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A B S T R A C T   

Background: Discover possible Drug Target Interactions (DTIs) is a decisive step in the detection of the effects of 
drugs as well as drug repositioning. There is a strong incentive to develop effective computational methods that 
can effectively predict potential DTIs, as traditional DTI laboratory experiments are expensive, time-consuming, 
and labor-intensive. Some technologies have been developed for this purpose, however large numbers of in-
teractions have not yet been detected, the accuracy of their prediction still low, and protein sequences and 
structured data are rarely used together in the prediction process. 
Methods: This paper presents DTIs prediction model that takes advantage of the special capacity of the structured 
form of proteins and drugs. Our model obtains features from protein amino-acid sequences using physical and 
chemical properties, and from drugs smiles (Simplified Molecular Input Line Entry System) strings using 
encoding techniques. Comparing the proposed model with different existing methods under K-fold cross vali-
dation, empirical results show that our model based on ensemble learning algorithms for DTI prediction provide 
more accurate results from both structures and features data. 
Results: The proposed model is applied on two datasets:Benchmark (feature only) datasets and DrugBank (Structure 
data) datasets. Experimental results obtained by Light-Boost and ExtraTree using structures and feature data 
results in 98 % accuracy and 0.97 f-score comparing to 94 % and 0.92 achieved by the existing methods. 
Moreover, our model can successfully predict more yet undiscovered interactions, and hence can be used as a 
practical tool to drug repositioning. 
A case study of applying our prediction model on the proteins that are known to be affected by Corona viruses in 
order to predict the possible interactions among these proteins and existing drugs is performed. Also, our model 
is applied on Covid-19 related drugs announced on DrugBank. The results show that some drugs like DB00691 
and DB05203 are predicted with 100 % accuracy to interact with ACE2 protein. This protein is a self-membrane 
protein that enables Covid-19 infection. Hence, our model can be used as an effective tool in drug reposition to 
predict possible drug treatments for Covid-19.   

1. Introduction 

Interactions between drugs and targets indicate that the drug is 
linked to the target site that causes a change in behavior. Drugs or refers 
to essential medicines, which have chemical compound that may cause 
material change in the human body when consumed, by injection or 
absorbed. The targets are any part of the organism to which the drug is 
linked to make physiological changes. Predictions of drug-target in-
teractions play a vital role in drug detection aimed at identifying new 
drug compounds for biological objectives (Vuignier et al., 2010). 

The most common drug targets of currently drugs are:  

• protein—coupled receptors  
• Enzymes  
• Ion channels 

Fig. 1 shows the different biological interactions that could occur 
between Drug and target. In DTI, the chemical compound of the drug is 
linked to the target molecule by forming the provisional bonds. The drug 
attached then interacts with the biological objective to make a positive 

* Corresponding author. 
E-mail addresses: eng_heba_2010@eng.kfs.edu.eg1 (H. El-Behery), aheliel@eng.kfs.edu.eg2 (A.-F. Attia), nawal.elfishawy@el-eng.menofia.edu3 (N. El-Fishawy), 

htorkey@el-eng.menofia.edu.eg4 (H. Torkey).  

Contents lists available at ScienceDirect 

Computational Biology and Chemistry 

journal homepage: www.elsevier.com/locate/cbac 

https://doi.org/10.1016/j.compbiolchem.2021.107536 
Received 13 October 2020; Received in revised form 23 June 2021; Accepted 24 June 2021   

mailto:eng_heba_2010@eng.kfs.edu.eg1
mailto:aheliel@eng.kfs.edu.eg2
mailto:nawal.elfishawy@el-eng.menofia.edu3
mailto:htorkey@el-eng.menofia.edu.eg4
www.sciencedirect.com/science/journal/14769271
https://www.elsevier.com/locate/cbac
https://doi.org/10.1016/j.compbiolchem.2021.107536
https://doi.org/10.1016/j.compbiolchem.2021.107536
https://doi.org/10.1016/j.compbiolchem.2021.107536
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiolchem.2021.107536&domain=pdf


Computational Biology and Chemistry 93 (2021) 107536

2

or negative change by using the messages and then leave the biological 
target. These drugs goal is preventing some stimulating reactions in the 
human body to treat diseases, which is achieved by preventing 
communication with certain enzymes called stilts (Vuignier et al., 
2010). 

DTIs can occur in different ways. In drug known as competition in-
hibitors, the drug links itself to the active target site of the reaction. 
Another drug type, called lostereroic inhibitors, is associated with the 
site of the lostereroic target. It works on changing the shape and struc-
ture of the target to protect some substrate from being identified, and 
hence prevent the reaction of the target. Preventing the reaction of the 
target can succeed in correcting the imbalance in the metabolic balance 
or killing pathogens to treat diseases (Insel et al., 2019). Drug can also 
target the cell receptors, which are the proteins that recognize and 
respond to the body’s own chemical messengers such as hormones and 
neurotransmitters (Chen et al., 2013) Receptor proteins are located 
either on the surface of the cell or inside the effector cell. Receptors 
perform two essential function; recognition of messenger molecule, and 
transduction of the signal into a response. There are a huge number of 
various receptors in the body, which interact with different chemical 
messengers (Sachdev and Gupta, 2019a). Predicting drugs target inter-
action has different applications; it facilitates the process of drug dis-
covery, drug repositioning and drug side effect prediction (Zhang, 
2011). 

Targeted drug interactions can be inferred through wet laboratory 
experiments using various techniques of traditional and inverted drugs. 
However, laboratory experiments to predict these interactions take time 
and cost (Ezzat et al., 2018). Computational forecasting DTIs is an 
open-ended problem, where, machine-learning methods are utilized, 
and the new data are represented. There are different factors that 
determine how to use within the silicone to confirm the interaction. 

