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Abstract

Intrinsically disordered proteins (IDPs) are widely distributed across eukaryotic cells, playing 

important roles in molecular recognition, molecular assembly, post-translational modification, and 

other biological processes. IDPs are also associated with many diseases such as cancers, 

cardiovascular diseases, and neurodegenerative diseases. Due to their structural flexibility, 

conventional experimental methods cannot reliably capture their heterogeneous structures. 

Molecular dynamics simulation becomes an important complementary tool to quantify IDP 
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structures. This review covers recent force field strategies proposed for more accurate molecular 

dynamics simulations of IDPs. The strategies include adjusting dihedral parameters, adding grid-

based energy correction map (CMAP) parameters, refining protein–water interactions, and others. 

Different force fields were found to perform well on specific observables of specific IDPs but also 

are limited in reproducing all available experimental observables consistently for all tested IDPs. 

We conclude the review with perspective areas for improvements for future force fields for IDPs.

Graphical Abstract

Keywords

Intrinsically disordered proteins; Force field; CMAP; Dihedral parameters; Molecular simulations; 
AMBER; CHARMM; OPSL-AA; GROMOS

INTRODUCTION

Intrinsically disordered proteins (IDPs) are widely distributed across eukaryotic cells, 

comprising more than 40% of eukaryotic proteins.1 Even if IDPs lack physiologically stable 

three-dimensional structures,2 they are found to be integral parts of biological processes 

such as molecular recognition, molecular assembly, post-translational modification, and 

others.3–5 IDPs are also mostly associated with many diseases such as cancers, 

cardiovascular diseases, and neurodegeneration diseases.6–9 For example, disordered 

structures are found in the p53 tumor suppressor,9 the abnormally phosphorylated Tau 

protein,7 and the prion protein.10 The disease associated IDPs have a highly disordered 

central core region that often serves as a drug target site. The structural studies of these core 

disordered region are desirable for the discovery of tissue-specific drugs.11

Due to the dynamical nature of IDPs, their structures cannot be determined easily as 

structured proteins by conventional experimental methods (i.e., X-ray,12 nuclear magnetic 

resonance (NMR),13 small-angle X-ray scattering (SAXS),14 Forster resonance energy 

transfer (FRET),15 circular dichroism (CD), or single molecular spectroscopy16). These 

methodologies can only provide mean attributes and global structural signatures of IDPs for 

the entire assemblies. Furthermore, these methodologies cannot capture the diversified 
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conformers of IDPs, a rather significant feature for IDPs. Therefore, additional 

methodologies are required to further quantify the IDP structures, so that further structural 

and dynamical properties can be carried out.

With recent advancements in hardware (i.e., graphic processing units) and software (i.e., 

replica exchange methods,17 high-performance molecular simulations have become 

routinely available to investigate the IDPs. These simulation methods can be used to 

calculate average observables in the same way as experimental methods. However, 

simulations methods do have limitations, with the most significant being the inconsistency in 

empirically developed physical models used for IDP simulations. The inconsistency can be 

attributed broadly into the issues in the force fields and the water models, which are both 

crucial for the accuracy of molecular simulations. For decades, researchers have tried hard to 

develop better force fields and water models to improve simulation results in folded proteins,
18–20 such as AMBER force fields,21 CHARMM force fields,22 OPLS-AA force fields,23 

and GROMOS force fields.24 However, it is more difficult to simulate IDPs, due to their 

extreme flexibility leading to more broadly distributed conformational states and also more 

potential local energy traps.

