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ABSTRACT

Relation extraction (RE) is a fundamental task for ex-
tracting gene–disease associations from biomedical
text. Many state-of-the-art tools have limited capacity,
as they can extract gene–disease associations only
from single sentences or abstract texts. A few studies
have explored extracting gene–disease associations
from full-text articles, but there exists a large room
for improvements. In this work, we propose RENET2,
a deep learning-based RE method, which implements
Section Filtering and ambiguous relations modeling
to extract gene–disease associations from full-text
articles. We designed a novel iterative training data
expansion strategy to build an annotated full-text
dataset to resolve the scarcity of labels on full-text
articles. In our experiments, RENET2 achieved an F1-
score of 72.13% for extracting gene–disease asso-
ciations from an annotated full-text dataset, which
was 27.22, 30.30, 29.24 and 23.87% higher than Be-
Free, DTMiner, BioBERT and RENET, respectively. We
applied RENET2 to (i) ∼1.89M full-text articles from
PubMed Central and found ∼3.72M gene–disease as-
sociations; and (ii) the LitCovid articles and ranked
the top 15 proteins associated with COVID-19, sup-
ported by recent articles. RENET2 is an efficient
and accurate method for full-text gene–disease as-
sociation extraction. The source-code, manually cu-
rated abstract/full-text training data, and results of
RENET2 are available at GitHub.

INTRODUCTION

The association between genes and diseases is essential for
developing clinical diagnoses, therapeutic treatments and
public health systems for diseases (1). However, the re-
search on gene–disease associations is locked in an enor-
mous volume of biomedical literature. PubMed Central

(PMC) (2), a free full-text archive of the biomedical lit-
erature, had over 6.6 million articles in 2020. There is a
pressing need for accurate and efficient tools to automat-
ically extract gene–disease associations from the literature
to improve access to information and support biomedical
research (3).

The Relation Extraction (RE) task is critical for extract-
ing gene–disease associations from the literature (4). The
task is to determine whether there is an association be-
tween a gene–disease pair from a given text. RE is more
challenging than the task of finding named entities from
texts, namely named entity recognition (NER (5,6)), as
it has to incorporate the information from complete sen-
tences (sentence-based) or complete articles (document-
based). A wide range of methods, such as BeFree (7), DT-
Miner (8), LHGDN (9), Thompson et al. (10) and Zhou
et al. (11), employ a sentence-based approach to extract-
ing gene–disease relations. These methods utilize different
linguistic and co-occurrence features with machine-learning
methods to identify gene–disease relations within each sen-
tence. For example, BeFree (7) applies a shallow linguis-
tic kernel, which uses both a local (orthographic and shal-
low linguistic features) and global context (trigrams and
sparse bigrams) to extract relations from a single sentence.
DTMiner (8) improves BeFree by adding a co-occurrence-
based ranking module to estimate how closely the pairs
are related. Thompson et al. (10) designed a sophisticated
system to measure sentence complexity. It uses either co-
occurring or linguistic patterns to extract gene–disease as-
sociations from a single sentence. Zhou et al. (11) developed
a novel method that integrates the MeSH (Medical Subject
Headings) database, term weight and co-occurrence meth-
ods to predict gene–disease associations based on the cosine
similarity between gene vectors and disease vectors from
a sentence. Similar outstanding works including Perera et
al. (12), Nourani et al. (13) and Taha et al. (14). However,
sentence-based methods can extract relations only within a
sentence. In an article, information about gene–disease as-
sociations is often spread over multiple sentences. To extract
gene–disease associations supported by an article, we need
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document-based RE methods to understand the context of
the whole article.

Existing state-of-the-art document-level RE methods are
designed mainly for abstract texts. BioBERT (15) is a
comprehensive approach, which applies BERT (16), an
attention-based language representation model (17), on
biomedical text mining tasks, including NER, RE and ques-
tion answering (18). BioBERT can extract gene–disease as-
sociations from biomedical text by performing classification
on both sentences and abstracts. However, because of its at-
tention mechanism, BioBERT constrains its maximum in-
put length to 512 and restricts its application to complete
articles. The predecessor to this work, called RENET (19),
uses a Convolutional Neural Network (CNN) and a Recur-
rent Neural Network (RNN) to learn the document repre-
sentation of gene–disease relations. RENET not only cap-
tures the relationship between genes and diseases within a
sentence, but also models the interaction of different sen-
tences to understand the context of the whole article. It
achieves state-of-the-art performance in gene–disease RE
from abstracts. However, RENET uses classification, which
is similar to BioBERT, to model the RE problem. This
mechanism is not flexible enough to handle more complex
relation types, such as ambiguous relations. Moreover, it is
designed for abstract texts, not optimized for full-text arti-
cles. The existing methods still pose significant challenges
to full-text RE (20).

