in serum
MIF levels compared with healthy women, especially as disease
advances [56]. Given that the current gold standard diagnosis of
endometriosis is surgical, it is imperative to conduct further studies
to verify and validate clinically relevant noninvasive testing meth-
ods to facilitate improved diagnosis and treatment in women with
this disease.

MicroRNA. MiRNAs are small noncoding RNAs that inhibit gene
translation by binding to transcribed mRNA [194]. This post-
transcriptional regulation happens in various physiological and
pathophysiological states, including endometriosis [195]. MiRNAs
seem to influence the inflammatory peritoneal environment and
fertility potential in women with the disease and may therefore be
potential predictors of fertility outcome [196]. In addition, their
role in intercellular communication and systemic inflammation may
enhance our understanding of the pathogenesis of endometriosis and
its sequelae [21]. Significantly higher miR-106b-3p, -451a, and -486-
5p levels are detected in women with endometriosis, correlating with
disease stage whereas miR-185-5p, whose targets are implicated in
angiogenesis and inflammation, is upregulated in sterile cases and
controls, implying a possible role in EAI [196]. Further, as miRNA
Let-7b downregulation is linked to the inflammatory pathobiology

of endometriosis, its role as a local therapeutic agent has been
experimented (Table 3) [197].

MiRNA can also regulate inflammation in uterine leiomyoma.
In leiomyoma smooth muscle cells, MiR-200c represses IκBα phos-
phorylation, increasing its activity as an NF-κB inhibitor, i.e., miR-
200c indirectly downregulates NF-κB signal transduction. Uterine
leiomyoma have low levels of miR-200c, which in turn disinhibit
NF-κB signaling and increase IL-8 expression when compared with
the normal myometrium [198]. IL-8 can have antiapoptotic effects
through upregulating Bcl-xL and Bcl-2, promoting cell survival in
endothelial cells [199], but whether this occurs in uterine leiomyoma
needs further investigation.

Molecular imaging. In vivo molecular imaging has been revolutioniz-
ing diagnostic medicine and showed great promise in disease screen-
ing and personalized medicine [200]. In fact, molecular imaging aids
in diagnosing BGDs, such as uterine leiomyoma and endometriosis,
by detecting altered biochemical and metabolic reactions [201, 202].
Although not yet used to characterize the inflammatory processes in
BGDs, molecular imaging has been used to visualize inflammation
elsewhere, including the central nervous system and blood vessels
[203]. Using nanoparticles, such as small and ultrasmall paramag-
netic iron oxide, macrophages and monocytes can be targeted in
tissues. Other modalities to molecularly image macrophages include
PET and SPECT ligands, optical imaging, and computed tomography
[203, 204]. Given the abundance of macrophages in uterine leiomy-
oma and endometriosis, these imaging techniques may theoretically
be of use in screening and diagnosis, but their actual effectiveness
in clinical settings remains to be seen. Similarly, lymphocyte imaging
can be achieved using labeled cytokines and chemokines, such as IL-
1, IL-2, and IL-8 [205], many of which are established mediators in
BGDs. Molecular imaging of cytokines has also been reported in the
literature. For example, scintigraphic detection of TNF-α via 99mTc-
labelled infliximab or 99mTc-adalimumab is employed in rheumatoid
arthritis patients to identify foci of active inflammation and monitor
response to therapy [206]. This technique may show benefit in early,
noninvasive detection of uterine leiomyoma knowing how important
a role TNF-α plays in its pathogenesis. Nevertheless, despite their
high resolution, substantial sensitivity, and noninvasiveness, molec-
ular imaging of inflammation is yet to be evaluated as a diagnostic
adjunct for BGDs.

Therapeutic implications

Behavioral modification. Lifestyle modifications represent a conve-
nient, nonpharmacological initial approach that may combat the
role of inflammation in BGDs, possibly decreasing their incidence.
Knowing that obesity induces a systemic inflammatory state that
may influence leiomyoma pathogenesis, measures, such as exercise
and dietary restriction, may be of benefit. In fact, reduction of IL-6
and CRP serum levels is documented in subjects who lose weight
through these measures [207]. In addition, high-intensity interval
training and moderate-intensity continuous training are shown to
immunomodulate IL-6 and IL-10. Dietary modifications can also
help downregulate inflammation [208]. Whereas decreased richness
of gut microbiota is implicated in obesity and systemic inflamma-
tion [209], this can be largely modulated by dietary factors. For
example, high-fat diets reduce colonic colonization of beneficial
species of commensal microbiota, increasing serum lipopolysac-
charides and hence inflammatory milieus [210]. In contrast, oleic
acid and omega-3-polyunsaturated fatty acids can counteract the
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Table 3. Medications with inflammation-modulating properties for potential use in benign gynecologic disorders

