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Abstract

Purpose: Osteoarthritis (OA) is a common degenerative disease involving a variety of structural
changes in the affected joint. In addition to narrowing of the articular space, recent studies involv-
ing statistical shape analysis methods have suggested that specific bone shapes might be associated
with the disease. We aim to investigate the feasibility of using the recently introduced framework
of functional shapes (Fshape) to extract morphological features of OA that combine shape vari-
ability of articular surfaces of the tibia (or femur) together with the changes of the joint space.

Approach: Our study uses a dataset of three-dimensional cone-beam CT volumes of 17 knees
without OA and 17 knees with OA. Each knee is then represented as an object (Fshape) con-
sisting of a triangulated tibial (or femoral) articular surface and a map of joint space widths
(JSWs) measured at the points of this surface (joint space map, JSM). We introduce a generative
atlas model to estimate a template (mean) Fshape of the sample population together with tem-
plate-centered variables that model the transformations from the template to each subject. This
approach has two potential advantages compared with other statistical shape modeling methods
that have been investigated in knee OA: (i) Fshapes simultaneously consider the variability in
bone shape and JSW, and (ii) Fshape atlas estimation is based on a diffeomorphic transformation
model of surfaces that does not require a priori landmark correspondences between the subjects.
The estimated atlas-to-subject Fshape transformations were used as input to principal component
analysis dimensionality reduction combined with a linear support vector machine (SVM) clas-
sifier to identify the morphological features of OA.

Results: Using tibial articular surface as the shape component of the Fshape, we found leave-
one-out cross validation scores of ≈91.18% for the classification based on the bone surface trans-
formations alone, ≈91.18% for the classification based on the residual JSM, and ≈85.29% for
the classification using both Fshape components. Similar results were obtained using femoral
articular surfaces. The discriminant directions identified in the statistical analysis were associ-
ated with medial narrowing of the joint space, steeper intercondylar eminence, and relative deep-
ening of the medial tibial plateau.

Conclusions: The proposed approach provides an integrated framework for combined statistical
analysis of shape and JSPs. It can successfully extract features correlated to OA that appear
consistent with previous studies in the field. Although future large-scale study is necessary
to confirm the significance of these findings, our results suggest that the functional shape meth-
odology is a promising new tool for morphological analysis of OA and orthopedics data in general.
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1 Introduction

Osteoarthritis (OA) is currently the most common degenerative joint disease. The healthcare
burden of OA is significant: it affects 30 million US adults1 and is an indication for 95% of
joint replacements at a total annual cost of 40 billion.2 The disease is commonly assumed to
develop in response to abnormal loading patterns in the joint.3 There is no single recognized
cause of such mechanical derangement. Rather, OA is likely an end-product of a range of
distinct anatomical and kinematic deficiencies—congenital, lifestyle-related, or post-traumatic
(e.g., due to ligament tears). This complex, multifactorial etiology challenges early detection
and diagnosis and is likely one of the reasons for the current lack of disease-modifying treat-
ments for OA.

Because of the role of biomechanical factors in OA, it is hypothesized that the morphology of
the joint—which affects its kinematics and load-distribution—might yield useful biomarkers for
risk stratification, early detection, and staging of the disease. Such biomarkers might include
variables representing the shape (geometry) of the bones of the joint and/or their relative align-
ment. For example, in knee and hip OA, a radiographic measurement of joint space width (JSW)
is an FDA-recommended structural outcome in clinical trials of OA-modifying drugs.4 Recently,
there has been an increasing interest in the application of statistical shape models (SSMs) as a
promising approach to develop morphological biomarkers of OA. We review some of this work
in the following paragraphs. [Here, we use the term SSM to describe statistical models of pop-
ulation shape variability, formed by analysis of two-dimensional (2D) or three-dimensional (3D)
imaging datasets of a sample of subjects from the population.]

In OA of the knee, an early demonstration of SSM in identification of morphological variants
associated with the disease came from models based on 2D radiographs. For example,
Haverkamp et al.5 developed an SSM of the entire knee joint, accounting both for the geometry
of the bones (tibia, patella, and femur) and their alignment. Three morphological modes—wid-
ening of the tibia and femur, flexion of the knee, and elevated lateral tibial plateau—were found
to be significantly associated with established symptoms of OA, i.e., pain, cartilage defects on
MRI, and Kellgren/Lawrence grade from radiographs. Recently, it has been shown that, when
machine learning was used to derive OA prediction models from a large ensemble of clinical,
lifestyle and imaging variables, the best-performing models often included radiographic SSMs.6

3D SSMs are a natural extension of the radiography-based approach, potentially enabling
more precise assessment of shape variability due to the lack of anatomical overlap. In knee OA,
3D SSMs obtained from MRI identified a variety of morphological features that are likely to be
associated with the disease, e.g., in studies of OA progression,7,8 in at-risk population,9 and in
patients awaiting total knee replacement due to OA.10 Importantly, certain articular surface
geometries found through 3D SSM appear to be linked to significant increases in MRI signals
of cartilage loss in patients with ACL tears (OA often develops secondary to ACL injuries).11

Considering that cartilage loss is a hallmark of OA, this result further strengthens the case for
using shape analysis to establish new biomarkers of the disease.

The majority of the works discussed above involve shape models developed by parameter-
izing bone surfaces using a set of landmarks, either placed manually or obtained through mesh
generation. To form an SSM, one needs to first establish correspondences between the landmarks
of the subjects contributing to the model. For relatively densely sampled surface meshes, this
matching can in principle be achieved using a variety of automatic methods (including, e.g.,
point cloud registration12 and analysis of local curvatures13). Along similar lines, the recent work
of Ref. 14 using surface meshes from the Osteoarthritis Initiative (OAI) dataset involved a super-
vised postprocessing step to enforce a consistent number of vertices across the different subjects
as well as correspondences between these vertices.

In contrast to the majority of the prior work in morphological analysis of OA, this article
investigates an alternative shape modeling strategy that obviates the need for landmark extrac-
tion and correspondences. To that end, we follow the framework of generative surface atlas
models.15,16 Intuitively, we estimate a template bone surface, representing the “mean shape”
of the subject sample, together with template-centered variables that model the transformations
from this template to each subject, relying on a global and landmark-free measure of fidelity
between surface meshes. The transformations describe shape variation in the population in a

Charon, Islam, and Zbijewski: Landmark-free morphometric analysis of knee osteoarthritis. . .

Journal of Medical Imaging 044001-2 Jul∕Aug 2021 • Vol. 8(4)



manner that does not explicitly require corresponding control points on the bone surfaces. To the
best of our knowledge, this is one of the first illustrations of this methodology in application to
knee OA.