Many force fields have also been tailored for simulation studies of IDPs, with two major 

rationales for improving their quality. The first is to adjust force field parameters that may 

lead to global optimization, which means that the performance of both folded and nonfolded 

protein (IDPs) simulations can be improved. The second is to adjust the propensities of 

secondary structures to make it possible to observe unfolded secondary structures widely 

seen in IDPs. In certain cases, these reparametrization efforts amount to retraining an 

existing base force field. Training data are primarily derived from experimental and/or 

quantum mechanical data. Different training sets certainly lead to force fields of different 

applicability. For example, if we are interested in rebalancing the propensities of IDP 

secondary structures, we may use short peptides as training models, such as (AAQAA)3 for 

α-helix,25 GB1 hairpin,26 and chigolin for β-hairpin.27 In this article, we review some of the 

IDP force fields that have recently been developed and the strategies adopted for their 

reparametrization.

Adjusting Dihedral Parameters.

Dihedral angles can be divided into backbone dihedrals (i.e., ϕ and ψ) and side-chain 

dihedrals (i.e., χ1 and χ2). Currently, refinement of the backbone dihedral parameters is 

more common among recent IDP force fields. For several protein force fields, the most 

common issue in simulations of IDPs is overestimating populations of secondary structures, 

such as α-helix and β-sheet, which are often disordered in IDPs. Many protein force fields 

uniformly lead to overestimation.28–31 One way to resolve the limitation is to incorporate 

dihedral data of coil fragments into the training sets used to train force fields. Indeed, 

reparameterization of dihedral parameters is often the first choice to improve a protein force 

field.

In general, the dihedral potential energy function will be described as eq 1.
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Edihedral = ∑
dihedrals

Kχ[1 + cos(nχ − σ)] (1)

The Kχ means the energetic parameter that determines barrier heights, χ is the value of the 

dihedral, n is the periodicity or multiplicity, and σ is the phase.

The backbone parameter is part of the whole dihedral parameter, which in current force 

fields, often described as eq 2.

Edihedral = ∑
dihedrals

V 1
2 (1 + cos φ) + V 2

2 (1 − cos 2φ) + V 3
2 (1 + cos 3φ)

+ V 4
2 (1 − cos 4φ)

(2)

V1–V4 have similar meanings as Kχ, and φ represents the backbone dihedral (i.e., ϕ and ψ).

For IDP force fields, this approach has been used in ff03* and ff99SB*,32 based on the 

ff0318 and ff99SB,19 respectively. Both of the force fields use Lifson–Roig helix–coil 

theory33 to calculate the helix–coil parameters. These two force fields can somehow fit in 

with NMR experiments for folded proteins and short peptides. However, the helical contents 

are overestimated by ff03* with respect to that of ff03, while the helical contents of ff99SB* 

are underestimated with respect to that of ff99SB. Note that both ff03* and ff99SB* were 

developed in the context of the TIP3P water.34 Another ff03 series force field, ff03w, was 

found to improve over ff03* in the context of the TIP4P/2005 water.35 Two recent OPLS 

protein force fields (i.e., OPLS-AA/M36 and OPLS337) were also developed with this 

strategy, and both involve reparameterization of the backbone dihedral and side-chain 

dihedral with respect to training set of ab initio torsional energy scanning data of blocked 

dipeptides. The OPLS-AA/M made progress in simulating proline dipeptides and glycine 

tripeptides, showing its ability to simulate IDPs. The OPLS3 force field was found to 

perform well in protein–ligand binding simulations.37 In the CHARMM force fields, 

CHARMM22*38 is also a result of refitting effort of CHARMM2239 following a similar 

strategy. This force field mainly focuses on the folding and unfolding transitions. During a 

100 μs simulation of the villin headpiece (PDB ID: 2F4K), CHARMM22* gave the best 

agreement with both the kinetic and thermodynamic properties of experimental data.

In addition to direct refitting of universal dihedral parameters, it is also possible to use 

residue-specific dihedral parameters to further improve agreement with experimental 

observables. Using this strategy, the RSFF140 and RSFF241 force fields were developed by 

Wu and co-workers. Both efforts were based on rotamer distributions from a protein coil 

library as the training set. It is worth pointing out that the RSFF1 is derived from OPLS/

AA42 while the RSFF2 is derived from ff99SB,19 but both followed similar workflows. Both 

RSFF1 and RSFF2 successfully fold the α-helix part in Trp-cage and Homeodomain and the 

β-sheet part in Trpzip-2 and GB1 hairpin. Moreover, the RSFF2 solves the problem that 

RSFF1 overestimates the stability of both α-helix and β-sheet.
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Adding CMAP Parameters.

