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Abstract

Small noncoding RNAs deep sequencing (sncRNA-Seq) has become a routine for sncRNA detec-

tion and quantification. However, the software packages currently available for sncRNA annotation

can neither recognize sncRNA variants in the sequencing reads, nor annotate all known sncRNA

simultaneously. Here, we report a novel anchor alignment-based small RNA annotation (AASRA)

software package (https://github.com/biogramming/AASRA). AASRA represents an all-in-one sncRNA

annotation pipeline, which allows for high-speed, simultaneous annotation of all known sncRNA

species with the capability to distinguish mature from precursor microRNAs, and to identify novel

sncRNA variants in the sncRNA-Seq sequencing reads.

Key words: small RNA annotation, sequence alignment, bioinformatics, RNA-Seq, precursor

microRNA.

Introduction

Given their critical regulatory roles, small noncoding RNAs (sncR-
NAs) have become a major focus in biomedical research [1, 2]. The
next-generation sequencing technologies have allowed for the iden-
tification of hundreds thousands of sncRNAs, which have been cat-
egorized into many unique sncRNA species, e.g., microRNAs (miR-
NAs) [3–5], endogenous small interference RNAs (endo-siRNAs)
[6, 7], PIWI-interacting RNAs (piRNAs) [8–11], small nucleolar
RNAs (snoRNAs) [12], tRNA-derived small RNAs (tsRNAs) [13,
14], mitochondrial genome encoded small RNAs (mitosRNAs) [15],
etc. Among these sncRNAs, miRNAs and piRNAs have been studied
extensively for the past decade largely because they were discov-
ered first [8–11, 16]. To help investigators identify known and to

predict novel miRNAs or piRNAs based on small noncoding RNAs
deep sequencing (sncRNA-Seq) data, several software packages have
been developed, e.g., ShortStack [17], miRanalyzer [18], miRDeep
[19], PIANO [20], etc. Using these pipelines, researchers have not
only validated previously reported sncRNAs, but also predicted
sncRNAs based on their unique structural (e.g., length, stem-loop
structure, etc.) and genomic features (e.g., repetitive sequences).
Currently, there are many sncRNA databases, e.g., miRBase [21],
piRNABank [22], piRNA Cluster Database [23], Rfam [24–26],
snoRNA-LBME-db [27], etc., where known and predicted sncRNAs
(for some of the databases) are collected. These databases serve
as important resources because investigators can download these
sncRNAs and use them as reference sequences to annotate their own

https://doi.org/10.1093/biolre/ioab062
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sncRNA-Seq data for sncRNA identification and quantitation. The
most popular sequence alignment software packages, e.g., Bowtie
[28], SOAP [29], or BWA [30], are designed for mapping large RNA
sequencing reads directly to the genome. However, these methods
are not ideal for small RNA alignment analyses for two reasons.
First, the library construction methods for large and small RNAs
are fundamentally different (Figure 1A). The Illumina sequencers
perform the so-called short-read sequencing, which requires shorter
DNA fragments (∼200–800 bp). Therefore, large RNAs have to be
fragmented either physically (via heating or shearing) or enzymat-
ically, followed by adaptor ligation (Figure 1A). After sequencing,
the shorter reads (∼50–150 nt) need to be aligned to the genome
using Bowtie2-based TopHat followed by assembly using Cufflinks
[31]. Fragmentation can generate numerous homologous fragments,
which differ from each other by only a few nucleotides at either or
both ends. Since they are all derived from the same transcripts, the
downstream annotation will categorize these homologous fragments
as single transcripts. In contrast, adaptors are ligated directly to small
RNAs without fragmentation during sncRNA library preparation
(Figure 1A) and thus, homologous fragments represent unique sncR-
NAs and should, therefore, be counted as individual sncRNAs. Sec-
ond, mathematically, the possibility for shorter reads (∼20–40 nt) to
have multiple alignment in the genome is much greater, compared to
that of longer reads (50–150 nt); multiple mapping leads to repetitive
counting during alignment, causing quantification bias (Figure 1B).
A straightforward solution would be to align the sequencing reads
to the corresponding sncRNA reference sequences instead of the
genome. However, this direct, RNA-to-RNA mapping strategy leads
to multiple alignment due to the existence of homologous sncRNAs
in both the reference databases and the sequencing reads. For exam-
ple, the sequencing reads of a mature miRNA would align to both
the mature and its homologous precursor miRNAs in the reference
dataset, leading to double counting (Figure 1C). Many sncRNAs,
e.g., MIWI2-associated piRNAs (i.e., pre-pachytene piRNAs), endo-
siRNAs, and mitosRNAs, contain a large number of homologs with
only a few nucleotide differences in either or both ends (Figure 1C).
Thus, one such sncRNA would align to its multiple homologs, caus-
ing repetitive counting and quantification bias (Figure 1C). More-
over, the existing alignment programs would only select the per-
fectly matched reads and eliminate those with minor mismatches,
although those may represent the sncRNAs synthesized by the cells.
To overcome these problems, we developed a universal sncRNA
annotation software package, called anchor alignment-based small
RNA annotation (AASRA) based on our unique C/G repeat anchor
alignment algorithm (Figure 1D). AASRA can annotate sncRNAs
of all known species collected in various sncRNA databases with a
much higher mapping rate and accuracy, as well as speed, compared
to all existing software packages currently available for sncRNA
annotation.