Another important distinction with the prior work on 3D SSMs in knee OA is that we propose
to jointly consider the distribution of bone shapes and joint space morphologies—in particular,
JSW—in the population. To this end, we use a previously developed algorithm17 to equip each
location on the tibial (or femoral) surface with a unique measurement of local distance to the
femur (or tibia); the set of such measurements for all points on the articular surface forms a joint
space map (JSM). To develop a statistical model combining bone shapes and JSMs, we interpret
the JSMs as textures on each bone surface. We utilize the framework of functional shapes
(Fshapes), introduced theoretically in Refs. 18 and 19 to perform atlas estimation on the pop-
ulation of such textured bone surfaces. Note that it shares some mathematical features with, but is
conceptually distinct from, the setting of functional maps20 as the latter approach uses artificially
constructed functions chosen specifically to estimate the surface correspondences, whereas the
FShape functions (here, the JSM) represent additional data measured on the surface that is not a
priori directly correlated with the geometry of the surface.

It is important to note that the proposed application of Fshapes does not assume that the
variations in surface geometry and JSM are necessarily correlated; for example, certain shape
variants might predispose for OA and thus be present in a subject even if the JSM is fairly nor-
mal. Rather, the benefit of simultaneous modeling of both aspects of articular morphology is that
it provides a rigorous approach to aligning the data for intersubject comparisons. This is espe-
cially important for JSM analysis, in which a conventional approach would require a deformable
registration of the articular surfaces followed by deformations of the JSMs to ensure that the
subsequent comparisons use corresponding regions of the joint. In our approach, the study sam-
ple is described in terms of geometric mappings of the shapes and functional transformations of
the JSMs (e.g., local widening or narrowing of the articular space) that are automatically mapped
onto a common atlas without the need for invoking a sequence of deformable registrations. As
we show below, the statistical analysis can then be performed either jointly on both components
of the Fshape transformations (geometry + JSM) or individually on each component.

We evaluate the ability of the Fshape framework to extract interpretable modes of variation in
bone geometry and JSMs correlated with OA. Specifically, the proposed analysis was performed
on volumetric images of weight-bearing knees acquired using a recently introduced extremity
cone-beam CT (CBCT).21 Extremity CBCT is a dedicated orthopedic CT system with several
features that are particularly attractive for evaluation of OA, including high isotropic spatial
resolution and the unique capability for 3D imaging in a natural standing stance. Compared
with MRI, which is often the only form of 3D imaging available in existing OA cohorts such
as the OAI, CBCT is potentially better suited for the morphological modeling proposed in this
work. First, MRI typically exhibits lower resolution in the longitudinal (slice) direction than in-
plane; the isotropic resolution of CBCT may therefore be advantageous for the development of
accurate models of articular surfaces. Perhaps more importantly, extremity CBCT enables
weight-bearing 3D imaging, which is not available in conventional MRI. Since joint space nar-
rowing is often accentuated under physiological load, CBCT might yield additional insights into
the progression of OA. The work presented below is, therefore, not only a general contribution to
the SSM methodologies in OA but is also partly motivated by the need to develop rigorous
analysis of the new information provided by the extremity CBCT. While the Fshape model was
previously applied for disease characterization in retinal data,22 the results presented in this paper
are, to the best of our knowledge, the first demonstration of this integrated approach in the 3D
assessment of the morphology of weight-bearing knee in OA.

2 Data Acquisition and Processing

2.1 Study Population and CBCT Imaging Protocols

The volumetric knee images used in this work were obtained in an Institutional Review Board-
approved pilot study of the extremity CBCT system. Weight-bearing dominant knees of the
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participants were imaged at 80-kVp tube voltage and 10-mGy absolute dose.21 The scans were
reconstructed using 3D-filtered backprojection to generate 20 × 20 × 20 cm3 volumes centered
on the knee joints. Voxel size was 0.52 mm. Morphological analysis was performed on a sample
of N ¼ 34 subjects; 17 of them were diagnosed with knee OA using clinical criteria consistent
with the current standard of care, including symptoms and physical examination by an ortho-
pedic specialist, as well as radiographic signs assessed by a musculoskeletal radiologist. The
radiological evaluation considered the presence of joint space narrowing, osteophytes, and effu-
sion. The remaining 17 subjects (referred to as “non-OA” or “normal”) had no known symptoms
or history of OA. We note that this is the same study population that has been used in our pre-
vious publication introducing the JSM algorithm.17

2.2 Segmentation and Joint Space Map Estimation

For each subject, we first segmented the tibia and femur using a semiautomated pipeline imple-
mented in Matlab (Mathworks, Natick, Massachusetts) and ImageJ (NIH, Bethesda, Maryland).
The CBCT reconstructions were thresholded to identify bone voxels. Morphological opening
and closing were performed on the bone volume to remove erroneously classified soft-tissue
voxels and fill holes. Afterward, a connected components analysis was performed to identify
the tibia and femur, and additional binary closing was applied to each bone individually.

The voxelized segmentations of the tibia and femur were input to a previously reported joint
space mapping algorithm.17 Briefly, the segmented tibial and femoral articular surfaces were
treated as two conductors of a capacitor. The capacitor model was applied within an ∼65 mm
wide region of interest (ROI) centered on the knee joint. All tibial surface voxels within the ROI
were assigned toþ1 V potential; the femoral surface voxels were assigned to −1 V. A numerical
solution of the Gauss’s law yielded the electric field lines joining the two surfaces. The length
of the field lines was then computed using Euler’s method to provide an estimate of the JSW at
each articular surface voxel. Field lines longer than 35 mm were omitted from the subsequent
analysis because their paths fell outside the tibio–femoral joint space.

The choice of polarity of the articular surfaces is not critical in the electrostatic joint space
model since only the length (and not the direction) of the field lines is used as the measure of
JSM. Furthermore, our procedure did not involve any registration steps to ensure that the polar
regions were consistently aligned to specific aspects of knee anatomy. Rather, we relied on a
simple manual selection of the ROI, where the capacitor model was applied, and on thresholding
of very long field lines to ensure that each articular surface voxel was equipped with a JSW
measurement.

The JSMs obtained through the procedure outlined above have certain attractive properties.
First, they are symmetric, i.e., independent of whether they were measured from femur or tibia.
Such symmetry appears to represent the intuitive notion of local joint spacing better than a map-
ping based on closest point (CP) distances between surfaces—similar to conventional distance
fields—where the outcome depends on whether the joint width is estimated from tibia to femur
or vice versa. This asymmetry emerges because the CP model is ambiguous—multiple points on
a source surface might map onto one point on the target surface. The second important character-
istic of the our approach is that it does not rely on an arbitrary choice of a common projection
direction, in contrast to the conventional radiographic measurement that uses the longitudinal
axis (LA) of the knee joint as a reference. It is important to recognize that there is currently no
large-scale clinical data to establish whether the theoretical advantages of the electrostatic JSM
translate to improved diagnostic performance compared with the CP-based mapping (which has
also been employed in weight-bearing CBCT23) or the radiographic LA-based definition.
However, the Fshape methodology is agnostic to how the JSM was generated and can accom-
modate other models23,24 if future clinical evaluations suggest that such methodologies are
advantageous compared with the current approach.