CMAP is the shorthand notation for grid-based energy correction map,43,44 based on a two-

dimensional distribution of backbone dihedrals. Both backbone dihedrals are evenly divided 

by a sampling bin size, typically 15°. This would result in a total of 576 bins covering the 

two-dimensional dihedral space per residue. The conformational free energy of each bin can 

then be calculated as eq 3.

ΔGi = − RTln Ni
Nmax

(3)

where Ni, refers to the number of dihedral data falling in bin i, (the value is to set to 1, if 

there is no dihedral data to prevent singularity) and Nmax refers to the total number of 

dihedral data in the sampling.

The conformational free energy of each residue can therefore be derived from both a 

database (ΔGi
DB) and a force field simulation (ΔGi

MM), and the correction value of CMAP 

can be represented as eq 4.

Ei
CMAP = ΔGi

DB − ΔGi
MM (4)

Apparently, only a discrete set of 576 energy correction values can be obtained if the bin size 

is 15°. The bicubic interpolation method45 can then be used to generate a continuous and 

smooth energy correction surface in order to compute the energy correction value for any 

conformation, as in eq 5.

f(ϕ, ψ) = ∑
i = 1

4
∑
j = 1

4
cij ϕ − ϕL

Δϕ
i − 1 ψ − ψL

Δψ
i − 1

(5)

where ϕL and ψL refer to the backbone dihedrals of the conformation of interest, while Δϕ 
and Δψ refer to the bin size (15°).

Initially, the CMAP method was used in CHARMM22/CMAP (also termed as 

CHARMM27) based on CHARMM22.39,44 Although CHARMM27 has balanced between 

the helix and coil, it cannot generate a stable hairpin structure and overestimating the helical 

conformation when simulating the α-synuclein.46 Thus, a subsequent force field 

CHARMM36 improves the potential of CMAP, based on experimental NMR data.47 The 

newer force field was found to enhance cooperativity of helix and hairpin formation, while 

retaining comparatively high accuracy when simulating folded proteins. However, left-

handed helices could be overpopulated when simulating some IDPs with CHARMM36. 

CHARMM36m was later developed and solved this limitation.48 In CHARMM36m, Cα 
atoms are divided into three groups according to residue type: CT2 for glycine, CP1 for 

proline, and CT1 for the remaining 18 amino acids. This amounts to adopting a minimal 

residue-specific CMAP strategy. CHARMM36m is also a balanced force field for both IDPs 

and folded proteins, since its training set includes not just IDPs. Another force field a99SB-

disp,49 using similar strategy to CHARMM36m48 and based on the ff99SBildn and TIP4P-D 
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water model, is mildly refined the torsional parameters and nonbond parameters.49,50 This 

force field tends to balance between the IDPs and folded proteins. However, the problems 

occur upon simulating the aggregation of Aβ16–22
51 and Aβ40,52 with inaccuracy of the β-

hairpin conformations.

Previous studies indicate that the amino acid composition of IDPs differs considerably from 

that of folded proteins.53,54 Thus, in early residue-specific CMAP force fields for IDPs, i.e., 

ff99IDPs28,55 (developed from ff99SBildn50) and ff14IDPs29 (developed from ff14SB), the 

CMAP potential is only modified for eight disorder-promoting amino acids (G, A, S, P, R, 