Medication BGD Experimental model/study
design

Effects

Anti-TNF-α
Pentoxifylline [220] Endometriosis In vivo, rat; in vivo, human

(data inconsistent).
1. Intraperitoneal injection decreases lesion size and

number and VEGF level (rat).
2. Reduces postoperative pain compared with women

undergoing conservative surgery alone (clinical trial).
Etanercept [221, 264] Endometriosis In vivo, baboon; in vitro,

rat.
1. Decreases red lesion surface area and absolute

number of red lesions (baboon).
2. Decreases spherical volume and peritoneal fluid and

serum TNF-α, IL-6, and VEGF (rat).
Adalimumab [265] Endometriosis In vitro, mouse embryo and

peritoneal fluid, human.
1. Decreases embryotoxic effects of endometriotic

peritoneal fluid.
Other immunomodulators

IL-2 [266, 267] Endometriosis In vivo, rat; in vivo, human. 1. Reduces implant size in animal model (rat).
2. No significant difference between two IL-2

instillations of endometrioma vs. one in a clinical
trial.

Interferon-α-2b [268] Endometriosis In vivo, rat. 1. Intraperitoneal injection reduces implant size.
Lipoxin A4 [269] Endometriosis In vivo, rat. 1. Decreases lesion size.

2. Decreases IL-6, IFN-γ , and VEGF.
3. Suppresses MMP-9 activity.

IL-37b [270] Endometriosis In vivo, mouse. 1. Inhibits expression of inflammatory factors, MMPs,
and VEGF-A.

2. Suppresses proliferation, invasion, angiogenesis, and
inflammation.

Niclosamide [271] Endometriosis In vitro, human ESC. 1. Inhibits STAT3 and NF-κB inflammatory signaling,
reducing macrophage-induced cell viability and
cytokine/chemokine secretion in ESCs.

MicroRNA [197, 272,
273]

Endometriosis;
uterine leiomyoma.

In vivo, mouse; in vitro,
human leiomyoma smooth
muscle cells.

1. Intraperitoneal injection of MiRNA Let-7b decreases
lesion size and TLR4, IL-6, ERα, and ERβ

expression and may alter macrophage expression in
endometriosis.

2. MiRNA 182 directly targets RELA, a NF-κB
subunit, and inhibits proliferation, migration,
invasion, epithelial–mesenchymal transition, and
inflammation of endometrial stromal cells.

3. Tranilast, an inflammation inhibitor, induces mRNA
200c, inhibiting NF-κB transduction and IL-8
expression in leiomyoma cells.

Hormonal treatment
Aromatase inhibitors
[40, 274]

Uterine
leiomyoma;
endometriosis

1. Theoretically, they can interrupt TNF-α–mediated
aromatase activation and decrease estrogenic load.

2. May interrupt the local estradiol–prostaglandin cycle
in endometriosis.

Paclitaxel and
2-methylestradiol
[226]

Not tested in
BGDs

In vitro, human normal or
malignant breast tissue.

1. Inhibit TNF-α–mediated aromatase activity in
stromal fibroblasts and downregulate macrophage
TNF-α receptors.

GnRH analogs [227,
229]

Uterine
leiomyoma;
endometriosis;
adenomyosis

In vitro, endometrial cells
and ESCs.

1. Influence TNF-α–induced cellular proliferation in
endometrial but not endometriotic stromal cells.

2. Reduce endometrial macrophage infiltration in
patients with BGDs.

Danazol and
progesterone [275]

Endometriosis In vitro, ESCs. 1. Attenuate IL-8 and IL-6 expression by reducing
TNF-α–induced NF-κB activation in ESCs.

Continued
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Table 3. Continued

Medication BGD Experimental model/study
design

Effects

Cardiometabolic medications
Statins [233, 234, 276] Endometriosis;

uterine leiomyoma
In vivo, baboon; in vivo,
mouse; in vitro, human
leiomyoma cells.

1. Downregulate ERβ, possibly dampening
inflammation and IL-1β expression (baboon).

2. Reduce MCP-1 expression (mouse).
3. Reduce β1 integrin protein and type 1 collagen

expression and ameliorates altered
mechanotransduction in uterine leiomyoma
cells.