Point clouds of the boundaries of the tibia and femur were extracted from the voxelized
segmentations and triangulated into textured surface meshes using MATLAB. For the analysis,
the surface meshes were manually truncated in the longitudinal direction. For the tibiae, the
resulting mesh boundaries were ∼20 mm away from the tibial plateaus; for the femurs, the boun-
daries were ∼25 mm away from the most distal aspect of the condyles (the distances are reported
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as measured along the long axes of the bones). Since the surface fidelity metrics considered in
this work are in our experience fairly robust to intersubject inconsistencies in the definition of
mesh boundary, we did not attempt to standardize the depth of the longitudinal truncation
beyond simple visual inspection.

The JSMs were interpolated from the original voxel grid onto the vertices of the bone surface
mesh—i.e., each vertex was equipped with an estimate of the local distance to the opposite bone
(note that the same JSM is used for both bones owing to the symmetry of the electrostatic model).
By the construction of the mesh, its vertex density was comparable to the voxel sampling density
of the volume used for computing the JSMs. This ensured that the interpolation step did not
result in substantial smoothing of the JSMs. This study does not investigate the performance
of our method for surface triangulations that are markedly sparser than the voxel grid. The pri-
mary justification for using such sparse surface meshes is to accelerate atlas estimation. Since
processing speed is usually not a concern in statistical shape analysis, we believe that the tri-
angulation density employed here represents a reasonable choice that guarantees high fidelity of
the shape model and of the JSM texture on that model. Such relatively dense mesh representa-
tions are particularly appropriate in CBCT to capture fine surface details revealed by the high
isotropic spatial resolution of this modality.

3 Atlas Estimation

The procedure described above yields a cohort of textured triangulated surfaces that combine
the shape of each tibia (resp. femur) with functional information on relative alignment
between femur and tibia given by the JSM at each vertex. To identify the morphometric fea-
tures of OA, we model and analyze the morphological variability in this dataset, namely the
variability of both the tibia (resp. femur) shapes and JSMs. As mentioned earlier, our approach
involves automatically estimating an atlas from these textured surfaces, consisting of a tem-
plate representing a mean shape and a mean JSM, together with template-centered variables
that model the shape and JSM transformations from the template to each subject in the dataset.
This is achieved using the Fshapes approach that provides a joint geometric-functional, land-
mark-free framework to process such objects. Below we summarize the atlas estimation proc-
ess for tibia surfaces equipped with JSM textures (the same procedure applies to femur
surfaces). A more detailed description of the Fshape model and related algorithms can be
found in Ref. 18.

3.1 Hypertemplate and Rigid Prealignment

We start by defining a hypertemplate Fshape that will serve as an initial guess and reference for
the atlas estimation process. (As a reminder, the term “functional shape” or Fshape refers to an
object consisting of a triangulated surface and a texture on that surface, here, a JSM.) It was
obtained by selecting a single subject from the population and applying three iterations of stan-
dard Laplace smoothing implemented in Meshlab to the triangulated bone surface mesh of that
subject. (We confirmed that the number of smoothing iterations was sufficiently low to avoid
selfintersections in the resulting hypertemplate.) The hypertemplate texture component was set
to a constant equal to the average JSM value across all vertices of all subjects. This smooth
initialization for the average Fshape will be later refined by the atlas estimation algorithm.
Note that the choice of hypertemplate will still influence the estimated atlas at the output of
the algorithm. As we will illustrate in Sec. 4.1 and Fig. 2, the eventual results remain fairly
robust when other hypertemplates (based on different smoothed subjects from the population)
are used instead.

Prior to atlas estimation, we performed a rigid alignment of each subject’s tibia to the tibia
hypertemplate using the standard point cloud registration implemented in MATLAB. The same
registration parameters were then applied to the femurs. This approach removed gross intersub-
ject differences in the placement of the extremity within the scanner field-of-view—e.g., a rota-
tion of the entire knee (i.e., only the transformation component that was common to the tibia
and femur) with respect to the CBCT gantry. The JSMs were left unchanged on the new rotated/
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translated surfaces since the alignment step accounted for rigid displacements of the entire joint
and the JSM is invariant to such transformations.

3.2 Atlas Problem Formulation

The atlas estimation problem is formulated a follows: consider a population of N textured sur-
faces (Fshapes) ðSi; fiÞ, where Si is the tibia surface of subject i, given as a triangluated set of
vertices in R3, and fi is the JSM defined at each vertex of Si. Our goal is to estimate a template
Fshape ðS̄; f̄Þ, representing the population mean surface-JSM object, together with a set of N
geometric–functional transformations mapping the template to each subject. Note that we do not
assume any predefined correspondences between the vertices of the surfaces Si nor that the sam-
pling density or number of vertices is the same for all Si. The flexibility of this approach makes it
well-suited for surfaces extracted from the CT images using the pipeline mentioned in Sec. 2.
Furthermore, while in this study, the JSM textures were discretized at the vertices of the surface
meshes Si, a more finely sampled representation capturing the details of texture fluctuations
within each triangle could also be incorporated into the atlas estimation algorithm as long as
a reasonably efficient numerical differentiation scheme is available to compute gradients in this
representation.

We now define a model of combined morphological and JSP transformations of these tex-
tured surfaces. Following the framework of Ref. 18, we first model the geometric deformation
component of an Fshape transformation through a diffeomorphism of R3, namely a smooth and
invertible mapping of the full 3D space that preserves the topology of the original surface. We
estimate this deformation in the setting of large diffeomorphic deformation metric mapping
(LDDMM).25 Briefly, the diffeomorphisms are generated by flowing vector fields of R3. If
vðt; xÞ, t ∈ ½0;1�, denotes an integrable time series of spatially smooth vector fields, the flow
of v is the mapping ðt; xÞ ↦ φvðt; xÞ, where φvðt; xÞ is defined for all x ∈ R3 as the solution
at time t of the ODE ˙yðtÞ ¼ vðt; yðtÞÞ with initial condition yð0Þ ¼ x. In integral from, this is
written as

EQ-TARGET;temp:intralink-;e001;116;395φvðt; xÞ ¼ xþ
Z

t

0

vðs;φðs; xÞÞds: (1)