Methods

SncRNA reference data source

The reference sncRNA datasets consist of mature and precursor
miRNAs in the miRBase (release 21) [21], tRNAs in the Genomic
tRNA Database [32], piRNAs in the piRNABank [22], and piRNA
Cluster Database [23], rRNAs, snoRNAs, snRNAs, and mitochon-
drial RNAs in ENSEMBL (release 76) [33–35], and endo-siRNAs in
DeepBase [36].

Simulation data

Simulation sequences were based upon sncRNA sequences from the
known sncRNA databases. Small noncoding RNA variant sequences,
including 1–2 nt overhangs, internal insertions, deletions, and muta-
tions, were generated by randomly adding or changing 1–2 nts at
either end or internally using R script of the Biostrings package
and EMBOSS-msbar. To generate the simulation Fasta file, individ-
ual sncRNAs were randomly duplicated such that the counts for
each ranged from 1 to 50. For the realistic simulation of miRNA
sequencing reads, mouse miRNA reference from miRBase (release
21) [21] was used. From 1 to 100 counts were randomly generated
for each miRNA. The length distribution of precursor miRNAs was
randomly trimmed to the range of 40–80 nt and fitted to the normal
distribution with mean close to 60 nt and standard deviation close to
3 nt. A total of 0.08% of two single nucleotide mismatches (SNMs),
0.001% of 1–4 nt insertion or deletion and 0.4% of 1–4 nt overhang
were incorporated into the simulation reads by EMBOSS-msbar and
custom scripts. Each read is tagged with true miRNA ID. The true
count for each miRNA (standard count) was generated during the
simulation.

Anchor alignment

Anchor sequences (1–10 bp) were added to both ends of the ref-
erence sncRNAs and the sequencing reads, as well as simulation
sequences using the Python script. Bowtie2-build was employed to
index all the anchored reference sncRNAs. The anchored sequenc-
ing reads/simulation sequences were then aligned to the indexed
anchored reference sncRNAs using Bowtie2 [37] with the –norc -
N 1 -L 16 -I S,0,0.2 as optimal settings for sncRNA alignment.
The featureCounts [38] was used to summarize the counts in the
alignment file. The same procedure was used to align the non-
anchored sequencing reads or simulation sequences to the indexed,
non-anchored reference sncRNA sequences. The 5′ C/3′ G repeat
sequence anchor of 2 nt/3 nt length to the reads and 10 nt length to
the reference was chosen as the optimal AASRA alignment anchor
sequence length. All Bowtie2/Bowtie1 based alignment parameters
are summarized in Supplementary Table S1.

Genome alignment

Bowtie2-build was used to index the mouse genome (NCBI_Assembly:
GCA_000001635.2). The sequencing data were aligned to the
indexed genome using Bowtie2. The Feature Count was used to
summarize the reads in the alignment file based on mmu.gff3
(miRbase V21) [21].

The use of miRDeep/miRDeep2 for miRNA annotation

The GRCm38 mouse genome was built according to the user manual
of miRDeep [19, 39]. Both miRNA sequencing reads/simulation
dataset and GRCm38 pre-built genome were loaded for alignment
analyses using the default setting of miRDeep/miRDeep2. Scatter
plots were generated to correlate the predicted counts (by miRD-
eep/miRDeep2) with the standard counts (simulation counts).