Q, E, and K), compiled from NMR data of IDPs.56 In subsequent development of CMAP-

based force fields, ff14IDPSFF57 and CHARMM36IDPSFF,58,59 the use of CMAP potential 

is expanded to all 20 standard amino acids. These were developed from ff14SB and 

CHARMM36m, respectively. It was found that ff14IDPSFF performs very well in long-time 

simulations (i.e., microsecond time scales) and reproduces NMR observables.60 

CHARMM36IDPSFF force field also performs well in both multiple-trajectory simulations 

and replica-exchange simulations. Figure 1 illustrates their consistence with a well-studied 

IDP, Amyloid β protein 1–42 (Ab42). A recent comparison of multiple IDP force fields 

indicates that IDPs-specific force fields in general substantially improve the agreement of 

simulated observables with experiment. Interestingly CHARMM22*38 performs better than 

CHARMM36m48 for many observables, though it still has a preference toward helicity in 

simulations of short peptides.61

A residue-specific OPLS force field, OPLSIDPSFF, was also proposed with a similar CMAP 

strategy to correct backbone torsion terms for all 20 standard residues.31 The OPLSIDPSFF 

was developed from OPLS-AA/L42 and was meant to combine with the TIP4P-D water.31 

The OPLSIDPSFF force field can reproduce most experimental data for the tested proteins, 

especially for NMR chemical shifts and scalar couplings when combined with TIP4P-D 

water model.

To simulate biological molecules with folded and disordered regions, both folded and 

disordered conformations should be well reproduced with a given force field. The 

ff03CMAP is one example.30 This is because its development was based on a different 

training set containing not only IDPs but also folded proteins. This demonstrates the 

significance of choosing training models. The ff03CMAP force field could be used in 

conjunction with TIP4P-Ew62 and TIP4P-D63 water models. The ff03CMAP/TIP4P-Ew 

combination is especially suitable for folded protein simulation, while the ff03CMAP/

TIP4P-D combination performs well in IDP simulations.30

In addition, Wu and his co-workers developed a three-dimensional-CMAP force field called 

RSFF2C based on RSFF2, with correction not only in the backbone dihedrals (ϕ and ψ) but 

also in the side-chain dihedral (χ1).64 The RSFF2C force field significantly improves the 

backbone dihedral sampling of both folded and disordered proteins and ab initio folding of 

various fast-folding proteins.

A previous experiment of short peptides indicates that neighboring residues have a crucial 

effect on the stabilities of secondary structures by influencing their hydration environments.
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65 Thus, the ESFF1 force field was developed by extending the residue-specific CMAP 

correction by considering the sequence environment of each residue.66 The sequence 

environment of a residue is classified as polar if the residue’s neighbor is Gly, Ser, Tyr, Cys, 

Asn, Gln, Thr, His, Glu, Asp, Arg, and Lys. Its sequence environment is classified as 

nonpolar if its neighbor is Met, Trp, Phe, Val, Leu, Ile, Pro, and Ala. Subsequently, a total of 

four (polar/nonpolar-X-polar/nonpolar) sequence environments emerge for each of the 20 

residues. Extensive simulation results show that ESFF1 can reproduce the NMR 

measurements of 61 short peptides and IDPs well. The ESFF1 also achieves a reasonable 

balance between the folded and disordered proteins by implementation of 71 well trained 

environmental CMAP parameters.

Refining Protein–Water Interactions.

In simulations of IDPs, the interaction between protein and water is particularly essential, 

because they do not have robust hydrophobic cores with many buried nonpolar residues. 

This shows the importance of selecting the right water model with the right force field. The 

nonbond interactions between protein and water can be divided into electrostatic and van der 

Waals components, which are represented by atomic partial charges and L-J parameters. The 

protein–water van der Waals interaction in particular was found to often influence the size of 

simulated IDPs as measured by the radius of gyration, Rg. In early MD simulations of IDPs, 

Rg is often a basic property to monitor as it can be readily inferred from experimental 

methods such as SAXS and FRET.67 However, many early IDP force fields trained with 

NMR data cannot lead to IDPs extended enough to be consistent as observed in experiment. 