Assuming that for each t, vðt; ·Þ belongs to a certain Hilbert space V of sufficiently smooth
vector fields (typically a Sobolev space of certain order), the results of Refs. 25 and 26 show that
the transformations φðt; ·Þ are diffeomorphisms of R3. Furthermore, the quantity ∫ 1

0kvðt; ·Þk2Vdt,
where k · kV is a norm on the space V of vector fields, is a natural metric or cost of the final
deformation φvð1; ·Þ. This norm enforces spatial regularity of the field and resulting deformation
and is typically defined based on a certain differential operator on the vector fields of V (e.g.,
powers of the vector Laplacian of R3) that we write LV . This results in the following energy
associated with the deformation φvð1; ·Þ:

EQ-TARGET;temp:intralink-;e002;116;253E1ðvÞ ¼
Z

1

0

kvðt; ·Þk2Vdt ¼
Z

1

0

Z
R3

hvðt; xÞ; ðLVvÞðt; xÞidx dt: (2)

Second, we define a model for variations in texture (i.e., JSM) of a generic Fshape ðS; fÞ. We
introduce a residual function h∶S → R also defined on the surface S. The residual modifies the
JSM based on the simple relation f þ h (assuming for now that the shape S is fixed). To regu-
larize the transformation induced by the residual, we assume that the signal and residual are
differentiable. Note that, in the discrete setting, this is not a restrictive assumption since the
interpolation can be applied to obtain functions that are differentiable or at least differentiable
almost everywhere; furthermore, the electrostatic joint model of Ref. 17 typically leads to
smooth JSM functions. We then consider the following H1 energy on h:

EQ-TARGET;temp:intralink-;sec3.2;116;112E2ðS; hÞ ¼
Z
S
ðjhðsÞj2 þ j∇ShðsÞj2ÞdAðsÞ;
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where dA denotes the area measure on the surface and ∇Sh is the surface gradient of h along S.
This extends the setting of Ref. 18 by adding a penalty on the gradient of the residual.

The combined transformation model of the Fshape ðS; fÞ is given by a pair ðv; hÞ of a defor-
mation field v (with associated deformation φv) and a residual signal h. The transformed Fshape
is ðφv; hÞ · ðS; fÞ ¼ ðφvðSÞ; ðf þ hÞ ∘ φv;−1Þ, where φvðSÞ is the surface transported by φv and
φv;−1 is the inverse of the mapping. The composition by φv;−1 just means that the modified signal
f þ h on S is transported onto the new surface φvðSÞ. The total energy of this transformation is
defined as the sum of the energies of the shape and functional components:

EQ-TARGET;temp:intralink-;e003;116;638ESðv; hÞ ¼ E1ðvÞ þ γE2ðS; hÞ ¼
Z

1

0

kvðt; ·Þk2Vdtþ γ

Z
S
ðjhðsÞj2 þ j∇ShðsÞj2ÞdAðsÞ: (3)

Note that we write ðv; hÞ as the only inputs of ES, omitting the dependency on the surface S
on which we measure the variation of JSM. Moreover, we add a parameter γ > 0, which acts as a
balancing factor between these two energy terms. Indeed, these can have different ranges of
values depending on the size of the shapes and amplitude of the signal functions. This parameter
can be typically set through experimental calibration, for example, by running several one-to-one
registrations using the representative Fshape pairs and comparing the values of the two energy
terms after convergence. Based on such an optimization, we used γ ¼ 0.1 in the simulations of
this paper.

With the above model of Fshape transformation, we now return to the problem of atlas esti-
mation from the set of ðSi; fiÞ. Considering the hypertemplate Fshape ðS0; f0Þ as the starting
point, we seek (i) a template (or average) Fshape ðS̄; f̄Þ, which is itself a transformation of the
hypertemplate given by the deformation field and residual ðv0; h0Þ, as well as (ii) the transfor-
mations fðvi; hiÞji ¼ 1; : : : ; Ng that match the ðS̄; f̄Þ to the subjects of the population. The esti-
mation, shown in Fig. 1, is formulated as the optimization problem:

EQ-TARGET;temp:intralink-;e004;116;424 min
ðvi;hiÞi¼0;: : : ;N

ES0ðv0; h0Þ þ
XN
i¼1

ESðvi; fiÞ subj:to

�
ðS; fÞ ¼ ðφv0 ; h0Þ · ðS0; f0Þ
ðφvi ; hiÞ · ðS; fÞ ≈ ðSi; fiÞ

; (4)

where we point out that h0 is by convention defined on the hypertemplate surface S0, whereas the
hi for i ¼ 1; : : : ; N is defined on the template surface S ¼ φv0ðS0Þ. We write ðφvi ; hiÞ · ðS; fÞ ≈
ðSi; fiÞ since, in practice, we do not seek an exact matching to the subjects’ Fshapes and instead
use relaxation fidelity metrics based on the framework of functional currents and varifolds. As

Fig. 1 Overview of the atlas estimation setting. Starting from the initialization given by the hyper-
template Fshape ðS0; f 0Þ, the algorithm iteratively evolves the mean template together with the
deformation fields v i and residual textures hi to generate template transformations approximately
matching the respective textured surfaces in the dataset.
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detailed in Refs. 18 and 27, where they were introduced, these fidelity metrics provide a measure
of the proximity between two textured surfaces without the need to establish prior correspond-
ences between their vertices. As a result, the atlas estimation procedure that we propose does not
require establishing such landmark correspondences.

3.3 Algorithm

Equation (4) involves a high-dimensional and nonconvex optimization problem over the N þ 1

time-dependent deformation fields vi and residuals hi. Except for i ¼ 0, the cost functional is a
sum of independent terms on the ðvi; hiÞs for i ¼ 1; : : : ; N. We perform joint minimization over
these variables using the quasi-Newton BFGS descent procedure and thus need to compute the
gradient of the atlas estimation functional with respect to the different variables involved. For
brevity, we leave the full details of these computations to Refs. 18 and 22 and only summarize
the major points below.

The JSM residuals hi are defined on the vertices of S0 (for i ¼ 0) or S (for i ¼ 1; : : : ; N). The
gradient of the functional with respect to the his is fairly straightforward to compute. We note
that, compared with Ref. 18, we introduced the additional first-order term ∇Sh in the expression
of E2 that needs to be accounted for in the gradient. For the discretization of E2, we introduce a
usual P1 finite element scheme in which functions hS;iðsÞ are approximated by first-degree poly-
nomial functions on each face of S0 or S that interpolate the vertex values hi. The entire cost
functional becomes a function of the his and is then differentiated accordingly.