The use of ShortStack for miRNA annotation

The indexed mouse genome reference (NCBI_Assembly: GCA_
000001635.2) was generated by Bowtie2-build. The simulation data
were then aligned to the indexed genome using Bowtie2 (ShortStack
–readfile –outdir –genomefile), and the hits were –locifile –outdir
–genomefile). Scatter plots were generated to correlate the predicted
counts (by ShortStack) with the standard counts (simulation counts).

https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioab062#supplementary-data


Small RNA annotation software package, 2021, Vol. 105, No. 1 269

Figure 1. Development of the anchor alignment algorithm for sncRNA annotation. (A) Schematic illustration of the differences in large and small RNA library

construction methods. Note that adaptors are directly added to the small RNAs for sncRNA-Seq, whereas fragmentation is needed before adaptor ligation for

large RNA sequencing. (B) Issues associated with direct sncRNA alignment to the genome: multiple alignment of sncRNAs to the genome due to their small sizes

(20–40 nt), and inability to recognize sncRNA variants (e.g., homologous piRNAs, endo-siRNAs, mitosRNAs, etc.). (C) Issues associated with the direct sncRNA–
sncRNA alignment algorithm: repetitive counting of mature miRNA reads (because they can be mapped to both mature and precursor miRNA references), and

certain sncRNA reads (e.g., endo-siRNAs and piRNAs, due to the presence of multiple, staggered sncRNA homologs in the reference databases, which differ

by only several nucleotides). (D) Workflow of the AASRA pipeline. (E) Schematic illustration of anchor alignment algorithm. Anchors are added to both ends

of the sequencing reads and the reference sncRNAs. Gap opening penalty can prevent mature miRNA sequence reads from mapping to the precursor miRNA

reference sequences. Perfect alignment and correct annotation of both mature and precursor miRNAs were achieved for the simulation data using the anchor

alignment algorithm (R2 = 1), whereas direct alignment of the simulation data to either the sncRNA references (R2 = 0.9), or the genome (R2 = 0.5) led to partial

alignment.
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The use of miRanalyzer/sRNAbench for miRNA

annotation

The stand-alone version of miRanalyzer and sRNAbench were
downloaded and installed according to the user manual [18,
40]. The pre-built, Bowtie2-indexed genome sequences (UCSC
mm9) were used as the reference mouse genome in miRanalyzer.
The mature and precursor miRNA sequences were used as the
sncRNA reference dataset for miRanalyzer and sRNAbench.
MicroRNA simulation data with or without overhangs and the
realistic miRNA dataset were analyzed using the default parameters.
Scatter plots were generated to correlate the predicted counts (by
miRanalyzer/sRNAbench) with the standard counts (simulation
counts).

Alignment accuracy assessment

The alignment results were summarized by featureCounts to gener-
ate predicted counts. Pearson correlation coefficient was calculated
to measure the linear correlation between standard counts and
predicted counts. The realistic simulated miRNA reads were aligned
to the miRbase miRNA references. Single read alignment results were
extracted from SAM file or CORE file annotated by featureCounts.
The read tag indicating true miRNA of each read was compared
with the assigned miRNA read ID. The reads were then classified
as “correctly mapped” if true miRNA ID equals to the assigned
miRNA ID; “unmapped” if the read was not mapped to any miRNA
reference or miRNA genome locus; “incorrectly mapped” if the read
was assigned to a miRNA ID, which is not equal to the true miRNA
ID. Precision is defined as (correctly mapped reads/(correctly mapped
reads + incorrectly mapped reads)). Recall is defined as (correctly
mapped reads/(correctly mapped reads + unmapped reads)). The
F1 score is a summary statistic of precision and recall (β = 1) that
weights precision and recall equally.

Mouse sperm sncRNA-Seq

Mouse epididymal sperms were collected in the HEPES-HTF
medium, and a “swim-up” procedure was performed so that only
motile sperm were selected for sncRNA-Seq [41]. Total RNA was
isolated using the mirVana miRNA Isolation Kit (Life Technologies)
following the manufacturer’s instructions. Small noncoding RNA
libraries were prepared using the Ion Total RNA-Seq Kit v2 (Life
Technologies), followed by sequencing using the Ion P1 chips on an
Ion Proton Sequencer (Life Technologies) [41].

Data management and graphics

All the data were processed using the R script and graphs were
plotted using the R script of the ggplot2 package.