Metformin [232] Uterine leiomyoma Retrospective cohort study. 1. Decreases risk of uterine leiomyoma in diabetic
women.

2. Inhibits TNF-α and NF-κB signaling via
AMPK-dependent and independent pathways.

3. Improves insulin resistance and metabolic
inflammation.

Thiazolidinediones
[140, 277]

Endometriosis In vivo, rat; in vitro, ESCs. 1. Ciglitazone reduces size of implants.
2. Pioglitazone reduces TNF-α–induced IL-8

expression and cellular proliferation.
ACE inhibitors [235,
238]

Uterine leiomyoma Nested case–control study. 1. Reduce uterine leiomyoma incidence in
hypertensive women.

2. May reduce inflammation and
proinflammatory mediators.

Cyclooxygenase-2 inhibitors
Celecoxib [239, 241,
242]

Uterine
leiomyoma;
endometriosis

In vitro, leiomyoma cells; in
vitro, ESCs; clinical trial.

1. Inhibits leiomyoma cell proliferation and
decreases proinflammatory cytokine
expression and NF-κB signaling.

2. Inhibits ECM production and growth factor
expression in leiomyoma.

3. Inhibits proliferation of endometrial epithelial
cells, induces their apoptosis, and decreases
COX-2 activity and PGE2 and VEGF synthesis.

Dexketoprofen
trometamol [243]

Endometriosis In vivo, rat. 1. Reduces development of experimentally
induced endometriotic cysts both
macroscopically and microscopically.

Parecoxib [278] Endometriosis In vivo, rat. 1. Decreases implant size, microvessel density, and
macrophage number.

Rofecoxib [242] Endometriosis In vivo, human. 1. Decreases endometriosis-associated pelvic pain
(effective, safe, and inexpensive)—larger trials
needed.

NF-κB inhibitors
BAY 11-7085 and
SN-50 [66]

Endometriosis In vivo, mouse. 1. Both increase lesion apoptosis.
2. BAY 11-7085 decreases proliferation.

IKK-2 inhibitor [47] Endometriosis In vitro, ESCs. 1. Reduces cellular invasion.
2. Reduces IL-6, IL-8, RANTES, ICAM-1, and

MMP-9 expression.
NF-κB decoy
oligonucleotides [279]

Endometriosis In vitro, endometriotic
epithelial cells.

1. Reduces RANTES and monocyte chemotactic
activity.

Dietary
phytochemicals, e.g.,
indole-3-carbinol,
lycopene, ursolic acid
[216]

Uterine leiomyoma Not experimentally tested. 1. Reduce production of proinflammatory
cytokines and inhibit inflammatory cascades
through NF-κB inhibition.

ACE denotes angiotensin converting enzyme, AMPK AMP-activated protein kinase, BGD benign gynecologic disorder, COX-2 cyclooxygenase-2, ECM extracellular matrix, ESC
endometriotic stromal cell, ER estrogen receptor, GnRH gonadotrophin releasing hormone, ICAM-1 intercellular adhesion molecule-1, IFN-γ interferon γ , IKK IκB kinase, IL interleukin,
MCP monocyte chemoattractant protein, MIF macrophage migration inhibitory factor, MiRNA microRNA, MMP matrix metalloproteinase, NF-κB nuclear factor kappa-light chain
enhancer of activated B cells, PGE2 prostaglandin E2, RANTES regulated-on-activation, normal-T-cell-expressed and -secreted, TLR toll-like receptor, TNF-α tumor necrosis factor α,
and VEGF vascular endothelial growth factor.
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harmful effects on gut microbiota [211]. Women with endometriosis
may be advised to decrease red meat consumption as it contains
arachidonic acid (omega 6), which if taken in excess, can contribute
to inflammation [212, 213]. Alternatively, increased intake of omega
3 is proposed to decrease growth of endometrial implants and
improve pain and inflammation in endometriosis [213]. Further,
dietary phytochemicals, which are nonnutritive compounds with
disease-preventing properties found in different foods, possess anti-
inflammatory actions that have been evaluated for potential use
in antifibrotic and anti-inflammatory medications against uterine
leiomyoma and endometriosis. For example, curcumin, a dietary
supplement found in turmeric, inhibits NF-κB protein expression
in leiomyoma cells [214] whereas apigenin inactivates NF-κB and
hence suppresses TNF-α–induced cellular proliferation and PGE2

synthesis in endometriotic stromal cells [215]. An excellent review
has explored in depth the possible therapeutic roles of dietary
phytochemicals in uterine leiomyoma [216]. Lastly, vitamins A, C,
and E are potent antioxidants through decreasing lipid peroxidation
in inflammatory diseases and are, in fact, shown to reduce markers
of oxidative stress in endometriosis [217, 218]. Whether diets high in
antioxidants or low in saturated fats can decrease chronic pelvic pain
or reduce other inflammation-related sequelae including ovarian
carcinoma remains to be seen.