The minimization over the deformation fields vi is more involved since these vector fields are
defined at all times t ∈ ½0;1� over the full space R3. Yet, as deformations are essentially acting on
the (hyper-)template shape, the theory of optimal control for the LDDMM model26 (see also
Ref. 28) shows that one can limit the search to vector fields that can be more compactly rep-
resented by a finite set of momentum vectors attached to the vertices of the template surface. The
dynamics of viðt; ·Þ with respect to the corresponding momenta is described by Hamiltonian
equations. This allows for the implementation of a shooting strategy in which the optimization
over the time-dependent vector fields is replaced by an optimization over the initial momentum
vectors. The gradient of the cost functional with respect to the initial momenta is computed by
backward integration of the adjoint Hamiltonian equations.

The atlas estimation algorithm was implemented as an extension of the FshapesTk MATLAB
library29 utilizing CUDA for the most numerically intensive operations. We performed two atlas
estimations: one for the tibia and the other for the femur. As a reminder, the electrostatic JSM is
symmetric, and thus the tibia and the femur were both equipped with the same JSM. The atlases
were obtained for the combined population of OA and non-OA subjects (i.e., using a total of 34
textured surfaces as input). The surfaces had an average of 16k vertices, and the hypertemplates
had ∼15 k vertices. The algorithm was run until convergence, which took 950 iterations and a
total runtime of 50 h on one server node with a GeForce GTX 780 Ti graphics card.

3.4 Atlas Estimation Results

Figure 1 shows the template tibia surface and template JSM obtained from the atlas estimation
algorithm applied to the entire population, i.e., jointly on the OA and non-OA subjects. The
result ðS; fÞ is visually consistent with what would be expected of the mean shape and
JSM, showing an increased joint space gap in the interchondylar notch area and narrower joint
space on the tibial plateaus.

In addition to the template Fshape, the atlas estimation provides the deformation fields
ðviÞi¼1;: : : ;N and the residual JSMs ðhiÞi¼1;: : : ;N that transform the template to approximately
match the shape and JSM of each subject. Figure 1 compares the result of applying this trans-
formation to the template (labeled with red text) to the target tibia Fshapes of two subjects
[labeled as ðS1; f1Þ; ðS2; f2Þ]. To give a more quantitative assessment of this proximity, we com-
puted the mean distance from each point on an articular surface of a subject to its CP on the
corresponding transformed template (which gives a measure of proximity less sensitive to out-
liers than, e.g., the Hausdorff distance). Averaged across the whole population, we find an
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average distance of 1.15� 0.24 mm between the subjects and the initial (untransformed) tibia
template versus 0.40� 0.011 mm for the distances between the subjects and the transformed
template. The agreement between the transformed template and the measured shape is thus sub-
stantially improved compared with the initial undeformed template, suggesting that the proposed
atlas estimation model is indeed able to capture the dominant aspects of morphological variabil-
ity in the knee joint.

4 Statistical Analysis

The template transformations ðvi; hiÞi¼1;: : : ;N shown in Fig. 1 provide a description of morpho-
logical variability of the dataset in the form of pairs of shape deformation fields and JSM resid-
uals associated with each subject. These variables can be used to characterize the variance of the
data around the template, and, perhaps more importantly, to discover statistically significant
discriminative features between OA and non-OA subjects. Prior work has developed extensions
of methods such as principal component analysis (PCA), support vector machines (SVM), linear
discriminant analysis, or regression analysis for statistical analysis of purely geometric shape
spaces.30–34 Here, we adapt such methods to the present case involving joint consideration
of shape and texture on that shape.

4.1 Dimensionality Reduction

The high dimensionality of variables ðvi; hiÞ poses a challenge for statistical analysis. As is quite
common in biomedical datasets, the total number N ¼ 34 of subjects in the study sample is
significantly smaller than the dimensions of the variables vi and hi, which are respectively n ×
3 and n, where n is the number of vertices of the template (n ¼ 15;146 here). In Ref. 22, a similar
two-class problem was tackled using the regularized linear discriminant analysis to prevent
model overfitting. However, the choice and influence of the regularization parameter is chal-
lenging to analyze and interpret, particularly for the data structures at play in this work.
Instead, we choose to proceed in two steps, as advocated in many data analysis studies: first,
we perform feature selection to reduce the dimensionality of model variables, followed by clas-
sification (or discriminative analysis) on the reduced variable set.

Variables vi and hi are vector and scalar maps defined at all vertices of the template. We wish
to preserve this global structure in the feature extraction step, as opposed to, e.g., extracting
features defined at isolated vertices, which may not be relevant or easily interpretable in this
context. To that end, we use PCA as an (unsupervised) approach for dimensionality reduction
and variance analysis of the dataset. For statistical analysis of geometric deformations, prior
publications have typically applied PCA to the corresponding Jacobian determinant maps or
deformation gradient tensors.14 In our context, it is more natural to perform PCA directly on
the Fshape transformations using the metric of transformation energy [Eq. (3)] rather than the
standard (but meaningless here) Euclidean metric on the vectorized ðvi; hiÞs. For this purpose,
we only need to compute the Gram matrix G ¼ ðhðvi; hiÞ; ðvj; hjÞiÞi;j¼1;: : : ;N , where

EQ-TARGET;temp:intralink-;e005;116;232hðvi; hiÞ; ðvj; hjÞi ≐
Z

1

0

hviðt; ·Þ; vjðt; ·ÞiVdtþ γ

Z
S
ðhiðsÞhjðsÞ þ ∇ShiðsÞ · ∇ShjðsÞÞdAðsÞ;

(5)

and apply PCA to this transformed representation of the data. We show the profile of the Gram
matrix in Fig. 2(left). It depends naturally on the parameters of the metric but can technically also
vary with the choice of hyperparameters used in the atlas estimation process, in particular, the
selection of the hypertemplate. To evaluate how robust the approach is in that regard, we also ran
the atlas estimation for different choices of hypertemplates. (This experiment was performed
only for the tibia). Figure 2 shows the resulting average shape + JSM templates [Fig. 2(a)] and
the associated Gram matrices [Fig. 2(b)]. The average templates are relatively stable across the
different instances: the mean JSWs of the three cases are 8.65, 9.39, and 9.82 mm (left to right),
and the mean distance between pairs of template surfaces—taken as the mean distance of
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corresponding vertices—is 0.5 mm. Similarly, the Gram matrices for the three hypertemplates
(essentially representing the distance between the resulting templates and each shape + JSM in
the dataset) are also stable across the three initializations.

Note that the PCA analysis can be performed on the geometric (resp. texture) variation com-
ponent only by considering the Gram matrix obtained with only the first (resp. second) term of
Eq. (5). Importantly, in both approaches, the geometric and texture variability in the sample are
jointly established through the atlas estimation process. Only the PCA and subsequent classi-
fication are restricted to one of the components (shape/geometry or texture/JSM). In the latter, we
will refer to the three possible classification approaches as “modalities.”