The software environment

Operating system: Ubuntu 12.04.5 LTS, 64-bit; Memory 11.5GiB;
Processor Intel® Xeon(R) CPU E3–1225 v3 @ 3.20GHz ×4 Graphics
ATI Radeon™ HD 5450.

Results

The anchor alignment algorithm

AASRA first processes both the sequencing reads and the reference
sequences by adding C/G repeat anchors to both ends. Then, the
anchored sequencing reads are aligned to the anchored sncRNA
references using Bowtie2. Finally, FeatureCounts (Subread) is used

to summarize the unique read counts (Figure 1D). The anchor
alignment algorithm can avoid multiple and ambiguous alignments,
which are common in the straight matching algorithms (i.e., direct
alignment to reference sncRNAs or to the genome by Bowtie2, or
miRanalyzer, miRDeep, etc.). For example, the anchored mature
miRNA reads can only align to the anchored mature miRNA
references. When the mature miRNA reads are aligned to the
anchored reference precursor miRNAs, the gap-opening penalty
would prevent double matching (Figure 1E). In this way, the Bowtie2
penalty score is tweaked by the artificial anchors such that the
anchored mature miRNA reads get a lower penalty score when
aligned to the corresponding anchored mature miRNA references
than that when aligned to precursor miRNAs. Therefore, mature
miRNAs can be readily distinguished from their corresponding
precursor miRNAs during the alignment. As a proof of concept, we
used AASRA to align the simulation dataset containing both mature
and precursor miRNA sequences to the reference miRNA dataset
downloaded from the miRBase. The anchor alignment algorithm
resulted in a perfect mapping (R2 = 1), whereas the direct alignment
to the reference miRNAs or to the genome led to partial alignments
with R2 values of 0.9 and 0.5, respectively. Together, the anchor
alignment algorithm can avoid erroneous counting and can also
distinguish mature miRNA reads from precursor miRNA reads
accurately.

Anchor optimization

To include sncRNA variants that bear small overhangs or internal
insertions/deletions/mutations in the sncRNA-Seq reads, we tested
a number of anchor sequences to see which ones gave the best
alignment results. We first tested 5′/3′ 5 nt anchors by aligning the
anchored simulation reads dataset against the reference sncRNA
datasets downloaded from various sncRNA databases (Figure 2A).
The simulation dataset containing all the known sncRNAs aligned
perfectly to the sncRNA reference datasets (R2 = 1). However,
when the simulation datasets containing 1–2 nt overhangs at either
end were used, only partial alignment (R2 = 0.87) was achieved
due to the gap-opening penalty caused by those miRNA variants
(Figure 2A, Supplementary Figure S1). Since these miRNA variants
are likely synthesized by the cell and the 1–2 nt mutations are
probably due to sequencing errors, they should not be excluded
from annotation. To accommodate theses sncRNA variants, we
designed C/G repeat anchors of different lengths (5 nt for the
reads and 10 nt for the references) based on the fact that C and
G are the least common nucleotides at the ends of miRNAs and
thus, can have higher specificity (Supplementary Figure S2). Using
C/G repeat anchors for alignment, a 1–2 nt overhang in the read
sequences would lead to a mismatch instead of a gap-opening
penalty, which allows for inclusion of these sncRNA variants into
the counts, leading to an increased alignment rate (R2 from 0.87
to 0.92) (Figure 2A, Supplementary Figure S1). We also examined
the AG anchors as well as other possible single nucleotide anchors
and found that anchors with the C/G combination consistently
yielded the highest alignment rates (Supplementary Figure S2).
By fine-tuning the parameters in AASRA, the optimal Bowtie2
setting was determined such that the sncRNA variants with 1–
2 nt overhangs, internal insertions/deletions/mutations, could be
included into the final counts (Supplementary Figure S3). For
annotating sncRNA sequencing reads containing small internal
insertions/deletions/mutations, AASRA (with the use of the CG
anchors) consistently outperformed the Bowtie2-based direct