Medical therapy. This paper introduces novel as well as previously
established therapeutics that can be integrated in the management
practices of BGDs. An extensive list of experimentally and clinically
tested medications is shown in Table 3.

Immunomodulators Given the important role of TNF-α in
uterine leiomyoma pathogenesis, it may be beneficial to utilize anti–
TNF-α agents to treat leiomyoma-related symptoms; nevertheless,
there is no current consensus on the efficacy of these medications
in leiomyoma management. Future potential studies could start with
observational approaches to patients taking anti–TNF-α agents for
other indications, such as rheumatoid arthritis and inflammatory
bowel disease, to examine rates of fibroids and fibroid growth
and involution as compared with demographically matched controls
without exposure to such agents. In women with endometriosis, pen-
toxifylline was shown to reduce in vitro production and proinflam-
matory actions of TNF-α as well as reduce pain postoperatively [219,
220] but as additional trials showed no significant improvement, its
true benefits in humans is yet to be seen. Etanercept, a TNF-α blocker,
significantly decreased red lesion surface area in a randomized
controlled trial using baboon models [221] while infliximab has not
been shown to reduce pain scores in patients with endometriosis-
related chronic pelvic pain in a Cochrane Review of the evidence
[222], and overall, there is still no enough evidence that supports the
use of anti–TNF-α agents to relieve pelvic pain in women with the
disease. Other immunomodulatory medications have shown promise
in treating endometriosis by targeting key players in disease patho-
genesis. For example, glucosaminyl muramyl dipeptide was shown
to prevent peritoneal macrophage hyperactivation [223] whereas
loxoribine induced epithelial and stromal regression and reduced
number of NK cells in endometriotic lesions [224]. Kotlyar et al.
have suggested in their review a plethora of immunomodulatory
medications that can be potentially used in endometriosis, including
disease modifying antirheumatic drugs, cytokines, mTOR inhibitors,
nucleotide inhibitors, and miRNAs (Table 3); however, their efficacy
in humans is yet to be tested [225]. As evidence shows a growing

role for macrophages in the pathogenesis in endometriosis and its
clinical manifestations, therapies that specifically target aberrant
macrophage function and attenuate their disease-promoting prop-
erties could serve as potential options for treating endometriosis and
its associated pain [154]. Nevertheless, while diverse immunomodu-
lators appear promising in targeting inflammation in BGDs, further
experimental studies and human randomized controlled trials are
warranted to establish the full efficacy of these medications.

Hormonal treatment Besides their inhibitory actions on
aromatase and decreasing estrogen availability in patients with
BGDs, aromatase inhibitors may have anti-inflammatory properties
through TNF-α–dependent pathways. Notably, as TNF-α stimulates
aromatase activity, increasing the estrogenic load in patients with
BGDs, aromatase inhibitors may interrupt the downstream effects of
TNF-α on estrogen metabolism [40]. Targeting the same pathway,
paclitaxel, a microtubule-stabilizing agent, and 2-methylestradiol,
an endogenous estrogen metabolite, were found to inhibit TNF-
α–mediated aromatase activity in stromal fibroblasts and down-
regulate TNF-α receptors in human macrophages in breast tissues
[226] and may be of benefit in patients with BGDs. While GnRH
analogs have been classically used as hormonal treatments of BGDs,
experimental evidence shows their ability to attenuate inflammatory
pathways in these disorders. For example, they influence TNF-α–
induced cellular proliferation in endometrial stromal cells but not
endometriotic stromal cells [227] and attenuate IL-8 expression by
reducing TNF-α–induced NF-κB activation in endometriosis [228].
In another study, GnRH analogs increased the apoptotic index of
eutopic endometria, lesions, and myometria of women with uterine
leiomyoma, endometriosis, and adenomyosis and reduced CD68+
macrophage infiltration in the endometria of women with these
diseases compared with nontreated groups, reconceptualizing these
traditionally used medications as having anti-inflammatory proper-
ties [229].