Figure 3 shows the projection of subject data in the 2D space given by the first two principal
components (PCs) of the combined geometric-texture transformation of the tibia. The OA pop-
ulation exhibits higher variance of PC scores compared with non-OA, as well as a slight trend
toward positive scores of the first PC. As PCAmodes are linear combinations of the ðvi; hiÞs, one
can generate the corresponding Fshape transformations and visualize the effect of those PC
transformations on the template, as shown in Fig. 3. The first PC appears to correspond to
(i) a shape deformation resulting in deepening of the medial tibial plateau and (ii) a texture
transformation resulting in shallower joint space.

4.2 Learning Discriminant Features

The PCA modes account for the variability across the full dataset, but they are not necessarily the
most representative of the effect of OA on the shape and JSM of the tibio–femoral joint. To
extract most discriminant features of OA, we now consider supervised machine learning tech-
niques applied to the PCA representation of the data.

Specifically, for any predefined dimension r of the PCA reduction (Sec. 4.1), we obtain pro-
jected coordinates (scores) z1; : : : ; zN ∈ Rr of the full dataset. A linear SVM classifier is trained
on the PCA coordinates together with subjects’ labels (OA or non-OA).

The choice of rmay have significant influence on the resulting classifier: a too low value of r
may not capture enough dimensions to recover discriminant features, whereas a too large r may
in turn incorporate noisy components and degrade the prediction accuracy. To optimize r, we
perform leave-one-out cross validation for each choice of dimension r to assess the classification
accuracy of the corresponding linear SVM classifier. The cross-validation scores are plotted in

Fig. 2 (a) The template Fshapes as well as the 34 × 34 Gram matrices of (b) the Fshape trans-
formations ðv i ; hi Þ for three estimated atlases corresponding to different choices of hypertemplate
initializations.
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Fig. 4 for three-dimensionality reduction modalities discussed in Sec. 4.1: pure geometric
(shape) variations, pure texture variations, and geometry + texture combined [which only differ
in the choice of the Gram matrix in Eq. (5), namely keeping only the first term, the second term,
or both terms in the inner product, respectively].

We obtain maximal scores of 31∕34 ≈ 91.18% for the classifications based on geometry
PCs of the tibia [Fig. 4(a)] and residual JSM PCs [Fig. 4(b)]. In the first case, the highest
score is obtained with r ¼ 1, meaning that the most discriminant direction coincides with the
first PC of shape deformations. However, for the residual JSMs-based classification, the opti-
mal score is obtained with r ¼ 11 or r ¼ 12 PCA modes. In both cases, we find three mis-
classified subjects, two of which are common to both modalities. The approach utilizing the
entire Fshape transformation for classification [combined shape deformation and residual JSM,
Fig. 4(c)] leads to slightly lower, but more stable with respect to r, cross-validation scores. The
highest value of 29∕34 ≈ 85.29% is attained for r ¼ 2;17; 18. We also provide in Table 1 the
confusion scores for each case. The majority of misclassified subjects, in particular the ones
misclassified by the shape only features, were found to be OA patients with only minimal
radiographic joint space narrowing. The diagnosis of OA in these cases was based on the other
clinical criteria stated in Sec. 2.1, such as symptoms or presence of osteophytes. It is plausible
that these subjects represent a specific phenotype of the disease that was underepresented in our
study sample and that has not been captured by the current statistical analysis of the Fshape
transformations.

As a reminder, the three classification modalities described earlier were based on the same set
of shape and texture transformations, jointly established by the atlas estimation algorithm. Only
the final PCA and SVM analyses were performed on a subset of those transformations. An alter-
native and more commonly used approach would be to only estimate the geometric registrations
between the template and each of the subject surfaces, without considering the JSM match in
atlas optimization. The registrations could then be used to map the raw JSMs back to the tem-
plate surface. The dimensionality reduction and SVM could then be performed directly on the
resulting pulled-back JSMs. In initial experiments, this leads to consistently worse cross-vali-
dation scores than our approach. We indeed found scores below 80% for all values of r in this
case. The proposed description of JSM variability in terms of residual transformations of a mean
template estimated jointly with shape deformation appears to yield a more robust description of
JSM features of OA.

Fig. 3 Projection of the knee CBCT dataset on a 2D space defined by the fitst two PCs of the
Fshape transformations. The tibial shapes and JSMs corresponding to the first two principal
modes of variation are also illustrated. CBCT volumes of subjects indicated with filled markers
are shown in Fig. 6.
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Table 1 Confusion matrices for the different modalities (obtained with
the optimal value of r in each case).

Normal OA

Shape only

Normal 17 3

OA 0 14

JSM only

Normal 16 2

OA 1 15

Both

Normal 16 4

OA 1 13

Fig. 4 Leave-one-out cross-validation rates as a function of the PCA reduction space dimension r
for the SVM classifications based on (a) the geometric (shape) components of the Fshape atlas-to-
subject transformations, based on (b) the JSM residual component of the transformations, and
based on (c) the geometric and the JSM component. The effects of applying the discriminant
vectors identified through this analysis to the template are shown on the right. The anatomical
directions are consistent with Fig. 1: top is anterior, bottom is posterior, left is medial, and right
is lateral. The colormaps in this and the following figures represent the residual JSM, that is the
deviation from the template JSM. Negative values indicate narrowing of the joint space.
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To visualize and interpret the morphological and JSM changes underlying the estimated dis-
criminant features of the tibia, we chose the optimal values of the dimensionality reduction
parameter r for each of the classification modalities and computed the corresponding linear
SVM discriminant vectors over the entire dataset. The effects of applying the transformations
associated with these vectors to the template shape and JSM are displayed in the right panel of
Fig. 4. The top row illustrates the features identified using only the shape deformation compo-
nent of the Fshape template-to-subject mappings provided by atlas estimation. OA-like morphol-
ogy exhibits a deepening of the medial plateau combined with a narrowing of the interchondylar
notch and deformation of the posterior tibia. The middle row shows non-OA and OA-like JSMs
obtained by applying residuals representing the discriminant direction of only the texture com-
ponent of the Fshape transformations. OA appears to be associated with a narrower joint space
primarily in the areas of the medial plateau and interchondylar notch. Finally, Fig. 4(c) shows the
combined shape-texture discriminant vectors given by PCA-SVM analysis of components of the
template-to-subject Fshape mappings. We would like to re-emphasize here that the only differ-
ence between this modality and the classifications in Figs. 4(a) and 4(b) is in applying the PCA
jointly (instead of individually) to the shape deformations and JSM changes obtained from the
atlas estimation procedure. The atlas estimation itself was the same for all three modalities and
was always informed by both the geometry and signal patterns of the Fshapes. It is indeed the
case, though, that the combined classification of both components gives a slightly lower score
(29∕34 ≈ 85.29%) than the other modalities, which appears to be the result of misclassified sub-
jects for the shape and JSM modalities being all misclassified again when those are combined in
the SVM analysis. However, the combined classification extracts similar features to those iden-
tified using the individual texture and shape modalities, namely deepening of the medial tibial
plateau (a geometric effect) and narrowing of the joint space in the same region (a JSM/texture