Computational methods for predicting drug-targeted interactions 
can be broadly categorized into three categories: ligand methods, 
docking methods and chemogenomic methods. Fig. 2 categorized the 
different methods for prediction DTI (Sachdev and Gupta, 2019a). 
Ligand methods are developed based on the idea that similar molecules 
are usually associated with similar protein targets. Thus, these ap-
proaches predict interactions based on similarities between connections 
protein. The disadvantage of this method is that the time to perform the 
calculation increasing with the square of the size of the training set. 
While docking methods use 3D structures for drugs and proteins to 
predict whether they will react. Docking approaches are subject to some 
flaws. For instance, there are some proteins, such as membrane proteins, 
that do not know structures in three-dimensional because predicting 
their structures is a difficult task (Fleuren and Alkema, 2015). The 
chemogenomic methods use drug and protein omics data for pre-
dictions. Chemogenomic methods can overcome the disadvantages of 
the existing ligand and docking techniques. It can use large-scale bio-
logical data that is readily available in public databases on the Internet. 

Chemogenomic approaches can be categorized into different cate-
gories, such as machine learning-based methods, graph methods and 
network methods (Shia et al., 2019). Among all the chemogenomic 

approaches, the machine Learning methods have gained the greatest 
attention to reliable predictive results. Machine Learning methods can 
be more broadly categorized into two categories; features and similarity 
methods (Sachdev and Gupta, 2019a). 

The feature methods represent target-drugs pairs with a carrier of 
descriptors. The different properties of drugs and proteins are encoded 
as corresponding features. In feature methods, the interactions of target 
drug pairs are predicted by the discovery of Sachdev and Gupta (2019b) 
the most distinctive features. Therefore, the inputs of these methods are 
different vector factors that can result from combining drug and targets 
characteristics (Wu et al., 2020). 

A vector is calculated for features of drug (D1, D2, … Dn) and vector 
features target (F1, F2, … Fm) independently. These vectors can be 
calculated by identifying some of the hallmarks of coding or using some 
bioinformatics software packages that can automatically calculate their 
chemical or biological features. As these vectors often have a huge 
dimension, some methods use dimensionally reduction techniques to 
reduce the number of the features, and thus improve performance and 
the efficiency of the prediction (Shia et al., 2019). Similarity methods 
are developed to calculate the similarity between drug compounds and 
the targeting proteins. They generate a similarity matrix using different 
strategies to measure similarity. 

In this paper, we proposed DTIs prediction model using heteroge-
neous dataset (features and sequences information) of drugs and target 
proteins. The model we present obtains features from amino-acid pro-
tein sequences using physical and chemical properties, and from smiles 
(Simplified Molecular Input Line) series using coding techniques. Our 
goal in this work is to evaluate different machine learning techniques 
and emphasize which techniques provide more accurate prediction 
using this dataset. In our model, a data extraction and preprocessing for 
the drug and protein sequences is first performed. Next, we adopt a 
methodical prediction scheme and introduce several machine learning 
approaches. For instance; ensemble learning techniques (LightBoost, 
XGBoost, and ExtraTree), deep learning (DBN), and traditional machine 
learning methods (random forest(RF), and support vector machine 
(SVM)). Our proposed model is compared with various recent ap-
proaches for validation. The empirical results show that our DTI pre-
diction model provides more accurate results from both structures and 
feature data, which indicates that the proposed model can predict drug- 
target interactions effectively. Covid-19 is a type of viral infection that 
causes symptoms like pneumonia. It was first reported in Wuhan, China, 
in December 2019. Its outbreak on 30 January 2020 is the third major 
outbreak of a severe virus in the population. Covid-19 is believed to be 
less lethal but more gastric than SARS-SIV (Schenone et al., 2013). Drug 
detection organizations worldwide are working tirelessly to assess the 
compounds that can prevent the spread of SARS− COV-2 in humans. To 
achieve this, it is necessary to identify drug targets and then identify and 
evaluate vehicles and biological agents that can effectively involve them 
and discourage their spread (Jiménez-Cordero and Maldonado, 2018). 
However, novel drug development process is time consuming and 
mostly requires several years of work before clinical approval. Repur-
posing of drug is an effective strategy to tackle new diseases. 

Fig. 1. Biological steps during drug target interaction (Chen et al., 2013).  
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Computational methods could be utilized for repositioning of drugs. As 
low time is required for, these methods are beneficial for high 
throughput screening of the available drugs. In this paper, we used our 
trained DTIs prediction model to identify the available drugs that could 
influence Covid-19 viral proteins. 

The main contributions in this paper could summarize as:  

I Extract combined structured data (from the DrugBank) and the 
feature data (from benchmark data). Preprocessing the protein 
sequences and the drug’s smile into a set of descriptors to convert 
sequences data into features.  

II Apply these data on different machine learning techniques, deep 
learning techniques and ensemble learning techniques to predict 
interaction between the drugs and their target proteins in the 
human cell.  

III Experimental comparison among these learning techniques on 
the extracted data reveal that results obtained by ensemble 
techniques like LightBoost and ExtraTree were 98 % and F1-Score 
0.97 compared to 94 % and 0.92 achieved by current methods on 
either structure only of feature only dataset. Moreover, our model 
can predict more undetected interactions and thus can be used as 
a practical tool for drug repositioning.  

IV Our model is applied on the proteins known to be affected by 
Covid-19 to predict possible interactions between these proteins 
the existing drugs announced in DrugBank. Which leads to 
discovering the drug reposition in the case of Covid-19 infection, 
which use the proteins affected by Covid-19 in the human cell. 
Such as the ACE2 protein, which interact with DB00691and 
DB05203 with predicted probability of 100 %, and GBRA3_HU-
MAN protein interacts with umifenovir with predicted probabil-
ity equal 100 %. 

The rest of the paper is organized as follow; section 2 presented the 
existing prediction methods. Section 3 explains our proposed model 

with detailed description about the used techniques and workflow. In 
section 4, the results and discussion are provided with the case study for 
Covid-19. Finally, conclusion and future direction are presented in 
section 5. 