Full-text articles contain much more information than
abstract texts. We estimate that a full-text article has an aver-
age of 4535 tokens, about 17 times that of an abstract. The
average number of gene–disease pairs in a full-text article
is estimated to be 197, compared to 5.6 of an abstract. If
considering only unique gene–disease pairs, the average of
a full-text article is 173, compared to 5.1 of an abstract. This
rich content makes gene–disease RE from full text more
challenging than from abstracts. The length of full-text ar-
ticles exceeds the capacity of BioBERT and other BERT-
based methods. It reduces the information density of the
text, resulting in low prediction accuracy. The long length
and large number of gene–disease pairs also make man-
ual curation of a full-text dataset labor-intensive and time-
consuming. As a result, there is no publicly available full-
text level labeled data for development and evaluation.

In this paper, we propose RENET2, an accurate and
efficient full-text gene–disease RE method with an itera-
tive training data expansion strategy, as shown in Figure
1. In RENET2, we introduced ‘Ambiguous association’, a
new relation type to reduce human effort in labeling gene–
disease associations, and used a regression-based deep-
learning approach to model Ambiguous associations. We
applied Section Filtering (SeFi), a novel data-enhancement
technique, to reduce the noisy content and improve the in-
formation density of the input data for gene–disease RE. We
designed a training data expansion strategy, which performs
model training, prediction and efficient manual curation it-
eratively to generate ample high-quality full-text training
samples.

We compared the performance of RENET2 with the
state-of-the-art methods: BeFree, DTMiner, BioBERT and
RENET. We found that RENET2 achieved the best F1
score using a full-text dataset. RENET2 achieved an F1

score of 72.13%, which was 27.22, 30.30, 29.24 and 23.87%
higher than BeFree, DTMiner, BioBERT and RENET, re-
spectively. Using RENET2, we analyzed 1 889 558 full-text
articles from PMC and extracted 3 717 569 gene–disease-
article associations, which is more than five times the num-
ber of associations extracted by RENET from abstract data
(19). To help medical professionals keep track of advances
in COVID-19 research (21,22), we applied RENET2 to the
LitCovid articles, a collection of up-to-date publications
on COVID-19. We found 1231 proteins associated with the
COVID-19 disease and ranked the top 15 proteins accord-
ing to the number of supporting studies. The source code
of RENET2, the extracted gene–disease associations, and
the proteins associated with COVID-19 with correspond-
ing articles are available at https://github.com/sujunhao/
RENET2.

MATERIALS AND METHODS

Dataset descriptions

We used two dataset levels in this study, one at abstract
level and one at full-text level. See Supplementary Table
S1 for the data on the annotated gene–disease associations.
The abstract level dataset comprises 1000 annotated ab-
stracts and was used (i) as the initial model in iterative
training data expansion for training a full-text RENET2
model, and (ii) for benchmarking the effect of adding Am-
biguous associations. To construct an annotated abstract
level dataset, we started with manually annotating all gene–
disease pairs in 500 abstracts from scratch. The 500 ab-
stracts were randomly selected from the 29 192 abstracts in-
cluded in RENET’s training dataset (the 29 192 abstracts
contain 57 553 genes, 83 942 diseases and 165 562 gene–
disease pairs, in which, 6414, 3807 and 82 255 are unique,
respectively). Noteworthy, these 500 abstracts were previ-
ously annotated in PubTator, and in our previous study
RENET, we used the DisGeNET (23) annotations (Dis-
GeNET is a public collection of gene–disease associations
in abstracts collected from multiple sources but without a
unified curation criterion). But in this study (RENET2),
we decided to reannotate the 500 abstracts from scratch
to aim for an even better annotation quality. Our annota-
tion process was conducted by three experts with a Biol-
ogy, Bioinformatics or Computer Science background, re-
spectively. The workload was distributed evenly. An expert
is required to mark an annotation that is not 100% cer-
tain as uncertain, thus we designed no overlapping work-
load between experts as we promote transferring any un-
certainties to the whole team. All uncertain annotations
were then discussed with and arbitrated by the other two
experts. In these 500 abstracts, we found 992 genes, 1391
diseases and 2813 gene–disease pairs, in which, 610, 578 and
2568 are unique, respectively. The number of unique gene–
disease pairs against the total is 91.2%. The top three genes
are APOE (22 times), TP53 (20) and GSTM1 (19). The
top three diseases are Neoplasms (69), Breast Neoplasms
(36) and Alzheimer’s disease (27). The top three gene–
disease pairs are, APOE-Alzheimer’s disease (14), TP53-
Neoplasms (8) and GSTM1-Rheumatoid Arthritis (8). Us-
ing these 500 abstracts, we trained the first RENET2 model
and conducted one iteration of training data expansion for
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Figure 1. Overview of the RENET2 pipeline. (A) Full-text level RE. (B) Iterative training data expansion with RENET2 and human annotation.