Cardiometabolic medications Medications originally
used to target CMRFs were demonstrated to influence several
inflammatory pathways in BGDs. To begin with, metformin
can change the composition of gut microbiota by increasing the
Akkermansia species, which in turn improves insulin resistance and
reduces tissue inflammation [230]. In addition, metformin influ-
ences inflammation both indirectly by improving hyperglycemia,
hyperlipidemia, and insulin resistance and directly by inhibiting
TNF-α and NF-κB signaling via AMPK-dependent and independent
pathways [231]. Indeed, metformin has been reported to confer
a lower risk of uterine leiomyoma in diabetic women [232].
On the other hand, Lebovic et al. have found that ciglitazone,
a thiazolidinedione and a PPAR γ ligand, reduces the size of
endometriotic implants in rat models and inferred that these
medications, originally used for type 2 diabetes mellitus, may be
potentially used in women with endometriosis [140].

The antihyperlipidemic medications statins were also experi-
mented for their anti-inflammatory effect in endometriosis. In a
study by Taylor et al. on baboon endometriosis models, statins
downregulated ERβ, which is known to activate inflammatory
responses and increase IL-1β levels in the disease [233] whereas
in another study, statins reduced the expression of MCP-1 in
vitro and in mouse models [234]. Multiple studies demonstrated
that ACE inhibitors and angiotensin II receptor blockers can
reduce inflammation and proinflammatory mediators [235–237].
Additionally, Fischer et al. have concluded that ACE inhibitors
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reduce the incidence of uterine leiomyoma in hypertensive patients,
rendering these medications possible therapeutic candidates [238]
that may or may not target the inflammatory pathways in these
tumors.

Cyclooxygenase-2 and NF-κB inhibitors The COX-2
inhibitor celecoxib was found to inhibit leiomyoma cell proliferation
by decreasing gene expression of proinflammatory cytokines and
transcription factors, including IL-1β, IL-6, TNF-α, and NF-κB.
Furthermore, it showed inhibitory actions on production of ECM
elements, such as collagen A and fibronectin, and reduced the
expression of several growth factors [239]. This suggests that COX-
2 inhibitors may attenuate the inflammatory microenvironment
harboring leiomyoma growth, but more experimental and clinical
studies are needed to confirm its beneficial effects. As previously
documented, COX-2 and PGE2 are key inflammatory players in
endometriosis, and theoretically, COX-2 inhibitors may be sub-
stantially beneficial, although data on their effectiveness have been
controversial in the past. For example, in a study published more
than 15 years back, nimesulide, a COX-2 inhibitor, has shown no
effect on lesion size or number in a mouse model of endometriosis
[240]. However, more recent studies, including clinical trials, show
that celecoxib [241], rofecoxib [242], and a new COX-2 inhibitor,
dexketoprofen trometamol [243], have promising therapeutic effects
as shown in Table 3. On the other hand, as evidence accumulates on
the various mechanisms by which NF-κB participates in endometri-
otic pathogenesis, it may serve as an attractive potential target to
halt endometriosis progression. Among others, the NF-κB inhibitors
BAY 11-7085 and SN-50 have shown remarkable lesion inhibitory
effects in vivo through boosting apoptosis and decreasing ICAM-
1, an adhesion molecule, as well as reducing proliferation in the
BAY 11-7085 group [66]. NF-κB inhibitors cover a wide spectrum of
medications that involve hormonal agents, herbal compounds, and
oligonucleotides, to name a few [65]. However, these agents have
been mostly tested in vitro and in animal models, and clinical trials
are therefore needed to evaluate their effectiveness in humans.

Conclusion and future directions

BGDs have been heavily studied over the decades uncovering unique
perspectives of their pathophysiology. This exhaustive paper enriches
our understanding of how inflammation represents an inherent
feature of BGDs, contributing remarkably to their development.
As we become increasingly aware of this association, curiosity to
learn its mechanistic aspects will lead us to previously unexplored
pathobiological avenues and introduce novel frameworks that will
ground future diagnostic and therapeutic implications. Therefore,
while this paper comprehensively explores this association, it also
emphasizes the need for further experimental and clinical research
to delve into the cellular and molecular mechanisms involved and
elucidate a casual role for inflammation in these chronic, costly, and
debilitating disorders.
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