2. Related work 

Recently, various techniques have been proposed using machine 
learning models for DTI prediction in the last decade. Wei Wang et al. 
(2020) studies on drug-protein interactions were of great importance 
regarding drug repositioning. Suggest a prediction method of a 
connection based on the reaction of proteins and drug (DPI) and local 
structural similarity (DLS). The DLS approach combines the prediction 
of a link with the binary network structure of the DPI prediction. The 
validation method applied ten times is applied in the trial. After 
comparing the expected capacity of DLS with a network optimization 
such as the forecast method, and DLS results on the test set are much 
better. In addition, several proteins nominated for three approved 
medicines were predicted (captubril, dezferyuksamine, and losartan) 
and their prediction were also validated through literature. In addition, 
the combination of the CN and DLS models provided a new idea of the 
integrated application of the prediction for link method. 

In (Monteiro et al., 2019), authors introduced the deep learning 
structure model, which uses the special power of convolutional neural 
networks (CNNs) to obtain 1D representations of protein amino acids 
sequences and SALS (simplified molecular input line input system) 
strings. The results achieved show that using CNNs to obtain represen-
tations of data, rather than traditional specifications, improves perfor-
mance across all models and is clearer because of the difference between 
using and obtaining deep representations from the protein sequence, 
smiles, and global specifications. In addition, it is also possible to 
highlight the difference between applying traditional automated 
learning techniques. 

In (You et al., 2019), the authors drug specifications, protein 

Fig. 2. Different computational approaches for DTIs prediction.  
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sequence data from DrugBank and domain information from the NCBI 
protein. DTIs data verified by DrugBank has been downloaded, and a 
new approach based on similarity has been developed to build negative 
DTIs. Multiple LASSO models to combine different sets of features to 
explore the strength of prediction and prediction DTIs is proposed. The 
proposed LASSO-DNN performance is compared to LASSO, Standard 
logistic regression (SLG), Support Vector Machine (SVM), and standard 
DNN models, showing that effective drug representation and targeted 
traits are necessary to build learning models for DTIs prediction. Genes 
responsible for disease-related risks have been identified from a wide 
range. 

Another research in (Ban et al., 2019), an algorithm uses NRLMFβ 
(Neighborhood regularized logistic matrix factorization) score when a 
pair of drugs and proteins are associated with the least reaction infor-
mation is presented. The beta distribution shape is determined by the 
value of the parameter quantity of the β that represents the degree of 
reaction information. The NRLMF score has been recalculated by spec-
ifying the expected value of the beta distribution defined as NRLMFβ. In 
the evaluation experience, in order to compare NRLMF and NRLMFβ 
generalization performance, the verification across four data sets of 
nuclear receptors, GPCR, ion channel, enzyme, and calculated the 
average values of AUC and AUPR (Schenone et al., 2013). 

An automated learning method was proposed in (Shia et al., 2019) to 
predict the targeted interactions of drugs called LRF-DTIS. First, specific 
registration matrix (PSEPSSM) and molecular fingerprint is extracted 
the characteristics of drug target. Second, use Lasso for feature selection 
method and then clawing the minority technique was used in the 
Oversampling (smote) to handle unbalanced data. Finally, the treatment 
was done, and the theme vector was entered into a random forest 
workbook (RF) to predict interactions between target medicines. 

In (Chen et al., 2019), the authors offer PDTI-ESSB, a new compu-
tational model for determining the DTI index using the protein chain and 
the molecular structure of drugs. More specifically, each molecule of 
drugs is transformed as the molecular substructure Fingerprint. For 
protein sequence, different configurations are used to represent their 
evolutionary, sequential, and structural information. In addition, using 
data-balancing techniques to address the imbalance problem and apply 
feature selection methods to extract the important features. They used 
four categories of target indicator standard. In (MingWen et al., 2017), a 
framework has been developed based on deep learning called DeepDTIs. 
First, it extracts representations from initial input specifications using 
unsupervised pre-training model and then applies known reaction 
groups to labels to build a rating model. Tables 1 summarize and com-
pares theses DTIs prediction methods to identify interactions related to 
our proposed model. 

3. Materials and methods 

3.1. Datasets 

I. First data 
Protein sequences and Smiles strings were extracted from DrugBank 

dataset (https://www.drugbank.ca/releases/latest#structures), in their 
Canonic form. We use protein sequences and smiles strings directly 
respectively to input in the descriptor stage. 

II. Second data 
The second dataset consists of a four types of benchmark datasets; 

nuclear receptor, GPCR, ion channel and enzyme which are previously 
issued by (Yamanishi et al. (2008)). These datasets are extracted from 
DrugBank, BRENDA, KEGG, BRITE, SuperTarget and Matador databases 
as a gold standard dataset. Information about the two datasets are shown 
in Table 2. 

Positive and negative samples 
Our model of predicting drug targeting is based on similar assump-

tion drugs often target similar target proteins. Using conventional 
methods of unknown interactions between targeted drugs as negative 

examples may result in bias because unknown interactions between 
targeted drugs may contain undetected interactions between the tar-
geted drugs. All known interaction pairs in datasets are defined as 
positive samples. For negative interaction, drug-target pairs are derived 
from the known interaction pairs with different and randomized se-
quences are selected. 

3.2. Proposed workflow for DTIs prediction 

Our DTIs prediction model using directly protein sequences, fea-
tures, and smiles (1D raw data) is shown in Fig. 3. Our model consists of  

I Data extraction and Conversion  
II Data preprocessing  

III Machine learning Prediction techniques. 

I. Data Extraction and Conversion 
In this stage, data is converted into the corresponding values using 

the protein and drug descriptor. For protein, conversion regulates amino 
acids in 7 groups according to their physical chemical properties. Each 
amino acid is encoded to an integer based on the corresponding group 
from reference protein substitution table (Chen et al., 2013). This 
method scans triads one by one along the sequence of amino acid group. 

Table 1 
Evaluating the related work for computational methods of DTI prediction.  