https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioab062#supplementary-data
https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioab062#supplementary-data
https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioab062#supplementary-data
https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioab062#supplementary-data
https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioab062#supplementary-data
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sncRNA–sncRNA mapping method (Supplementary Figure S4). In
addition, we evaluated AASRA alignment accuracy under different
degrees of noise using simulation reads (Figure 3). The noise was
generated by EMBOSS-msbar [42], with a gradient of 1–6 point
mutations per read (Figure 3A), or a block mutation of 2–7 bp
in length per read (Figure 3B). AASRA alignment shows drastic
decrease in accuracy when the point mutation counts were greater
than 3, and the size of the block mutations was greater than 5. The
reduced accuracy was primarily due to unaligned mature miRNAs
under the default setting of mismatch and gap opening penalty in
Bowtie2. Moreover, the precursor miRNA alignment algorithm was
not sensitive to the increased degree of variation. Compared to
mature miRNA reads, precursor miRNA reads are relatively longer
and consequently receive a lower minimum penalty score in Bowtie2
end-to-end alignment; this allows the precursor miRNA variant
reads to be aligned to the corresponding references instead of being
discarded. The penalty score parameters can be adjusted to increase
or decrease the sensitivity of AASRA. Overall, these data indicate
that the CG anchor-based alignment algorithm of AASRA allows
for efficient mapping of not only perfect-matching sequencing reads,
but also reads with small (1–2 nt) overhangs and internal insertions,
deletions or mutations.

Performance comparison between AASRA and

existing sncRNA annotation software packages

To demonstrate the superior performance of AASRA, we gener-
ated simulation datasets containing mature and precursor miR-
NAs with 0, 1–2 nt overhangs at either end, and annotated the
simulation sequence reads against the reference miRNA datasets
downloaded from the miRBase using AASRA and the popular
software packages for miRNA annotation, including ShortStack
[17], miRDeep [19], miRDeep2 [43], Bowtie [28], and miRan-
alyzer [18] (Figure 2B, Supplementary Figure S5). The simulation
sequences were aligned almost perfectly to the reference datasets
using AASRA for both mature and precursor miRNAs with or with-
out overhangs (R2 ≈ 1) (Figure 2B and C). Bowtie-based AASRA
demonstrated very similar performance (Supplementary Figure S5).
In contrast, default Bowtie2 mapping of the simulation miRNA and
precursor miRNA sequences with or without overhangs to the mouse
genome resulted in poor alignment rates (R2 = 0.45–0.49). The no
sample anchoring Bowtie or Bowtie2 mapping without reference
padding performed even worse with overhang datasets (R2 ≈ 0)
(Supplementary Figure S5). The no sample anchoring Bowtie2 map-
ping to the reference miRNA datasets with 10 nt N repeats padding
recovered a portion of the unaligned mature miRNAs when over-
hang was present (R2 = 0.8–0.92), but it could not rescue erroneously
aligned mature miRNAs without overhang (R2 = 0.43) (Figure 2B,
Supplementary Figure S5). The padding reference allowed overhang
mature miRNA reads to receive a lower penalty score when aligned
to mature than when they were aligned to precursor miRNAs.
The non-overhang mature miRNA reads obtained the same align-
ment score when aligned to both mature and precursor miRNAs,
even when the padding sequences were present in the reference.
Although miRDeep could map sequences perfectly matching the
known mature miRNAs efficiently (R2 = 0.94), it failed to align
either precursor miRNA sequences or mature miRNA sequences
with overhangs (Figure 2B and C), largely due to its strict length
control criteria [19]. Thus, miRDeep cannot annotate precursor
miRNAs, mature miRNAs with mismatches, or other sncRNAs with
staggered sequence patterns (e.g., piRNAs, mitosRNAs, tsRNAs,

etc.). miRDeep2 demonstrated improved mapping to known mature
miRNAs while still showed the lack of accuracy at 1–2 nt overhangs
(R2 = 0.662–0.966) (Supplementary Figure S5). ShortStack, similar
to the direct genome alignment method, could only annotate a small
fraction of the simulation sequences, largely due to repetitive and
ambiguous counting. miRanalyzer utilizes a three-phase alignment
procedure (i.e., mature miRNA alignment → pre-miRNA align-
ment → genome alignments) in conjunction with length control.
miRanalyzer annotated the simulation data without overhangs as
efficiently as AASRA (R2 = 0.95), but failed to annotate simulation
data containing overhangs because it does not tolerate mismatches.
In summary, AASRA appeared to be ideal for annotating known
sncRNA species simultaneously with the capability of distinguishing
mature and precursor miRNAs, and recognizing sncRNA variants
with small overhangs and/or internal insertions/deletions, with a
speed faster than any of the five pipelines tested (Figure 2C).