another 500 abstracts, also selected from the 29 192 ab-
stracts in RENET’s training data. Different from the first
500 abstracts that we annotated from scratch, the anno-
tation of another 500 abstracts was assisted by using the
‘CURATED’, ‘INFERRED’ and ‘ANIMAL MODELS’
gene–disease pairs in DisGeNET (those labeled ‘LITERA-
TURE’ were not used). We regarded the associations found
by RENET2 that are also in DisGeNET as true associ-
ations, and we manually checked and arbitrated the con-
tradicting associations. The extra 500 abstracts were used
only for training, while the fully manually annotated 500
abstracts were used for both training and validation.

The full-text level dataset was constructed starting from
using the model trained on the 1000 abstracts to annotate
500 unlabeled full-text articles. The 500 full-text articles are
randomly selected from the PMC open-access subset (2),
in which only the articles having one or more gene–disease
pairs are included. The subset has 1 889 477 articles, and 13
596 260 genes, 15 993 552 diseases and 194 292 671 gene–
disease pairs, in which, 136 018, 19 886 and 19 257 344 are
unique. The associated predictions were manually curated.
The uncertain annotations were dealt with the same way
as the abstracts (reviewed and decided by three experts).
The non-associated predictions were curated with unani-
mous support from three other methods: BeFree, DTMiner
and BioBERT (see ‘Iterative Training Data Expansion’ sec-
tion for more details). Unlike the procedure used in the pre-
vious paragraph, in which another 500 abstracts were in-
cluded in the second iteration, we used the same 500 full-
text articles for data expansion of full-text training data ex-
pansion because we found a large space for annotation im-
provement on the same 500 full-text articles. The number
of annotations almost doubled in the second iteration on
the same 500 full-text articles (Supplementary Table S1).

After the second iteration, the 500 full-text articles have
3490 genes, 4342 diseases and 51 642 gene–disease pairs,
in which, 2095, 1244 and 46 379 are unique, respectively.
The number of unique gene–disease pairs against the to-
tal is 89.8%. The top three genes are TNF-� (49 times),
IL6 (43) and AKT1 (27). The top three diseases are Breast
Neoplasms (180), Infections (122) and Death (116). The
top three gene–disease pairs are, TNF-�-Inflammation (34),
IL6-Inflammation (33) and TNF-�-Breast Neoplasms (22).
Articles use different section names for the same section
(e.g. Introduction, Backgrounds, or no section name was
used), but were unified by PubTator Central (24) using stan-
dardized ‘section type identifiers’ (25,26). In this study, we
relied on the standardized identifiers on selecting target sec-
tions.

Definition of the problem

The input of the RE problem is article X, consisting of s to-
kens x1, x2, . . . , xs . Let G = {g1, g2, . . . , gn} denote the
set of gene entities and D = {d1, d2, . . . , dm} denote the
set of disease entities in an article. The task of gene–disease
RE is, for gene–disease pair gi ∈ G, d j ∈ D, to determine
whether the article supports an association relation between
gi and d j . The task predicts a relation y(gi , d j ) ∈ {0, 1},
where 1 represents an associated relation, and 0 represents
a non-associated relation. An associated relation is defined
as a pair of gene and disease that has a sort of association,
including but not limited to cause, effect, existence and reg-
ulation, either positive or negative, as written by the au-
thors (Figure 2A). An association is inferred semantically
(i.e. the authors said so), not pragmatically (i.e. the authors
can actually mean something else, but we do not care). Non-
associated relation is defined as a pair of gene and disease
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Figure 2. Illustration of the three gene–disease relation types in our dataset. (A) Associated relation between HFE (gene) and hereditary haemochromatosis
(disease) from PMID 12117686 (36). (B) Ambiguous association between ACE (gene) and COVID-19 (disease) from PMID 32279908 (37). (C) Non-
association relation between MMAC1 (gene) and thyroid cancer (disease) from PMID 10234502 (38). Blue underlines are the trigger for the relation type.
Gene entities are purple, and disease entities are yellow.

that the authors have semantically said nothing about (Fig-
ure 2C).