In many later generations of IDP force fields, this limitation was successfully addressed. For 

example, the CHARMM36m48 and a99SB-disp49 force fields discussed in the previous 

section on CMAP correction also includes refinement of the protein–water L-J potential 

parameters.

There are many approaches to refine the water–protein interaction, though the L-J potential 

is often adjusted48,49,63,68,69 The formula of L-J potential (also known as 12–6 potential) can 

be expressed as eq 6.

V ij, L − J = 4εij
σij
rij

12
− σij

rij

6
(6)

The effects of improper coupling of water models and force fields and failures of current 

water models were discussed in detail by Shaw and co-workers.49 The TIP4P-D water model 

was subsequently proposed with a larger oxygen value ε. This water model does improve the 

Rg values of some simulated IDPs but it also causes some α-helix to unfold and 

overestimates the Rg of several longer IDPs. This strategy has been adopted in the 

development of ff03ws based on ff03w and TIP4P/2005.69 This force field, in a way, solved 

another big problem that exists among previous IDP force fields: the overstabilizing the 

protein–protein interaction, which often influences the aggregation behaviors of IDPs. On 

the contrary, a force field termed a99SB-UCB68,70 that also modified the nonbonded and 

backbone parameter somehow can solve this problem. The CHARMM36m adjusts both 

oxygen and hydrogen atoms of water48 to improve its performance in simulations of IDPs.
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The Kirkwood–Buff (KB) solution theory offers another angle to quantify the protein–water 

interaction and have been utilized to develop nonprotein force fields.71–73 An IDP force field 

was also developed based on the KB theory (termed KBFF).74 In addition, an IDP force field 

utilizing the traditional nonbond fix strategy (NBFIX) was proposed (termed CUFIX).75 The 

simulation results of proteins, nucleic acids, and lipids were found to have a remarkable 

agreement with experimental data by introducing these modifications.75

Besides the explicit solvent model, the implicit solvent model is another way for IDP 

simulation. Compared with the explicit solvent models, the implicit solvent models use 

additional potentials rather than real water molecules to describe the influence of solvent. 

The general free energy of solvation is usually divided into three parts, shown as eq 7.

ΔGsol = ΔGcav + ΔGvdW + ΔGele (7)

Solvent-accessible surface area (SASA) methods model either the nonpolar terms ΔGcav + 

ΔGvdW or the entire ΔGsol term, while Poisson–Boltzmann and Generalized-Born methods 

model the ΔGele term. Because they use much less computational resources, implicit models 

are used in large-scale screening76 and large-system simulation,77 which is important for 

IDP studies. Implicit solvent models are also applied to protein–surface research.78 Some 

popular Generalized-Born solvent models are shown in this review.79

Other Strategies.

Although the refinement of dihedral parameters and CMAP correction are the most common 

techniques for developing IDP force fields, IDP-specific force fields can also be configured 

in several other ways. Ramanathan and co-workers utilized small-angle scattering (SAS) 

data as their training set to develop a ForceBalance-SAS force field.80 A key strategy in this 

effort is to rely on machine learning to optimize a set of force field parameters 

simultaneously. This approach could help us to avoid the issue of overcorrection that often 

appears early on.

Coarse-grained IDPs force fields are also available. AWSEM-IDP81 was also developed 

from the AWSEM force field.82 AWSEM has been successfully used to study protein 

folding, binding, and aggregation problems. The MOFF force field83 is another coarse-

grained IDP force field developed with the maximum entropy algorithm84 with respect to a 

range of experimental data, and is used for successful simulation studies of IDPs.