Mapping accuracy assessment using realistic

simulated miRNA reads

To benchmark the performance of alignment methods with datasets
that incorporate realistic miRNA read length and variable levels
of noise, we generated simulation reads of mature miRNAs and
precursor miRNAs. The length of precursor miRNA reads ranged
from 50–150 nt (Supplementary Figure S6A). We trimmed the pre-
cursor miRNA references to simulate the reported length distribu-
tion of precursor miRNA reads observed in the small RNA next-
generation sequencing datasets (Figure 4A) [44, 45]. Since overhangs
are more common than SNMs and insertion/deletion (INS/DEL), we
introduced realistic variation to miRNA reads based on the miRNA
variation profile (Figure 4B) [45].

We first assessed the mapping accuracy of Bowtie1/Bowtie2
CG anchor with different lengths of anchoring sequences (Sup-
plementary Figures S6B and S7). Bowtie2 with 3 nt and 2 nt
CG anchor achieved the best F1 scores of 0.99 and Pearson
correlation coefficient of > 0.96. Both Bowtie2 and Bowtie1
showed increased unmapped rate with the increased length of
anchoring sequences from 2 nt, due to the increased mismatch
penalty introduced from the anchor sequence when anchored
precursor miRNA fragment sequences aligned to the references
(Supplementary Figure S6B). Reducing anchor sequence length to
1 nt showed close to 0 unmapped rate but increased incorrectly
mapped reads compared with 2 nt anchor sequences. The scatter
plot (Supplementary Figure S7) showed increased proportions of
incorrect mapping came from the mature miRNAs falsely aligned
to the precursor miRNAs due to the insufficient anchor length.
Therefore, both 2 nt and 3 nt Bowtie2 CG anchor alignment
strategies are ideal, specifically the 2 nt alignment gave slightly
lower unmapped rate (0.3%) and 3 nt anchor yielded a relative
lower incorrectly mapping rate (0.6%). The users could choose 3 nt
CG anchor if precision is preferred over sensitivity, or choose the
2 nt for more sensitivity. Next, we compared the 2 nt/3 nt Bowtie2
CG anchor with other miRNA alignment methods (Figure 4 and
Supplementary Figure S8). By aligning the reads to the genome,
ShortStack and Bowtie2 received the lowest F1 score due to incorrect
mapping and unmapped precursor miRNAs, as indicated in the
scatter plots (Supplementary Figure S8). Bowtie2 and Bowtie1,
with default setting to align the simulation reads to the 10 nt N
repeats anchored miRNA references, showed mature miRNA reads
mistakenly assigned to the precursor loci as the primary source
of incorrect mapping, leading to the 32% incorrect mapping rate.

https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioab062#supplementary-data
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https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioab062#supplementary-data
https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioab062#supplementary-data
https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioab062#supplementary-data
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Figure 2. Anchor optimization and performance comparison between AASRA and three existing sncRNA annotation pipelines. (A) CG anchors outperformed

other anchors because the CG anchors could turn the gap-opening penalty (causing exclusion) into mismatch penalty (leading to inclusion). The use of a non-

CG anchors could align the simulation data without overhangs perfectly (R2 = 1), but simulation sequences with 2 nt overhangs were only aligned partially

(R2 = 0.87) due to gap-opening penalty that excluded many miRNA variants. In contrast, the use of CG anchors aligned simulation datasets with or without

2 nt overhangs almost perfectly (R2 = 0.999 and 0.92, respectively) because those 2 nt overhangs were treated as mismatches rather than gaps and thus, those

variants were counted and annotated. (B) Performance comparison between AASRA and existing sncRNA annotation software packages. Simulation datasets

containing both mature (red dots) and precursor (green dots) miRNA sequences with 0–2 nt overhangs were aligned to the reference sncRNA dataset using

AASRA alignment (CG_anchor), Bowtie2 no sample anchoring and 10 nt N repeats padding reference (No_anchor), direct alignment to the genome (genome),

miRDeep, ShortStack, and miRanalyzer. (C) Summary of the performance of AASRA and other five sncRNA annotation pipelines tested.