Ambiguous association

To better model the relationship between genes and dis-
eases, and to represent relationships that are difficult for an
expert to decide (because they may be ‘Semantically Am-
biguous’ or ‘Incomprehensible’), we introduced an addi-
tional relation type, called Ambiguous association, which
is defined as an uncertain association between a gene and
a disease. ‘Semantically Ambiguous’ means that authors
themselves said an association is uncertain. Figure 2B has
shown a case of ‘Semantically Ambiguous’. ‘Incomprehen-
sible’ means our experts can neither confirm nor deny an as-
sociation given the texts. ‘Incomprehensible’ is not uncom-
mon due to a large variety in publication qualities. Instead
of representing an Ambiguous association as a new class,
we use a probability score, GDP (Gene–disease Association
Probability). p(gi , d j ) ∈ [0, 1] to model the new relations.
‘Non-associated’ and ‘Associated’ are still represented by 0
and 1. We use 0.5 to represent an Ambiguous association, as
it is between Non-associated and Associated. The rationale
of using Ambiguous association is that an uncertain anno-
tation should neither be considered Associated nor Non-
associated in model training. We used Ambiguous associ-
ations in the model training stage to improve the model’s
generalization capability. In the prediction stage, we ex-
tract Associated gene–disease pairs by computing ŷ(gi , d j )
as:

ŷ
(
gi , d j

) =
{

1, i f p(gi , d j ) > 0.5
0, otherwise , gi ∈ G, d j ∈ D (1)

Overview of the RENET2 pipeline

An overview of the RENET2 pipeline is shown in Figure
1A. First, we conducted NER to identify the gene (G) and
disease (D) entities in an article. For this task, we utilized
PubTator Central (24), a state-of-the-art automated con-
cept annotation tool, designed for biomedical full-text ar-
ticles. It applied cutting-edge machine learning and deep
learning techniques for concept disambiguation to improve
NER accuracy.

Based on the NER results, we applied SeFi to reduce the
input article’s noise. After the preprocessing steps, the data
was fed to the RENET2 model for training and prediction.
RENET2 produced a probability score, the GDP score, for
each gene–disease pair in the article. The GDP scores al-
lowed us to extract the gene–disease associations from the
articles.

Section Filtering (SeFi)

SeFi is a technique designed to filter noisy content from
full text for RE. We observed that paragraphs containing
no gene–disease pairs (i.e. containing only one type or no
gene/disease entities), did not provide information on gene–
disease relations mentioned at the full-text level. For exam-
ple, method sections that discussed experiment settings but
not specific genes or diseases were not helpful for identifying
any gene–disease associations. Based on this observation,
we designed a simple filtering technique, called SeFi, to im-
prove data quality for full-text level RE. The idea of SeFi is
to delete paragraphs in each section without any gene and
disease entity pair information. It is regarded as a prepro-
cessing module for RENET2. To conduct SeFi, (i) we found
all gene and disease entities and paragraph information us-
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ing PubTator Central, and (ii) deleted paragraphs that did
not have any gene and disease entity pairs in each section.
We used PMC’s standardized ‘section type identifiers’ avail-
able from PubTator Central (PTC) as the section names for
each article. We found that this technique improved RE per-
formance in full text. See the ‘Results’ section.

RENET2 model

RENET2 was built and expanded using the RENET frame-
work. Each word in the RENET2 model is represented by
a word vector combined with a one-hot feature vector. The
word vector captures the semantic features of a word, while
the feature vector denotes whether a word is a target gene,
target disease, non-target gene, or non-target disease. For
predicting any pair of a gene and disease, the words that
contain a gene or disease that match the gene or disease,
are marked at target gene or target disease in the vector.
Other words that contain a gene or disease are marked at
non-target gene or non-target disease otherwise. Then a
document-level representation of the target gene and dis-
ease is computed in two steps: (i) from word representation
to sentence representation, using a CNN, and (ii) from sen-
tence representation to document representation, using an
RNN. Finally, a Feed Forward Neural Network is applied
to calculate the Gene–disease Association Score. For the de-
tailed network architecture and hyperparameters, see Sup-
plementary Note. The computation of RENET2 neural net-
works is represented as:

p̂
(
gi , d j

) = sigmoid
(
φ

(
gi , d j

))
(2)

where φ(gi , d j ) is the learned document representation for
(gi , d j ). Note that we use a sigmoid activation function to
compute the probability of association.

To incorporate Ambiguous associations for training,
RENET2 models treat extraction as a regression problem.
RENET2 uses the mean square errors (MSE) function as
the loss function:

MSE = 1
nm

n∑
i = 1

m∑
j = 1

(
pgi , d j − p̂gi , d j

)2
(3)

where m, n is the number of gene and disease entities in the
article, respectively.