Even with various improvements discussed above, limitations do exist as it is often very 

difficult to balance the performance between folded and disordered proteins with a given 

combination of force fields and water models. Apparently, there is a limit in refinement of 

dihedral terms and protein–water van der Waals interactions if we insist on a unified protein 

force field to be used for both folded and disordered proteins. The electrostatic and 

hydrogen-bonding interactions in IDPs may also play key roles in their structural 

preferences. Thus, the next step for improving the performance and accuracy of the IDP-

specific force field might be on these polar interactions. Indeed, the charge distribution of a 

residue should be perturbed by its neighboring residues and solvent exposure, which in 

principle can be handled by the emerging polarizable force fields.
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A great deal of effort has been devoted to developing modern polarizable force fields, 

including the fluctuating charge models85,86 in the context of OPLS-AA, the fluctuating 

charge model and the Drude oscillator model87–91 in the context of CHARMM, and detailed 

multipole expansions and more complicated MM potentials in the context of Amoeba.92,93 

In Amber, polarization was implemented with induced dipoles.94 In Amber ff12pol, the 

induced dipoles are calculated using Thole models to avoid “polarization catastrophe”.95–98 

The latest efforts have shifted to the use of Gaussian models for more consistent treatment of 

electrostatics in Amber.99–101 There has been encouraging applications of polarizable force 

fields in protein simulations. The CHARMM Drude force field is shown to be able to 

simulate the folding of the helical (AAQAA)3 peptide102 and the unfolding of a b-amyloid 

fragment.103 It is clear that the limitation of polarizable force fields is their low efficiency. 

However, efficient software packages, particularly those that can best take advantage of the 

more efficient GPUs, are emerging and will positively impact molecular simulations of 

IDPs.

Enhanced Sampling Methods.

Unlike the folded proteins, either simulating equilibrium structures or studying the 

mechanism of interactions and aggregations of IDPs needs large-scale sampling. To facilitate 

the cost of computational resources, enhanced sampling methods are essential to IDPs. 

There are mainly three types of ideas. The first is by using additional potential energy term 

to overcome the energy barrier, which includes metadynamics104,105 and umbrella sampling.
106 The former adds potential energy according to the chosen collective variables (CVs) 

while the latter adds potential energy in an elastic form. The second idea is to exchange 

replicas from parallel trajectories, including temperature replica exchange molecular 

dynamics (T-REMD),17 temperature cool walking (TCW),107 and bias exchange 

metadynamics (BEMD).108 The difference between these three is the T-REMD is based on 

MD simulation, while the TCW and BEMD are based on Monte Carlo simulation and 

metadynamics. The T-REMD, often referred to as REMD, is perhaps the most popular 

enhanced sampling method. The last idea is using both principle component analysis (PCA) 

and a kind of edge searching method to find the “edge structures” on the energy surface and 

running seed MDs based on the structures chosen. By circularly running this workflow, the 

sampling points will gradually escape from the initial potential energy trap. The structure 

dissimilarity sampling (SDS),109 parallel cascade selection MD (PaCS-MD),110–113 self-

avoiding conformational sampling (SACS),114 complementary coordinates MD (CoCo-MD),
115 and frontier expansion sampling (FES)116 all belongs to this type. The only difference 

between these methods is the algorithm they use to find the frontier structures, like the 

convex hull algorithm used in the FES method.

Force Field Benchmark.

The unification of simulation and experiment is the key point of force field benchmark. The 

most popular experimental data used are SAXS, FRET, and NMR data. The SAXS and 

FRET experimental data can tell detailed changes in the protein shapes. The NMR chemical 

shift and J-coupling data give information about the secondary information on each single 

residues while the NOE data show the long-range interactions between residues. Besides 
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these statistical data, IDPs that already have prior knowledge may be the best systems for 

IDP force field benchmarking.