Reference 
paper 

Dataset used Algorithm AUC/ ACC 

(Wang et al., 
2020) 

Matador 
database 

Improves the similarity 
method, The DLS approach 
combines the prediction of a 
link with the binary network 
structure of the DPI 
prediction. The validation 
method applied ten times is 
applied in the trial. 

ACC ¼ 82 % 

(Ban et al., 
2019) 

Benchmark 
dataset 

Calculate the NRLMFB from 
the similarity matrices and 
NRLMF score for all drugs 
and target pairs in the 
interaction matrix 

AUC ¼ 0.858 

(Monteiro 
et al., 
2019) 

downloaded 
from DrugBank 

Using Lasso model for create 
protein and drug features 
Then using DNN for 
classification 

AUC ¼ 0.89 
ACC ¼ 81 % 

(You et al., 
2019) 

downloaded 
from DrugBank 

Extract features and apply 
the CNN model for learning 
features and using machine 
and deep learning to 
classification (FCNN, SVM, 
RF, Autoencoder) 

ACC ¼ 92 % 

(Shia et al., 
2019) 

Benchmark 
dataset 
Enzyme 
Ion channel 
GPCR 
Nuclear 
receptor 

First: using (PSEPSSM) and 
FP2 for extracting the 
features Secondly: using 
lasso for feature selection 
method then using the 
sampling techniques 
(SMOTE)Finally apply the RF 
classifier into the feature to 
prediction 

AUC ¼ 0.99 
ACC ¼ 98 % 

(Chen et al., 
2019) 

Benchmark 
dataset 

Feature generation using 
PSSM and PseAAC 
Balancing using cluster 
sampling and random 
sampling 
Then using ENSRFE for 
feature selection 
Finally using XG Boost 
classifier for classification 

ACC ¼ 91 % 

(MingWen 
et al., 
2017) 

downloaded 
from DrugBank 

First using RDkit tools for 
extract features Then using 
the DBN technique for 
classification and prediction 

AUC ¼ 0.916 
ACC ¼ 86 %  
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In the case of Smiles strings, a simple correct-encoding technique was 
used to convert each character of the strings to an integer to result the 
sequence of values uses as feature of the drugs. In the conversion stage 
using a standard dictionary for each protein sequences and smiles strings 
to extract features, it is necessary to set a threshold on the basis of their 
length. A 95 % information limit was used, resulting in a maximum 
length of 1205 for protein sequences and 90 for smiles. All duplicate or 
missing entries in a data set have also been removed, resulting in 16011 

(5839 positive and 10712 negative) samples for training and 7926 (3012 
positive and 4914 negative) for testing. 

II. Data preprocessing 
Preprocessing data is a data manipulation technique that involves 

converting raw data into understandable format. Data in the real world 
is often incomplete, inconsistent in some behaviors or trends, and likely 
to contain many errors. Preprocessing data is a proven way to solve these 
problems. The main step in the model-preprocessing phase is to feature 

Table 2 
Unique drugs, targets and DTIs used to create the datasets.  

Dataset Name Dataset Types Split data No of Targets No of Drug Positive interaction Negative Interaction 

DrugBank Sequences Training 16011 16011 5839 10712 
Testing 7926 7926 3012 4914 

Benchmark Features 
Training 14000 14000 5620 8380 
Testing 4118 4118 1586 2532  

Fig. 3. Proposed model workflow where a) is the overall workflow for prediction, b) is the data extraction and preprocessing stage for the drug and protein se-
quences, and c) presents the stage of applying the learning methods and calculate the predication for each classifier. 
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scaling. A feature scaling is a method used to normalize the range of 
independent variables or data features. The feature scaling limits the 
variety of parameter so that you can compare them to common foun-
dations. It often helps to speed up calculations in machine learning 
techniques (Sachdev and Gupta, 2019a). In our model we used the 
MinMaxScaler() for transform the training and testing data to scaling 
form. 

4. Proposed model prediction techniques 

For bioinformatics research, machine learning plays an important 
role in filtering large amounts of data into patterns. The overall learning 
workflow techniques in target-drug prediction (DTI) can be divided into 
two steps. First, training the basic model based on a set of learning rules; 
and secondly, using the trained model to forecast a test dataset. In our 
model different ML algorithms have been tested, and the results from 
these algorithms are evaluated and compared with the most recent 
methods. These algorithms are support vector machine (SVM), Random 
Forest (RF), ensemble learning techniques (LightBoost, XGBoost, and 
ExtraTree), and deep learning techniques (DBN, CNN and ANN) (Liu 
et al., 2017). 

Support Vector Machine (SVM) 
SVM is a supervised machine-learning algorithm, which can be used 

for both classification and regression problems. In the SVM algorithm, 
we draw each data element as a point in the N-dimensional space (where 
n is the number of features) with the value of each feature being a 
specific coordinate value. Then, the prediction is executed by finding the 
plane that most characterizes each category of the data. In our model, 
SVM parameters used are {C = 1.0, kernel=’rbf’, degree = 3, 
gamma=’scale’} 

Parameters are as follows:  

• C: It is the regularization parameter, C, of the error term.  
• kernel: It specifies the kernel type to be used in the algorithm. It can 

be ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’, or a callable. The 
default value is ‘rbf’.  

• degree: It is the degree of the polynomial kernel function (‘poly’) and 
is ignored by all other kernels. The default value is 3.  

• gamma: It is the kernel coefficient for ‘rbf’, ‘poly’, and ‘sigmoid’. If 
gamma is ‘scale’, then 1/n_features will be used instead. 

Random Forest Method (RF) 
Random Forest algorithm consists of several individual decision trees 

that act as a division. Each individual tree is bound by a class and layer 
prediction where most sounds prediction becomes the model. Random 
forests work well for a wide range of data elements from a single deci-
sion tree. Also, RF algorithm good accuracy can be maintained even with 
a large percentage of data missing. The parameters that used in this 
model are {max_features = 0.3, min_samples_split = 16, 
n_estimators = 115}. 

Parameters are as follows:  

• max_features: is the maximum number of features random forest 
considers to split a node.  

