Skip to main content
. 2021 Jul 5;3(3):lqab062. doi: 10.1093/nargab/lqab062

Table 2.

Comparison of RENET2’s performance on the full-text dataset when trained with different settings

Ensemble SeFi SiDa Precision Recall F1 score F1 score increment
N N N 0.5417 0.6887 0.6064 -
Y N N 0.5791 0.7327 0.6469 4.05%
N Y N 0.6465 0.7233 0.6826 7.62%
N N Y 0.5885 0.6562 0.6205 1.41%
Y N Y 0.6079 0.6946 0.6484 4.19%
N Y Y 0.6888 0.6906 0.6897 8.32%
Y Y N 0.6746 0.7606 0.7150 10.86%
Y Y Y 0.7062 0.7371 0.7213 11.49%

The best result in each column is in bold. ENS: Ensemble, SeFi: Section Filtering, SiDa: Silver Dataset, F1 increment: increase in F1 score compared to the basic setting.