Aβ16–22 and Aβ40 are well-studied IDPs related to neuro-degenerative disease, of which the 

aggregation phenomenon is of great importance. Strodel and co-workers have compared 

many AMBER, CHARMM, OPLS, and GROMACS force fields on these IDPs.51,52,117 For 

Aβ16–22, Gromos54a7 and OPLS-AA overstabilized protein–protein interactions while 

AMBER99SB*ILDN and CHARMM22* also produce the oligomer formation too fast. The 

ff03ws may be the suitable force field for Aβ16–22.51 Further study shows that 

CHARMM36m produced by Huang and co-workers48 also performed well.117 For Aβ40, 

MD simulation of a large time scale was produced, revealing that a99SB-UCB and ff99SB-

IDLN (with TIP4P-D) have the best and the second-best performance. Meanwhile ff03ws 

gives too much helix conformation and ff99SB*-IDLN (with TIP3P) gives too much β-sheet 

conformation. ff99SB-disp, CHARMM22*, and CHARMM36m have acceptable results.52

The RS peptide with repeating arginine and serine was sampled by Rauscher et al. using T-

REMD.118 The CHARMM22* and CHARMM36m, both with TIP3P, performed the best. 

The ff03ws and CHARMM36m, both with TIP4P-D, get more expanded structures than 

expected.

For the α-synuclein that has a structural character of β hairpin fragment, six force fields 

were tested in a relatively short time scale (500 ns).46 It was reported that the CHARMM27 

and OPLS-AA did not stabilize the β-hairpin, while ff03 and GROMACS 43A1 generated a 

shorter hairpin compared with the native one. The ff99SB and GROMACS 53A6 gave a 

stable β-hairpin conformation, but the latter one was found to overestimate the β-strand 

conformation.

Histain5 is another typical 24 residues IDP used for comparing force fields. It was found that 

ff99SB-IDLN, ff99SBnmr-IDLN, GROMACS 53A6, and GROMACS 54A7 generate too 

collapsed ensembles compared with experimental results. By modifying protein–water 

interactions, the ff03ws and ff99SB-IDLN with TIP4P-D generate more expanded 

conformations.119,120

Other protein systems, such as p53, polyQ, and hIAAP, were all tested in the previous 

studies. The system and used force field are all shown in Table 1, the force fields with good 

performances are labeled in bold.

CONCLUSION

In this review, we have summarized various strategies for improving force fields for 

molecular simulations of IDPs in recently published IDP force fields. The two parameters 

most frequently revised for IDP force fields are the backbone dihedral parameters and the L-

J potential parameters for protein–water interactions. Mostly the training data are from 

experimental observables and ab initio quantum mechanical calculations. Apparently both 

reparameterization strategies and training sets influence the final developed force field. The 

parent force fields and strategies are shown in Table 2.
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It is subject to debate that the polarizable force fields may hold the key for more consistent 

simulations of both folded and disordered proteins. And their adoption will become more 

widespread as both software and hardware improve.

There are clearly many unresolved issues in force field strategies for IDPs. For example, the 

current IDP force fields are limited to simulations with standard amino acids. However, post-

translation modifications (PTMs) are very common in IDPs. There were several PTM force 

field parameters available,125–128 but IDP-specific parameters are still lacking for accurate 

simulations to study the effects of PTMs in IDPs. In addition, balancing local structural 

features (i.e., NMR chemical shift) and global structural features (i.e., Rg) is a more 

challenging problem to be solved in the years to come in molecular simulations of IDPs. 

Apparently molecular dynamics is not the only theoretical or computational approach in 

IDPs as recently reviewed.11,129,130
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Figure 1. 
Comparison of 3JHNHα couplings, chemical shift, and Rg between multiple-trajectory and 

REMD simulations. (a) Residual 3JHNHα couplings. (b) Correlation of calculated 3JHNHα 
couplings between multiple-trajectory and REMD simulations. (c) Residual chemical shifts 

of Cα atoms. (d) Correlation of calculated chemical shifts of Cα atoms between multiple-

trajectory and REMD simulations. (e) Probability distribution of Rg from the simulated 

ensembles of Aβ42 generated by multiple-trajectory and REMD simulations. The range of 

experimental Rg is marked by two dash lines. The averaged Rg values from both simulation 
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methods are marked by the solid lines and are labeled with the same colors of corresponding 

simulation methods.
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