• min_samples_split: is the minimum number of leafs required to split 
an internal node.  

• n_estimators: is number of trees the algorithm builds before taking 
the maximum voting or taking the averages of predictions. 

The ensemble techniques in the proposed model works in two steps. 
First, the drug and target features that are calculated individually are 
integrated and transferred to the tree group, then using evaluation 
method to calculate the final result. Different ensemble based methods 
like XGBoost, Extratree and LightBoost are used. 

XGBoost 
XGBoost is improve group model based on Gradient Tree Boosting 

(GTB) (Lia et al., 2019), widely used in classification tasks by re-
searchers. It follows the same procedure as the GTB algorithm with a 
slight change in the regular target to improve the models efficiency. In 
our model, we use default parameters {max_depth = 5, learning_rate =

0.2612, n_estimators = int(75.5942), reg_alpha = 0.9925, nthread = -1, 
objective=’binary:logistic’}. 

LightBoost 
LightBoost is a fast, high-performance, consolidation framework 

distributed based on the decision tree algorithm. It is often used to 
arrange, classify, and many other tasks in automated learning. It is 
proven to perform well with large data sets with a significant decrease in 
training time compared to the XGBoost (Ke et al., 2017). The parameters 
that used in this model are; learn_rate = [0.001, 0.01, 0.1, 0.2, 0.3], 
momentum = [0.0, 0.2, 0.4, 0.6, 0.8, 0.9], optimizer = SGD 
(lr = learn_rate, momentum = momentum), and objective is binary and 
boosting is Gradient boosting} 

ExtraTree 
ExtraTree algorithm is another extension of bagged decision tree 

ensemble method. In this method, the random trees are constructed 
from the features of the training dataset. It assembles the results of many 
interconnected decision trees collected in a ’forest’ with the aim of 
producing the result of their classification. In our model, its optimization 
parameters are {n_estimators = 100, max_depth = None, min_samples_ 
split = 2} 

Artificial neural networks (ANN) 
Deep learning methods are a branch of machine learning. Deep 

Learning has been used in many categories of biology and chemistry. A 
main advantage of abstract representations in deep learning is that they 
can be fixed for local changes in input data. ANN is multilayer fully 
connected neural networks. Based on trying different ANN architecture, 
our ANN model consists of an input layer, multiple hidden layers, and an 
output layer. Every node in one layer is connected to every other node in 
the next layer. The hidden layers are five layer and the size of each equal 
10 neuron, the full architecture of the ANN network is shown in Table 3. 
The number of iterations equal 100, batch-size = 32, activation function 
is Relu function in the output layer and the activation function is sig-
moid in hidden layers. 

Deep-Belief Network (DBN) 
DBN is a neural network made by stacking restricted Boltzmann 

machine (RBMs) and trained in a greedy manner. Training on the DBN 
network can be divided into two successive operations: unsupervised 
greed training and supervised fine-tuning process. The architecture of 
the ANN network is shown in Table 3, where the two hidden layer has 
256 node, learning-rate-rbm = 0.05, number of iterations = 100, batch- 
size = 32, and activation-function is relu. The proposed model training 
process is as follows:  

• Initializing parameter W, b, c by using random generator where W 
represents the weights that connect hidden and visible units. b and c 
are the offsets of the visible and hidden layers, respectively.  

• Train the first and second layer as RBM, using the raw input vector x 
as its visible layer.  

• Train the second and third layer as RBM, taking the second layer as 
visible layer and obtain. the representation of third layer. 

While the supervised fine-tuning process is as follows: 

Table 3 
The parameters of deep learning methods.  

Method Hidden 
layers 

Activation 
function 

No of node in 
each layer 

epoch Batch 
size 

ANN 5 Sigmoid 10 100 32 
CNN 3 Relu 128 100 32 
DBN 2 Relu 256 100 32  
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• Using the output of the last hidden layer of the DBN as the input of 
the logistic regression classifier (LR).  

• Fine-tune all the RBM and LR parameters via supervised stochastic- 
gradient-descent (SGD) of the DBN log-likelihood cost. 

Convolutional neural network 
Convolutional neural network (CNN) is network architecture for 

deep learning. A CNN is comprised of one or more convolutional layers 
then followed by one or more fully connected layers as in a standard 
multilayer neural network and pooling layer.  

• Convolutional Layer: The main task of the convolutional layer is to 
detect local conjunctions of features from the previous layer and 
mapping their appearance to a feature map.  

• Fully Connected Layer: The fully connected layers in a convolutional 
network are practically a multilayer perceptron.  

• A pooling layer provides a typical down sampling operation, which 
reduces the in-plane dimensionality of the feature maps in order to 
introduce a translation invariance to small shifts and distortions and 
decrease the number of subsequent learnable parameters. It is of note 
that there is no learnable parameter in any of the pooling layers, 
whereas filter size, stride, and padding are hyper parameters in 
pooling operations, similar to convolution operations. 

Evaluation parameters 
The different measurements to predict the target reaction of drugs to 

evaluate and compare different techniques are: 
Accuracy: 
The accuracy of the test is its ability to distinguish negative from 

positive conditions correctly. To estimate the accuracy of the test, we 
should calculate the true positive negative ratio in all cases evaluated. If 
TP is true positive, TN is true negative, FP is false positive and FN is false 
negative, the accuracy can be stated as: 

Accuracy =
TP + TN

(TP + TN + FP + FN)

Precision and Recall: 
The precision visualizes the ratio of positive reactions that are cor-

rect. The reminder shows the ratio of positive reactions that have been 
correctly identified. It can be calculated as: 

Precision =
TP

(TP + FP)
Recall =

TP
(TP + FN)

F1-score: 
F1-Score evaluates the balance between precision (p) & recall (r) in 

the system, and estimated as: F1 Score =
2*(Recall*Precision)
(Recall+Precision)

Area under curve: 
The Receiver Operating Characteristic (ROC) curve shows the fore-

caster’s performance at different threshold values. Real positive rate 
values are drawn against incorrect positive rate values for curve for-
mation. For comparison the curves, the area under the curve (AUC) is 
calculated. It represents a compilation of values at different points on the 
curve. The value of the area under the AUC curve ranges from 0 to 1 
(Kumar and Indrayan, 2011). 