We implemented RENTE2 using Pytorch (27). We esti-
mated that the average token number in a sentence from a
biomedical full-text article to be about 27, which is consis-
tent with Lippincott et al. (28). We configured the maximum
token number in a sentence to be 54 to cover most cases.
We configured the maximum number of input sentences as
1000 in a full text. The number was empirically determined,
making RENET2 capable of handling a maximum of 54 000
(54 × 1000) tokens, which is more than the number of to-
kens in most full-text articles. More settings and hyperpa-
rameters are available in the Supplementary Note.

Model ensemble

RENET2 uses the ensemble technique (29) to boost its per-
formance in full-text RE. The ensemble of RENET2 models

is done by training θ ∈ N
+ RENET2 models and integrat-

ing their prediction results. A gene–disease pair is predicted
as Associated if ≥50% of the RENET2 models predict it
as Associated. For ensembling θ RENET2 models, the en-
sembled relation type ŷensemble of a gene and disease pair is
computed as:

ŷensemble
(
gi , d j

) =
{

1, �θ
k=0 ŷk

(
gi , d j

) ≥ θ
2

0, otherwise
(4)

where θ ∈ N
+, and ŷk(gi , d j ) is the relation type prediction

of the kth model. We set θ = 10 as default in RENET2.

Iterative training data expansion

RENET2, like many other deep-learning methods with
supervised learning, requires ample high-quality training
samples for good performance. But because of the large
number of gene–disease pairs and long text length, manual
labeling of full-text articles is labor-intensive and often far
too expensive. In RENET2, we developed ‘iterative train-
ing data expansion’ to make full-text labeling faster. Instead
of manually labeling every full-text article from scratch, the
basic idea of the method is to have an expert curate a small
number of articles initially labeled by a machine model, and
then use the curated labels to train a larger machine model
to be used in the next iteration. With the improved perfor-
mance of the machine model, less and less curation effort
is expected to be required in subsequent rounds. The slow-
down or even reverse of the machine model performance
would denote a stop in curating more machine-labeled re-
sults for training. In the field of image classification, a sim-
ilar idea was used to construct LSUN (30), a large-scale
image-classification dataset.

The workflow of iterative training data expansion is de-
picted in Figure 1B. At the beginning of each iteration, we
use the best existing RENET2 model to predict the gene–
disease associations from a number of full-text articles. The
initial RENET2 model can be from training on a curated
public dataset such as DisGeNET, which contains only ab-
stracts, or from the last iteration. Based on the prediction
results, all gene–disease pairs are processed using the fol-
lowing two steps:

(i) The gene–disease pairs predicted as Associated un-
dergo a manual annotation process. By manually check-
ing each predicted Association, we determine whether
it is an Association, Ambiguous association, or Non-
association. This step ensures the precision of the posi-
tive predictions to be fed to the next iteration. We found
this curation process much more efficient than manual-
labeling from scratch because (a) most false positive la-
bels are significant to humans, and (b) for labels that
trigger hesitation, we simply label them as Ambiguous
associations. The annotated gene–disease pairs are re-
garded as a gold dataset and are used for both training
and evaluation.

(ii) The gene–disease pairs that are predicted as Non-
associated are cross-validated by other methods, in our
case, BeFree, DTMiner and BioBERT. We regard a
gene–disease pair as inferential Non-associated if all
methods predict it as Non-associated. This step ensures
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the precision of the negative predictions to be fed to
the next iteration. As these pairs are cross validated by
other methods, but not manually inspected, they con-
stitute a Silver Dataset (SiDa).

We then enter the next iteration and train a new RENET2
model using both the gold and SiDa. Depending on the
available resources and goal, iteration can be stopped if
there is a time constraint or satisfactory performance is
reached.

Evaluation metrics

We use precision, recall and F1 score metrics to evalu-
ate the model performance at each training iteration. Re-
call can be simply calculated as (annotated associations
being correctly predicted)/(total annotated associations).
However, calculating precision is more complicated, be-
cause we cannot assume all gene–disease pairs in our full-
text dataset are annotated, so some true-positive may be
misclassified as false-positive. To avoid these misclassifica-
tions, we regard an associated gene–disease pair predic-
tion as true-positive if it (i) also exists in our validation
dataset and with matched prediction, or (ii) is predicted
as associated by all four methods: RENET2, BeFree, DT-
Miner and BioBERT. Note that we are not saying that a
gene–disease association predicted positive by all four state-
of-the-art methods is absolutely correct, but we consider
that (i) there is a relatively small chance of an association
predicted positive by four fundamentally different meth-
ods being incorrect, and (ii) an association categorized as
false-positive in all four methods will have the same effect
on changing the precision. The same evaluation methods
and metrics were applied to benchmarking all tools. Each
experiment was repeated five times with randomly picked
80% training and 20% validation data (i.e. 5-fold cross
validation).