Fig. 5 Leave-one-out cross-validation rates as (a) a function of r and (b) discriminant vectors for
SVM classifications on distal femur data. Similar to Fig. 4, the top row shows the results for the
classification based on the geometric components of the Fshape, the middle row uses the JSM
residual, and the bottom row uses the geometric and the JSM components. Anatomical directions
key: top is anterior, bottom is posterior, left is medial, and right is lateral.
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effect). Moreover, as mentioned earlier, the scores of the combined classifier appear more stable
with the number of selected PCA modes r than for the other modalities.

These observations are further confirmed by applying the same atlas estimation and statistical
analysis of the Fshape transformations to the femur surfaces instead. Figure 5 shows the cor-
responding discriminant directions for each modality together with the leave-one-out cross-val-
idation rates. Once again, these highlight a global narrowing of the knee combined with a
compression of the intercondylar notch associated with OA patients compared with the controls.

To illustrate how the OA features identified using the Fshape methodology relate to the find-
ings of conventional joint space assessment, Fig. 6 shows the original CBCT images of two
example OA cases and two example non-OA cases. The four cases are indicated with solid
markers in the PCA projection graph of Fig. 3. The narrowing of the medial joint space in the
example OA subjects is apparent in the coronal plane views (left side of the knees) and agrees
with the JSM discriminant features of Fig. 4. Furthermore, the sagittal views reveal appreciable
concavity of the medial tibial plateau in the OA knees compared with normals, as would be
expected based on the shape features of OA identified in our analysis. To quantify this finding,
we performed measurements of medial tibial depth (MTD)35 across the entire study sample. The
measurement involves drawing a line connecting the peak anterior and posterior points of the
medial tibial plateau in its central sagittal plane and computing the distance from that line to the
deepest point of the plateau, as shown in Fig. 6. The distribution of MTDs in the OA and non-OA
subgroups, summarized with a box-and-whisker plot in Fig. 6, shows that the OA subjects indeed
exhibit a somewhat deeper medial tibial compartment. Overall, the discriminant features of the
Fshape transformations appear to agree with visual assessment and conventional anatomical
measurements of the knee datasets.

5 Discussion

We demonstrated an application of the functional shape framework for statistical analysis of
morphological variability in normal and osteoarthritic knees. The proposed approach models
the knee as a combination of a geometric shape—the tibial surface—and a texture representing
a map of JSWs at the points of the surface (theJSM). Indirectly, the texture component of the
Fshape measures the relative position of the tibia and the femur. To our knowledge, this rep-
resents the first use of this mathematical model to describe the tibiofemoral joint.

Fig. 6 (a) Example CBCT volumes of two OA subjects and two normal subjects, illustrating medial
joint space narrowing and deepening of the medial tibial plateau consistent with the findings of the
discriminative analysis of the Fshape model. In the coronal view, medial is to the left of the image.
(b) Distribution of MTD measurements in the study population, further confirming the tendency
toward increased concavity of the medial plateau.
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Given the knee Fshapes of a study subject cohort, an atlas estimation algorithm was applied
to yield a template describing the mean tibial (or femoral) surface and mean JSM in the cohort.
The morphology of each subject was then summarized in terms of a transformation—consisting
of a diffeomorphic shape deformation and a JSM residual—that mapped the template Fshape to
the Fshape of the subject. Since the atlas estimation was performed jointly on the geometric and
JSM components, our framework preserved the spatial relationships between major bone shape
features and the corresponding local patterns of JSW. Initial results appear to suggest that this
yields more robust morphological features than a multistage approach consisting of shape regis-
tration followed by remapping of the JSMs using the registration transformations.

Unlike the conventional statistical shape modeling (SSM) strategies commonly applied in
OA, the proposed algorithm for Fshape matching does not require a priori point correspond-
ences between the subjects’ tibial surfaces. It has to be recognized that some degree of internal
consistency between the input datasets is still required, including a roughly matched selection
and discretization of bone regions used to create the articular surface models and to compute the
JSMs. Nevertheless, our results indicate that the desired data uniformity can be achieved through
relatively straightforward manual preprocessing. Compared with shape modeling based on
matching landmarks, which often relies on identifying vertex correspondences within densely
sampled surface meshes, our framework might be potentially better suited for situations in which
the datasets obtained at different resolutions or with different modalities are combined for mor-
phological analysis. In such cases, the correspondence-based methods might be challenged by
intersubject surface discretization mismatches caused by the variance in acquisition parameters.
For datasets where spatial resolution and surface discretization density are roughly similar across
all subjects, the landmark-free and landmark-based approaches are likely equally applicable, at
least in practice (in fact, the generative atlas framework might incur a higher computational cost).
However, we are not aware of any principled algorithms for combined analysis of the variability
in shape (here, articular surface) and a texture on the shape (here, the JSM) using the conven-
tional, landmark-based formulation. Therefore, the Fshapes offer a potentially valuable alterna-
tive to the current methods of morphological analysis in OA by providing such a combined
model within the generative atlas setting. Furthermore, since the Fshapes use diffeomorphic
mappings to describe shape variability, they might be sensitive to different aspects of the disease
than the conventional approaches that examine statistical distributions of landmark locations.
Further studies in large patient cohorts are needed to obtain a rigorous comparison of the two
frameworks in the detection of morphological features of OA.

The template-to-subject Fshape mappings established through the atlas estimation serve as
input variables for analysis of morphological variability in the sample set. Here, we performed
such analysis to identify tibial shape and JSM features that are discriminative of OA. It is impor-
tant to note that the primary goal of this work was to demonstrate the feasibility of the Fshape
framework in application to 3D knee datasets. The OA classification experiments were not meant
to yield generalizable conclusions regarding shape and JSM features of the disease. Rather, they
provided a demonstration that the Fshape mappings obtained through atlas estimation do indeed
reflect major patterns of morphological variability in the study sample. This is evidenced by the
high rate of correct classifications (>80%) obtained using the geometric and JSM features
obtained through the Fshape atlas estimation framework. However, given the rather small num-
ber of subjects in the dataset and the simple structure of the disease group—consisting mainly of
patients with fairly advanced diagnostic features of OA—the classification scores obtained in our
analysis remain largely indicative at this point. Future work should involve more extensive clas-
sification experiments in larger and more diverse populations.