Mathew’s Correlation coefficient (mcc) 
Its value ranges from − 1 to 1, where − 1 is a false binary learning 

method and 1 is a completely valid binary learning method (Nguyen 
et al., 2020). Mathew’s correlation coefficient can be calculated as: 

mcc =
TP*TN − FP*FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FN)*(TN + FP)*(TP + FP)*(TN + FN)

√

Finally, the time it took for various training forecasts, as well as for 
prediction purposes, is also a metric assessment and comparison of 
different techniques. 

Mean Squared Error (MSE) 

MSE measures the average of squares of the errors – the average of 
the quadratic difference between actual value and estimated values. 
MSE measure of estimated quality – always non-negative, and values 
closer to zero are better. MSE estimated with the following equation: 

MSE =
1
n
∑n

i=1
(Yi –Ŷi )

2 

Add the model evaluation experiments are run on a computer with 
the following characteristics, 

The algorithms are accelerated on the operating system is Windows 
10 with 2.50 GHz Intel core 

i5 processor and 4GB RAM. 

5. The results and discussion 

In this section, we highlight the empirical results of our proposed 
prediction model for DTIs implementing on two datasets, which are 
protein sequences, and drug SMILES (1D raw data) and features data. 
Each technique is applied using scikit-learn, ensemble package, kares 
library, tensorflow library and XGBoost package in Python language 
(version 3.6). 

The results in Table 4 report the accuracy, mean square error, MCC 
and f-score achieved by different algorithms. Using benchmark dataset, 
the best accuracy score value 0.98 were obtained by LightBoost and 
ExtraTree ensemble learning, while RF achieved the 2nd best value of 
0.97. For DrugBank dataset, the best precision score value 0.966 were 
obtained by ExtraTree ensemble learning, and Random Forest achieved 
the 2nd highest value of 0.96. ExtraTree algorithm also provides the 
highest F1-score for prediction. 

In Table 5, we compare the different methods according to the 
running time (model training). As shown in the table Random Forest is 
the fastest algorithm with running time 1.78 s and 1.28 s when applying 
on the two datasets, while ExtraTree ensemble methods also achieve a 
good result with of 1.79 s training time. The worst case in running time 
is obtaining in the DBN algorithm by 14103.78 s and 7821.48 s for the 
two different datasets. In CNN the time is very high while CNN time is 
twice that DBN algorithm 

The area under the curve (AUC) is calculated based on ROC curve for 
each model to describe the quality of the work, which provides more 
accurate visual interpretation for Drug Target Interactions prediction. 
Fig. 4 show the ROC curve and the value of the area under the curve 
(AUC) for the learning methods. For DrugBank datasets the random 
forest and ANN method predict maximum value in the AUC = 0.937 for 
DrugBank data set in the bench mark data set the extra tree method 
predict the maximum value in the AUC = 0.982.. 

Precision-Recall (PR) Curve, as presented in Fig. 5, is simply a graph 

Table 4 
Results of the deep, machine and ensemble techniques according to Accuracy, 
Mean Square Error, MCC Score and F1-score.  

Algorithm Dataset Accuracy 
Score 

Mean 
Square 
Error 

MCC 
Score 

F1- 
score 

ANN DrugBank 0.9277 0.072 0.848 0.88 
Benchmark 0.9718 0.024 0.95 0.953 

DBN 
DrugBank 0.917 0.056 0.89 0.885 
Benchmark 0.94 0.02 0.95 0.92 

Random 
Forest(RF) 

DrugBank 0.947 0.0528 0.887 0.927 
Benchmark 0.9744 0.0257 0.945 0.96 

SVM DrugBank 0.93 0.07 0.85 0.915 
Benchmark 0.96 0.039 0.917 0.948 

LightBoost 
DrugBank 0.938 0.0197 0.958 0.918 
Benchmark 0.98 0.0613 0.869 0.974 

XGBoost 
DrugBank 0.913 0.087 0.814 0.88 
Benchmark 0.97 0.029 0.938 0.96 

ExtraTree 
DrugBank 0.94 0.056 0.88 0.915 
Benchmark 0.98 0.016 0.965 0.978  
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with Precision values on the y-axis and Recall values on the x-axis. It is 
important to note that Precision is also called the Positive Predictive 
Value (PPV). Recall is also called Sensitivity, Hit Rate or True Positive 
Rate (TPR) (Davis, 2006). The method gives the highest precision recall 
curve in the case of sequence data is Random Forest method and in the 

case of features data is DBN. 
From Fig. 5, the random forest technique is the highest area under 

-precision and recall curve that mean it is the better in the case of 
sequence data. The DBN technique is the highest area under precision 
and recall curve that mean it is the better in the case of feature data 
(Benchmark). 

Comparison with the existing methods: 
Here we compare the drug target interaction prediction between our 

model and two of the recent state of the art methods first method, 
introduced a deep learning structure model, which uses the special 
strength of convolutional neural networks (CNNs) to obtain 1D repre-
sentation of protein amino acid sequences and SALS series (simplified 
molecular input line input system). The results show that CNN’s use of 
representative data, rather than traditional specifications, improves 
performance and performance in all models and is more evident because 
of the difference between using and obtaining deep representative data 
from protein sequences, smiles and global specifications (Maier et al., 
2015). While the second method offer a new similarly similar approach 
was developed to build a negative DTIS. Multiple Lasso models were 
suggested to combine different sets of features to explore the power of 
prediction and prediction DTIS. Additionally, enter the LASSO-DNN 
model to predict DTIS. Lasso DN’s proposed performance compares to 
LASSO, standard logistic regression (SLG), support vector machine 
(SVM), and standard DNN models, showing that effective drug 

Table 5 
The results of the deep, machine and ensemble techniques according to Time.  