RESULTS

Performance using Ambiguous associations

We expected that if the use of Ambiguous associations in
training could improve the performance of RE, it must hold
true with abstracts because they usually have the highest
density of gene and disease entities. We benchmarked the
use of Ambiguous associations with the abstract dataset,
and we found it effective in improving both precision and
recall. The results are shown in Supplementary Table S2.
RENET2 achieved a 2.40% higher F1 score (71.55% against
69.15%) when Ambiguous associations were used. Com-
pared with RENET2’s predecessor RENET, which works
only with abstracts, RENET2 achieved a 2.77% higher F1
score (71.55% against 68.78%).

Performance of iterative training data expansion

We compared the performance of RENET2 at different it-
erations to evaluate the effect of iterative training data ex-
pansion. We trained models using the annotations and cu-
rations obtained at the end of each iteration and tested them

Table 1. Comparison of RENET2’s performance at different training data
expansion iterations

Training dataset Testing dataset Precision Recall F1 score

500 abstracts 500 full texts second
curation (5-fold
cross validation,
80% training; 20%
validation)

0.6024 0.2539 0.3573

1000 abstracts 0.6505 0.2002 0.3062
500 full texts
first curation

0.6765 0.7204 0.6977

500 full texts
second curation

0.7062 0.7371 0.7213

The best result in each column is in bold.

against our final full-text dataset, i.e. the 500 full-texts with
two rounds of curation. The results, shown in Table 1, veri-
fied the effectiveness of the iterative training data expansion
strategy. With less and less human effort put into each it-
eration, both precision and recall continued to improve. A
leap was observed on recall (from 20.02 to 72.04%) when we
switched from using abstracts to full-texts for training, sug-
gesting a substantial difference between abstracts and full
texts for extracting gene–disease associations, and the essen-
tiality of having a method designed for full-text RE. From
our observation, full texts have, on average, 17 times more
tokens, and 34 times more unique gene–disease pairs than
abstracts.

Comparison of RENET2 models with different training set-
tings

We introduced three new techniques to RENET2: Model
Ensemble (ENS), SeFi and SiDa. But how these techniques
work alone and together remained to be studied, so we
compared RENET2’s performance with different technique
combinations using the full-text dataset. The results are
shown in Table 2. We observed that all techniques im-
proved model performance when used alone. SeFi resulted
in the most significant improvement in RENET2, since
all F1 scores when SeFi was not used were lower than
those using SeFi. Using SeFi alone resulted in a 7.62% in-
crease in the F1 score, indicating that filtering out noisy
text is critical for full-text RE. In addition, RENET2 ex-
cludes the method section for training by default. The in-
fluence of each section is analyzed in detail in a later sec-
tion. ENS alone improved F1 score by 4.05%. SiDa im-
proved F1 score by 1.41%, but it had a different impact
on precision and recall, increasing precision by 4.68%,
but decreasing recall by 3.25%. This matched our expec-
tation that the additional Non-associated labels from the
SiDa would reduce false positive predictions, but increase
false negative predictions to a certain extent. Thus, if SiDa
is used for better precision, other techniques are needed
to compensate for decreasing recall. When all three tech-
niques were used, the F1 score improved by 11.49% (16.45%
higher precision and 4.84% higher recall). Therefore, we will
use all three techniques in RENET2 by default in future
analyses.
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Table 2. Comparison of RENET2’s performance on the full-text dataset
when trained with different settings

Ensemble SeFi SiDa Precision Recall F1 score
F1 score

increment

N N N 0.5417 0.6887 0.6064 -
Y N N 0.5791 0.7327 0.6469 4.05%
N Y N 0.6465 0.7233 0.6826 7.62%
N N Y 0.5885 0.6562 0.6205 1.41%
Y N Y 0.6079 0.6946 0.6484 4.19%
N Y Y 0.6888 0.6906 0.6897 8.32%
Y Y N 0.6746 0.7606 0.7150 10.86%
Y Y Y 0.7062 0.7371 0.7213 11.49%

The best result in each column is in bold. ENS: Ensemble, SeFi: Section
Filtering, SiDa: Silver Dataset, F1 increment: increase in F1 score com-
pared to the basic setting.