Recognizing the preliminary character of our classification study, we wish to discuss two
additional considerations. First, while we chose a framework based on PCA of the Fshape map-
pings combined with linear SVM, other linear methods for dimensionality reduction and dis-
criminant analysis are a priori also suitable, including linear discriminant analysis or LASSO.36

Furthermore, the description of knee morphology using Fshape transformations also supports
nonlinear classifiers such as kernel SVM or random forests37 and/or a variety of alternative
approaches for the feature reduction step, c.f., for instance the recent review.38 We have tested
some of those alternatives and found slightly higher significance of the discriminant features
obtained from our proposed PCA/SVM approach. The reason for this finding might be that these
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more sophisticated classification approaches were overparametrized because of the relatively
small sample size in this feasibility study, leading to potential overfitting. Since our objective
was to illustrate the relevance of morphological features obtained through Fshape analysis and
not to optimize OA classification, we concluded that the proposed PCA/SVM framework was
sufficient for this goal. In this context, an additional advantage of linear SVM over nonlinear
methods is that the direction that the separating hyperplane obtained from SVM can be directly
viewed as a global deformation or change in JSM (see Figs. 4 and 5). Such a convenient visu-
alization is more difficult to achieve for nonlinear classifiers.

Second, even though the OA features obtained in our analysis are not generalizable because
of the small study sample in this work, a brief comparison with OA features identified in other
SSM studies is in order. Recognizing the differences in study populations and analysis method-
ologies that make such a comparison very preliminary, we note a number of similarities between
our findings and those of earlier SSM results. For example, Ref. 9 demonstrated regions of
elevated tibial surface in the intercondylar eminence and a slight deepening of the tibial plateau
in subjects at risk of OA compared with controls. Both of these features are also present in our
discriminant vectors of Fig. 4. Lynch et al.10 compared mean normal and OA knee shapes
obtained from SSM and reported, among other features, slightly depressed medial and lateral
tibial plateaus and narrowing/elevation of proximal intercondylar eminence. Neogi et al.7 com-
pared extreme examples of OA and non-OA knee models obtained from SSM and found a ridge
of “osteophytic” growth around the perimeter of the articular surface of the tibia (which may
correspond to apparent deepening of the tibial plateaus seen in our model) and narrowing/eleva-
tion of the intercondylar spine. Similar shape features of OA are present in the shape models of
Bowes et. al.39 Overall, the findings of steeper intercondylar eminence and relatively deeper
tibial plateaus compared with the perimeter of the tibia appear to be shared by our model of
OA discriminant features and prior work.

With respect to JSM (the texture component of the Fshape), the discriminant analysis of
Fig. 4 indicated a narrower joint space in OA-like knees, in particular, in the medial aspect
of the tibia. This finding is not unexpected in this study population consisting of symptomatic
OA patients since (as mentioned in Sec. 1) joint space narrowing is a recognized diagnostic
marker of OA. However, the proposed method enables simultaneous examination of the vari-
ability in bone shape and JSM, thus providing a unified mathematical framework to discover co-
occurring features of those two aspects of knee morphology. For example, our findings show that
the loss of joint space in the medial compartment of OA knees is accompanied by increased
depth of the tibial plateau in this region, suggesting that the femur “sinks” into the eroded medial
tibial condyle on that side.

The analysis of SVM discriminant directions raises an interesting point of whether such fea-
tures can be converted into a simple numerical representation as a first step toward the develop-
ment of quantitative biomarkers. SVM provides only a normalized discriminant vector
representing the direction of the separating hyperplane in the space of Fshape transformations.
It is challenging to convert this normalized vector representation into a direct estimate of, e.g.,
the amplitude of local joint narrowing or articular surface deepening. However, we believe that
one could still obtain a quantitative metric of the interclass shape and JSM differences by com-
puting the distance of each class center to the discriminant hyperplane. Such a distance could
then be used as a potential estimate of the average intensity of the effect along the discriminant
vector. The development and validation of such quantitative metrics is beyond the scope of the
current feasibility study.

Another important direction for the future development of the FShape framework in ortho-
pedic applications is an extension to joint space mapping approaches beyond the electrostatic
formulation investigated here. As discussed in Sec. 2.2, the capacitor model has certain theo-
retical advantages—namely symmetry and not requiring a fixed reference axis—compared with
other JSM estimation algorithms proposed for 3D analysis of OA.23,24 In fact, these properties are
attractive for thickness measurements in a variety of laminar structures. For example, similar
methods based on the Laplace equation have been proposed for thickness calculations in the
myocardium and brain cortex.40,41 However, the electrostatic model results in long field lines
at the periphery of the articular surface that do not accurately represent the JSW in this area.
In our experience, such long field lines can be excluded from analysis (here using a >35-mm
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threshold) since they typically form a contiguous annulus outside the region affected by OA.
However, a more robust JSM estimation method is desirable to avoid such arbitrary postpro-
cessing. One potential alternative might involve adopting a definition of thickness developed
for brain imaging in Refs. 42 to 44. In these studies, signed 3D distance functions from the
two surfaces bounding the volume of interest are first obtained. Next, 0-level-sets of a normal-
ized weighted sum of the two distance functions are computed for a range of weight parameters
w. In this manner, w becomes a normalized depth coordinate within the volume of interest, with
the length of streamlines of w providing a measure local thickness. Since the pseudopotential w
represents a smooth evolution of one articular surface onto the other, its streamlines might yield a
more accurate distance metric at the periphery of the joint compared with the electric field lines
considered in our approach. Recognizing the potential benefits of translating these sophisticated
thickness estimation strategies to orthopedic imaging, we note that the Fshape framework is
agnostic of the procedure used to obtain the JSMs. While the current feasibility study used the
capacitor model—primarily because it has been previously shown to be predictive of OA in
CBCT images—the proposed methodology will be equally applicable to the level-set definition
of thickness described earlier. Rigorous comparison of diagnostic performance of Fshapes uti-
lizing various joint space mapping techniques is a promising area for future research.

In summary, we demonstrated the feasibility of statistical analysis of 3D knee morphology
using the framework of functional shapes. The proposed methodology enables combined mod-
eling of population variability in bone shape and in spatial maps of articular space width without
the need for landmark correspondences between the members of the study sample. Preliminary
results indicate that this approach is capable of identifying morphological features associated
with joint degeneration in OA. Future work will establish the statistical significance of functional
shape findings in OA using larger and more diverse populations.
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