Algorithm Dataset Time in seconds 

ANN DrugBank 518.8 
benchmark 501.5 

DBN 
DrugBank 14103.78 
benchmark 7821.48 

CNN 
DrugBank 28080 
benchmark 15642 

Random Forest(RF) DrugBank 1.78 
benchmark 1.28 

SVM DrugBank 184.6 
benchmark 53.12 

LightBoost 
DrugBank 10.1 
benchmark 12.31 

XGBoost 
DrugBank 90.1 
benchmark 52.14 

ExtraTree DrugBank 1.79 
Benchmark 0.796  

Fig. 4. the results for the ROC curve and the value of the area under the curve (AUC) for the learning methods which shown the random forest and ANN method 
predict maximum value in the AUC = 0.937 for DrugBank data set in the bench mark data set the extra tree method predict the maximum value in the AUC = 0.982. 

Fig. 5. shows the precision and recall curve for sequence and features Data. The tradeoff between Precision and recall shows a different threshold. High space below 
the curve represents both high recall and high accuracy, where high resolution is related to low false positive, and high recall is associated with a low false negative 
rate. the precision and recall curve is better option for evaluating model performance. 
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representation and targeted traits are necessary to build learning models 
for DTISs prediction (You et al., 2019). Our method outperforms all 
other method by achieving the best performance across all DrugBank 
dataset. From the Table 6, our work (highest average accuracy = 0.93) 
which is 2%higher average accuracy than the first method from (Mon-
teiro et al., 2019) and 12 % higher average accuracy than the first 
method from (You et al., 2019). 

Covid-19 Case study 
It will take at least several years for drugs to develop from scratch. 

Repositioning effective current anti-retroviral drugs in the Covid-19 
may be the only solution to the current pandemic of sudden infectious 
diseases. Human Immunodeficiency System plays a crucial role in the 
recurrence of coronaviruses, and the use of interferon will enhance the 
immune response to Covid-19. There are a huge number of researches 
that used data driven methods to identify potential treatments for the 
virus, many of these works has used data from resources such as Drug-
Bank. Anti-virus drugs targeting SARS− COV-2 can be classified into two 
main categories, with the first group targeting virus-host interactions or 
preventing viral aggregation. Another approach would include drugs 
that modify the insidious immune responses of hosts with a wide spec-
trum (DRUGBANK, 2021; Wu et al., 2020). 

In (RamBeck et al., 2020) the author using the MT-DTI deep learning 
model pre-training that interactions understand the goal of drugs 
without knowing the field, MT-DTI successfully identified EGFR re-
ceptors as target drugs used in clinics (in the top 30 prospective candi-
dates) among 1094 chemical compounds registered in the DrugBank 
database in a previous study. This indicates that 3D structured infor-
mation from proteins and/or molecules is not necessarily required to 

Predict drug target reactions. There is currently no evidence to 
support that these drugs may be effective in discouraging Covid-19 
(Nguyen et al., 2020). In addition, atazanavir seems effective in 
covid-19 by demonstrating comprehensive, high-binding antiretroviral 
approaches to six Covid-19 proteins, including 3C-like proteins and 
complex replication components. 

Another research in (Zhou et al., 2020) provides guidelines on how 
to use artificial intelligence (AI) to accelerate the redefinition or repo-
sitioning of drugs and show which AI approaches are not only massive 
but also necessary. It discusses how AI models can be used in precision 
medicine, as an example, how AI models can accelerate the reuse of 
Covid-19 drugs. Artificial intelligence and networking technologies can 
be developed rapidly, powerful, innovative, and accelerated therapeutic 
development. This review provides a strong rationale for using 
AI-assisted tools to reuse medicines for human diseases, including dur-
ing the “Covid-19 " pandemic. 

In this case study, we employ our DTIs prediction model relies on 
data releasing from DrugBank and published in previous research 
(Ruolan Chen et al., 2018), in order to identify the potential interacting 
protein with these set of drugs as shown in tables 6. Our work uses the 
trained model with the best accuracy for achieve the accurate drug 
discovery for the Covid-19, where we use the random forest, light boost 
and extra tree techniques for drug target interaction prediction, then 
favor among them based on the highest prediction probability. 

First, we download the sequences of the proteins (target) from the 
web site (https://www.uniprot.org/) and the drugs from DrugBank then 

using our model to predict the drug target interaction in Covid-19. The 
experimental results in Table 5 report that the drugs which uses to 
treatment the Covid-19 and Influenza not affected on the proteins 
affected by coronavirus within the human cell. 

From the Table 7, the umifenovir drug interact with GBRA3_HUMAN 
protein with Prediction probability equal 1.0, this result has been taken 
from the random forest technique. Ritonavir drug interact with cyto-
chrome C oxidase polypeptide II protein (which uses in the respiratory 
chain that catalyzes the reduction of oxygen to water) also with Pre-
diction probability equal 1.0. Darunavir drug interact with DNA-TO 
-POISOMERASE II protein with prediction 1.0 probability. 

For the Covid-19 proteins: 
There are a number of proteins that are found to effect on Covid-19 

virus (Yuan et al., 2016).In this study, we use the proteins discovered to 
be affected by coronavirus within the human cell through research 
(Ezzat et al., 2019). The outer surface of the SARS− COV-2 virus is made 
of Spayk protein (S), protein envelope (E), membrane protein (M), and 
protein nuclopide (N). The M and E proteins in Morphogenesis share the 
virus and the assembly. ACE2 is an endogenous membrane protein that 
enables Covid-19 infection. During infection, the extracellular peptidase 
domain of ACE2 binds to the receptor-binding domain of spike protein, 
which is a surface protein on SARS− COV-2. The Spike protein present in 
both SARS− COV and SARS− COV-2 binds to the host cell through the 
receptor-binding protein called angiotensin− COnverting enzyme 2 
(ACE2) (Kumar, 2020), which is located on the host membrane cell 
surface. While both SARS− COV and SARS− COV-2 bind to the same host 
cell as ACE2, the SARS− COV-2 binding affinity to ACE2 is significantly 
higher than that of SARS− COV-2. The viral protein responsible for 
hosting and replication of SARS− COV-2 entry is identical in structure to 
SARS− COV-2 (Li, 2015; Belouzard et al., 2012). We discover the drugs 
that related to these proteins to uses in Covid-19 drug reposition. 