Adjusting Bowtie2 alignment by adding –np 0 or removing the
10 nt N repeats padding sequence on the references led to a similar
correlation score ∼ 0.49 and F1 score of 0.81. sRNAbench is the
updated version of miRanalyzer, which uses the same bowtie1-
based alignment strategy as miRanalyzer, but added sequence

variation detection [46]. sRNAbench showed improved mature
miRNA alignment compared to miRanalyzer (Supplementary Figure
S8A and Figure 2). However, both the F1 score and Pearson
correlation score are slightly lower than those of the Bowtie2
2 nt/3 nt CG anchor method, which is likely due to the lack of

https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioab062#supplementary-data
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Figure 3. Evaluation of AASRA alignment accuracy in annotating reads with point or block mutations. (A) Random point mutations refer to point mutations

randomly assigned to each simulation dataset generated by EMBOSS-msbar. Point mutations include insertion, deletion, mismatch, duplication, and move.

Move means the block sequence copied from one region to another (without deletion of the original). Counts represent the number of point mutations in each

read. (B) Various types of block mutations randomly assigned to each simulation dataset generated by EMBOSS-msbar. The types of block mutations include

insertion, deletion, mismatch, duplication, and move. Block size refers to the length of block mutations in each read. Pearson product–moment correlation

coefficients between the standard counts and the annotation software predicted counts are indicated.

precision and sensitivity in the presence of INS/DEL and 5′/3′
overhang over 2 nt (Figure 4, Supplementary Figure S8B and C).
miRDeep/miRDeep2 are not included in the testing because it

lacks the ability to align and annotate precursor miRNA reads
(Figure 2B and Supplementary Figure S5). These results demonstrate
that AASRA-based alignment with 2 nt/3 nt anchor setting is

https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioab062#supplementary-data
https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioab062#supplementary-data
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Figure 4. Performance comparison of miRNA alignment methods with realistic simulated miRNA reads. (A) Length distribution of the reads set, including

mature miRNA (red) and precursor miRNA (green). (B) Reads variation profile of the read sets containing SNM, INS/DEL, and 5′/3′ overhang. (C) Assessment of

alignment methods by percentage of correctly mapped reads (green), incorrectly mapped reads (yellow), and unmapped reads (grey) (left panel) and precision

(correctly mapped/(correctly mapped + incorrectly mapped)), recall (correctly mapped/(correctly mapped + unmapped)), and F1 score.

superior in accurately mapping real miRNA sequencing reads to
miRNA references.

AASRA-based annotation of sperm sncRNAs

Two advantages of AASRA over the existing sncRNA annotation
software packages include the following: 1) it can identify novel
sncRNA variants with small overhangs or internal insertions, dele-
tions or mutations. 2) It can annotate not only miRNAs (both mature
miRNAs and pre-miRNAs), but also all known sncRNA species
collected in various databases. A key question remains: do those

sncRNA variants exist in the sncRNA-Seq reads by a substantial
proportion? If so, these sncRNA variants should not be overlooked
in quantitative analyses. To answer this question, we annotated
the sperm sncRNA-Seq data generated by both the Ion Proton
and the Illumina sequencers using both AASRA and miRDeep.
AASRA simultaneously annotated nine known species of sncRNAs
from mouse sperm sncRNA-Seq reads (Figure 5A). By comparing
the unique mature miRNA counts determined by miRDeep and
AASRA, we found that AASRA identified 37% more unique mature
miRNA counts than miRDeep (Figure 5B). Although miRDeep could
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Figure 5. Annotation of sperm sncRNA-Seq data using AASRA. (A) Pie chart showing the count distribution of nine sncRNA species in murine sperm annotated

using AASRA. (B) Scatter plot showing that AASRA could identify 37% more miRNAs than miRDeep in 1/12 of the time needed by miRDeep. (C) Counts of four

miRNAs and their precursors in the sperm sncRNA-Seq data, as determined by AASRA. (D) Counts of four mature miRNAs in murine sperm sncRNA data, as

determined by AASAR and miRDeep. (E) The contents of the AASRA counts of the four mature miRNAs shown in panel D. Note that mismatches, deletions,

insertions, and overhangs appear to be common in the sncRNA sequencing reads.