Table 3. Comparison of different methods for full-text gene–disease RE

Method Precision Recall F1 score

BeFree 0.3152 0.7808 0.4491
DTMiner 0.2761 0.8624 0.4183
BioBERT 0.2803 0.9128 0.4289
RENET 0.3681 0.7002 0.4826
RENET2 0.7062 0.7371 0.7213
RENET2 high-sensitivity mode 0.5518 0.9217 0.6903

The best result in each column is in bold.

Comparison between RENET2 and other methods

To the best of our knowledge, RENET2 is the first open-
source method optimized for full-text gene–disease RE. We
compared RENET2 to three state-of-the-art gene–disease
RE methods: BeFree, DT-Miner, BioBERT and RENET.
For BeFree and DTMiner, the best pretrained models were
downloaded and used for benchmarking. For BioBERT, we
used a BioBERT-based model fine-tuned on the GAD (7)
dataset. For RENET, we used pretrained model described
in the RENET paper. To ensure a fair comparison, all meth-
ods used PTC for the NER steps.

The results are shown in Table 3. RENET2 outperformed
the other four methods by a significant margin, achieving
70.62% precision, which was 39.09, 43.01, 42.59 and 33.81%
higher than BeFree, DTMiner, BioBERT and RENET, re-
spectively. For overall performance, RENET2 achieved a
72.13% F1 score, which was 27.22, 30.30, 29.24 and 23.87%
higher than BeFree, DTMiner, BioBERT and RENET, re-
spectively. The four methods underperformed on precision,
partially because they are sentence-based and could not
leverage multi-sentence context to sift out non-conclusive
associations.

Using the default mode of RENET2, we observed lower
recall than the other three methods (73.71% against 78.08,
86.24 and 91.28% of BeFree, DTMiner and BioBERT). To
accommodate some usage scenarios that favor recall over
precision, RENET2 also provides a high-sensitivity mode.
Using this mode, we achieved the best recall (92.17%) of
all methods, while having a 3.10% lower F1 score than the
default RENET2. In the high-sensitivity mode, the use of
the SiDa for training was disabled, and the ENS’s voting
strategy was modified to ‘predict positive as long as one out
of ten models support it’.

Studying the importance of difference full-text sections for
relation extraction

We studied the importance of different sections for full-text
RE. We summarized the count of gene–disease associations
in each section using the full-text dataset. The results are
shown in Figure 3A. We found that introduction, discussion
and abstract were the three most informative sections for
gene–disease RE. The findings highlight that using abstract
alone is insufficient for gene–disease RE because a large
portion of gene–disease associations are from the other sec-
tions. We also found that few associations were found in the
method section.

To better understand the relationship between the dif-
ferent sections, we measured the overlapping rate of asso-
ciations found in them. A heat map is shown in Figure
3B. The overlapping rate of two sections is computed as
overlap (A, B) = |A∩ B| / min(|A|, |B|), where A and B
are the gene–disease associations found in the two sections.
We found that the highest overlapping rate was between ab-
stract, result and discussion. This indicates that many gene–
disease associations from the abstract can also be cross-
validated in the result or discussion section. Although we
have not made use of this discovery in RENET2, it could
lead to even better precision in our future investigations.

To understand how iterative training data expansion im-
proved the recall rate in different sections, we applied three
RENET2 models trained with data from different iterations
to the full-text dataset. The recall breakdown by section is
shown in Figure 3C. We found that the two full-text models
performed much better than the abstract model on the ab-
stracts themselves, so we believe that a higher overall num-
ber of tokens and a more diverse corpus can comprehen-
sively improve the performance of gene–disease RE.

We also performed an experiment with one-section left
out to train RENET2 to see the effect of each section on
the prediction power of RENET2. The results are shown in
Figure 3D. In spite of removing a section from the training
dataset, all models were trained using RENET2’s default
setting (i.e. ENS, SeFi and SiDa enabled). When all sections
were used for training, the F1 score was 71.55%. When the
method section was left out, the F1 score increased slightly
by 0.58%. For this reason, we left out the method section in
model training by default in RENET2. We found that leav-
ing out any sections other than method decreased the F1
score from 1.45% to 11.68%. The findings show that leaving
out the introduction section severely deteriorated the per-
formance (F1 score from 71.55 to 59.87%), indicating the
importance of having the introduction section when train-
ing a model for full-text gene–disease RE.