The experimental results in Table 8 reports the predicted drugs that 
interact with the proteins affected by coronavirus within the human cell. 
The results are taken from the extra-tree techniques and light-boost 
where the N-protein and S-protein interact with ZINC DRUGS with 
Prediction probability 0.8. The ACE2 protein interacts with DB0069 and 
DB05203 with 1.0 Prediction probability. Moexipril (DB00691) is a non- 
sulfhydryl containing precursor of the active angiotensin-converting 
enzyme (ACE) inhibitor moexiprilat. It is used to treat high blood 
pressure (hypertension). The Prediction probability between the ACE2 
protein and moexipril equal one. 

6. Conclusion 

In this paper, we present workflow for identifying DTIs by incorpo-
rating various datasets. This proposed model is capable of successfully 
predicting drug target pairs based on both sequence and protein struc-
tural features. Where most of the previous methods considered 

Table 6 
the comparison between the related work and our work according to accuracy.  

Methods The 
methods 

Accuracy 

convolutional neural networks (CNNs) (Monteiro 
et al., 2019) 

CNN 0.923 
RF 0.921 
SVM 0.908 

LASSO-DNN (You et al., 2019) SVM 0.81 

Proposed model 
ANN 0.9277 
RF 0.947 
SVM 0.93  

Table 7 
Predicted interact proteins for the drugs that it is influence on Covid-19 contain 
the drug name, predicted interact drugs, prediction probability.  

Drug ID Predict interact Protein Prediction 
probability 

Remdesivir (DB14761) ( 
Wishart et al., 2017) 

GANAB_HUMAN(Q14697) 
Acetylcholinesterase(Q13697) 

0.94 
0.7 

Lopinavir (DB01601) ( 
Wishart et al., 2017) 

FAAH1_RAT(P97612) 
GSAR_HUMAN(P00390) 

0.7 
0.7 

Ritonavir (DB00503) ( 
Wishart et al., 2017) 

Cytochrome c oxidase 
polypeptide II(Q5D264) 

1 

Triazavirin (DB15622) ( 
Wishart et al., 2017) 

ENDR_PROTEIN(Q70K12) 0.8 

Chloroquine (DB00608) ( 
Wishart et al., 2017) 

Peptidoglycan D,D- 
transpeptidase FtsI(P0AD68) 

0.8 

Darunavir (DB01264) ( 
Wishart et al., 2017) 

ACM1_HUMAN(P11229) 
DNA TO POISOMERASE II 
(Q59H80) 

0.8 
1  
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evolutionary features from protein, amino acid sequences using physical 
chemical properties and drug. 

Our proposed data preprocessing makes the prediction difficulty 
more flexible regarding space complexity and running time. Experi-
mental results prove that our predictive models can successfully identify 
more interactions between the drugs and proteins in human cell. 
Experimental results show that ensemble-learning algorithms for DTIs 
prediction provide more accurate results from both structures and fea-
tures datasets. On the corona viruses case study, our model predicts the 
relation between the protein that effected by Covid-19 and the drugs 
that could be used for Covid-19 treatment with high accuracy. 
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Predicted interacted Drugs for the proteins that it is influence on Covid-19, 
mentioned at (Morgat et al., 2019), contain the drug name, predicted interact 
drugs, prediction probability.  

-Protein Predict interact Drug Prediction 
probability 

Angiotensin-converting enzyme 2 
(Q9BYF1) (Morgat et al., 2019) 

Lisinopril (DB00722) 
Moexipril (DB00691) 
SPP1148 (DB05203) 

00.6 
1 
1 

Spike glycoprotein(P59594) (Morgat 
et al., 2019) 

ZINC00060939 0.8 

Nucleocapsid protein(P41267) (Morgat 
et al., 2019) 

ZINC 0.8 

Nucleoporin NSP1 
(P14907) (Morgat et al., 2019) 

ZINC48807828 0.8 

Inclusion body matrix protein(F2Y108) 
(Morgat et al., 2019) 

ZINC40895665 0.7 

Adipocyte differentiation-related 
protein (A0A0N9DR76) (Morgat 
et al., 2019) 

ZINC72116390 1 

Non-structural protein 7(F1CNZ3) ( 
Morgat et al., 2019) 

Bitolterol (DB00901) 1 

ORF1ab polyprotein (J7HAR2) ( 
Morgat et al., 2019) 

ZINC13814083 1 

Cap-specific mRNA (nucleoside-2′-O- 
)-methyltransferase 1(Q8N1G2) ( 
Morgat et al., 2019) 

ZINC00171159 1 

Caveolin-2 (P51636) (Morgat et al., 
2019) 

ZINC00137875 1 

Mitogen-activated protein kinase 8 
(P45983) (Morgat et al., 2019) 

ZINC18710082 1 

Mitogen-activated protein kinase 9 
(P45984) (Morgat et al., 2019) 

ZINC13491480 0.9 

Dihydroorotate dehydrogenase 
(quinone), mitochondrial (Q02127) ( 
Morgat et al., 2019) 

ZINC13726735 1 

RAC-beta serine/threonine-protein 
kinase (P31751) (Morgat et al., 
2019) 

ZINC13339634 1 

RAC-gamma serine/threonine-protein 
kinase (Q9Y243) (Morgat et al., 
2019) 

ZINC40949491 0.7 

E2 glycoprotein (Q99A57) (Morgat 
et al., 2019) 

Demecarium 
(DB00944) 

0.8 

Peptidyl-prolyl cis-trans isomerase 
(O02614) (Morgat et al., 2019) 

Dimetindene 
(DB08801) 

0.85  
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