not annotate precursor miRNAs, AASRA identified both mature
and precursor miRNAs (Figure 5C). Interestingly, murine sperm
appeared to contain numerous precursor miRNAs, which would not
have been identified using miRDeep or other sncRNA annotation
software packages (Figure 5C). Further examination of the align-
ment results for the four miRNAs (mir-376a, mir-361, mir-93, and
mir-4660) revealed that AASRA not only identified more mature
miRNAs than miRDeep, but also detected various miRNA vari-
ants, including those containing small (1–2 nt) overhangs, internal
insertions, deletions or mutations, whereas these sncRNA variants
were not detected by miRDeep (Figure 5D). For example, ∼ 80%
of the sequencing reads aligned to miR-93 all contained overhangs,

which could be either biological variants of miR-93 or sequencing
errors. Regardless, such a large number of miR-93 variants would
have been totally ignored if other existing software packages were
used (Figure 5D). If one wants to exclude these sncRNA variants,
a more stringent alignment can be performed through adjusting the
parameters, including anchor sequence and mismatch penalty. For
example, four levels of specificity settings (high_specificity1, 2, 3,
and ultra) (Supplementary Figure S9A) were tested for sequence
alignment stringency. At the ultra-high specificity setting, AASRA
could eliminate all the sequences with 1–2 nt overhangs in the
simulation data (Supplementary Figure S9B). Under the same set-
ting, perfectly matched miRNAs could be readily identified from a

https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioab062#supplementary-data
https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioab062#supplementary-data
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mixture of miRNA sequences with 1–2 nt overhangs (Supplementary
Figure S9C). The ultra-high specificity setting made AASRA function
similarly as miRDeep, whereas a less stringent setting allowed for
the identification of miRNA variants (Supplementary Figure S9D).
It will be up to the investigators to decide whether those sncRNA
variants should be included or excluded in the final counts during
sncRNA annotation depending on the nature of specific experiments
conducted.

Discussion

The rapid advance of next-generation sequencing technologies has
led to the discovery of hundreds thousands of sncRNAs [2]. Increas-
ing lines of evidence suggest that these sncRNAs play regulatory roles
critical to development and physiology [2]. Despite the rapid pace of
sncRNA discovery, the bioinformatic tools for sncRNA annotation
are very limited. None of the currently available sncRNA annotation
pipelines can annotate simultaneously all known sncRNA species,
nor can they tolerate sequences with mismatches, although these
sncRNA variants are likely due to sequencing errors, but biolog-
ically relevant. AASRA utilizes a unique, anchor alignment-based
algorithm, and is capable of annotating all known sncRNAs simulta-
neously. The specificity setting of AASR is adjustable such that small
mismatches due to overhangs, insertions, deletions, or mutation, can
be either included or excluded. AASRA can identify a much greater
number of sncRNA counts (e.g., ∼ 37% more identified from the
murine sperm sncRNA-Seq data) compared to any of the existing
pipelines because of the use of the anchor alignment algorithm.
This feature offers the possibility of minimizing quantification bias
caused by 1) over-counting (due to double and ambiguous align-
ments) and/or 2) exclusion of variant sequences in the sncRNA-Seq
data (although these variants should be counted because they are
produced by the cells, but simply slightly different from the main
sncRNA sequences most likely due to sequencing errors). The fact
that these variant sequences account for a large proportion of the
total counts (e.g., up to 80% for mmu-miR-93), elimination of these
variants would greatly skew the real expression profile, leading to
inaccurate interpretation and conclusions. Since all existing sncRNA
annotation software packages do not have these functions, AASRA
will be very useful for investigators to revisit their sncRNA data to
see how many variants were inadvertently excluded, and whether
such exclusion had caused quantitation bias that would compromise
their conclusions. Depending on the needs of the investigators, those
variants can also be excluded by applying more strict alignment
parameters.

The capability to annotate the precursor miRNAs is another
useful feature of AASRA. Interestingly, a large number of precursor
miRNAs appear to be present in sperm, which would not have
been discovered if other existing programs were used. Although
miRanalyzer and sRNAbench can annotate precursor miRNAs,
they can only annotate those with perfect or near perfect matches
although a significant proportion of reads do have overhangs of
2 nt or longer or mismatches in the sequencing reads. Mature
miRNAs have been found in sperm of multiple species, including
mouse [41, 47], rat [32, 48], cow [49], horse [50], monkey [41,
51], and human [51, 52]. However, sperm-borne precursor miRNAs
have not been reported. Given that these precursor miRNAs can be
potentially delivered into the eggs during fertilization, their potential
regulatory roles would be an intriguing topic for future investiga-
tion.

AASRA represents the first universal sncRNA annotation soft-
ware package, which allows for simultaneous annotation of all
known sncRNAs with high speed and accuracy. AASRA can anno-
tate not only known sncRNA species, but also sncRNA variants con-
taining small overhangs, or internal deletions/insertions/mutations.
AASRA provides another useful bioinformatic tool for studying
sncRNA biology.
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