Application 1: Large-scale full-text gene–disease relation ex-
traction

We applied RENET2 on a large-scale biomedical literature
database to build a collection of gene–disease associations
from existing studies. We used RENET2 to extract gene–
disease associations from all full-text articles available in
the PMC open-access subset (downloaded on August 2020),
which has more than 2.75 million full-text articles. It is the
largest collection of full-text articles available for download
and text mining (2). After filtering out articles without any
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Figure 3. Gene–disease RE in different full-text sections and their effect on RENET2 models. (A) The count of ‘Associated’ predictions in different sections.
(B) The association overlapping rate among different sections. The darker color indicates a higher overlap rate. (C) The recall rate of multiple RENET2
models on different sections. ABS: model trained with 1000 abstracts, FT1: 500 full texts 1st curation, FT2: 500 full texts second curation. (D) RENET2’s
performance after removing different sections from training.

gene–disease pair, we applied RENET2 on the 1 889 558
remaining articles. We found 3 717 569 gene–disease asso-
ciations from the articles in 14.65 wall-clock hours using a
computing cluster with 49 NVIDIA GeForce GTX 1080 Ti
GPU cards (detailed statistics in Supplementary Table S3).
This was more than five times the number of associations
extracted from abstracts by RENET (19). The scripts for
running RENET2 and the entire set of extracted associa-
tions are available in RENET2’s GitHub repo.

Application 2: Finding proteins associated with COVID-19

With the fast expansion of COVID-19 research, it is getting
harder and harder for researchers to keep up with the lat-
est progress. RENET2 provides an efficient way for users to
track associated proteins and pinpoint the subset of the lit-
erature of interest. We applied RENET2 to extract proteins
associated with COVID-19 from the LitCovid (21) articles.
LitCovid is a curated literature hub for tracking up-to-date
scientific information about COVID-19. It had 73 654 ar-
ticles in the dataset dated June 2020. After filtering out ar-
ticles without any protein names, we applied RENET2 on
the 19 368 remaining articles, and we found 1231 proteins
that are reported to be associated with COVID-19 in at least
one article. The results are shown in Figure 4. The top 15
proteins are ACE2, IL-6, CRP, Spike, ACE, TNF-alpha,
TMPRSS2, IL-1beta, ORF1a/b, Fibrinogen, CD8, Mpro,

AST, IL-10 and IFN-gamma. The findings are consistent
with Yeganova et al. (31). The scripts for running RENET2
and the results are available in RENET2’s GitHub repo.

DISCUSSION

In this paper, we introduced RENET2, a deep-learning-
based RE method to extract full-text gene–disease associ-
ations from full-text articles. RENET2 can use Ambigu-
ous associations for training and multiple techniques can
be applied, including ENS, SeFi and a SiDa, to boost
its performance on full text. The new iterative training
data expansion method proved to be effective in improv-
ing RE performance, while reducing human effort. In our
experiments, RENET2 significantly outperformed state-of-
the-art methods on full-text gene–disease RE. We demon-
strated RENET2’s utility using two applications. We ap-
plied RENET2 to the PMC open-access subset, which
includes over a million full-text articles, and extracted
over three million gene–disease associations. We applied
RENET2 to the fast-expanding pool of COVID-19 research
articles and ranked the top 15 proteins verified in another
more systematic study. The source code and the results of
this study are publicly available in GitHub.

Some practical challenges remain, leaving room for the
further development of RENET2. First, the upper-bound
accuracy of RE is capped by the accuracy of NER. Our
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Figure 4. The top 15 proteins RENET2 found associated with COVID-19 in the LitCovid articles. The labels show the number of articles that support the
protein’s association with COVID-19.

study used PTC, which is the best system to date for NER.
However, we still found a small number of NER results
to be inconsistent and erroneous, such as incomplete gene
and disease entities, and failure to disambiguate gene and
disease acronyms. We estimate that the accuracy of the
RENET2 model can be improved by at least 8% if the NER
annotation is error-free. We expect to see in the near fu-
ture that deep-learning methods could improve the accu-
racy of NER. Second, the current model is limited to com-
puting one gene–disease pair association at a time, which
results in a waste of computation resources (32). Different
gene–disease pairs from the same article share most of their
contexts. A significant amount of computing time and re-
sources can be saved if multiple gene–disease pairs are pro-
cessed in a single computation step. One of the possible so-
lutions is to use a graph-based network structure to rep-
resent genes and diseases as vertices, and relationships as
edges (33) for model training and inference. We also hope to
incorporate deep language representation models into full-
text RE in our future research. Recent studies show that
deep language representation models, such as ELMo (34)
and BERT (16), can develop strong language understanding
capability by pre-training on large-scale unlabeled corpora.
We aim to solve the input length limitation as well as a few
other limitations of applying deep language representation
models using DocBERT (35) as an example to improve the
performance of full-text gene–disease RE.
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