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a b s t r a c t

This article presents a spatial–temporal generalized additive
model for modeling geo-referenced COVID-19 mortality data in
Toronto, Canada. A range of factors and spatial–temporal terms
are incorporated into the model. The non-linear and interactive
effects of the neighborhood-level factors, i.e., population density
and average of income, are modeled as a two-dimensional spline
smoother. The change of spatial pattern over time is modeled
as a three-dimensional tensor product smoother. By fitting this
model, the space–time effect can uncover the underlying spatial–
temporal pattern that is not explained by the covariates. The
performance of the modeling method based on the individual
data is also compared to the modeling methods based on the
aggregated data in terms of in-sample and out-of-sample predic-
tive checking. The results suggest that the individual-level based
analysis provided a better overall model fit and higher predictive
accuracy for detecting epidemic peaks in this application as
compared to the analysis based on the aggregated data.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2
SARS-CoV-2), presents an unprecedented threat to global health worldwide. Despite public health
esponses aimed at slowing the spread of the epidemic, confirmed case counts and hospitalizations
ontinue to surge. To help healthcare professionals prioritize severely ill patients for providing the
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est possible care for patients and mitigate the burden on the healthcare system, there is an urgency
o understand who is most at risk of mortality, which requires appropriate statistical approaches
or the timely analysis of large datasets.

For modeling COVID-19 mortality, most studies are limited to known risk factors such as older
ge with a high burden of co-morbid diseases (Meyerowitz-Katz and Merone, 2020; Zhou et al.,
020; Du et al., 2020). Nevertheless, COVID-19 mortality risk may also depend on the employment
tatus, education level, income, and housing conditions (de Lusignan et al., 2020; Williamson
t al., 2020), which could influence the ability to practice physical distancing measures and seek
are. However, the socioeconomic factors remain understudied for modeling COVID-19 data, partly
ecause of a lack of such information. Alternatively, neighborhood-level social factors from census
ata are often used as a proxy for individual-level social status. Previous research showed that
eighborhoods with low socioeconomic status tend to experience higher rates of serious illness
f infected due to economic and health inequities (Wadhera et al., 2020). Nevertheless, whether
imilar patterns have also emerged amid the COVID-19 pandemic in Canada is still understudied.
Further, spatial differences in disease risk are potential indicators of space-related disease

actors such as environmental exposures, spatially aggregation of infected individuals and their
onrandom social interactions or availability of sufficient health care in certain areas (Real and
iek, 2007). Quantification of heterogeneity in disease risk patterns over geographical space is,
herefore, of importance. While some previous research has noted the importance of spatial
utocorrelation (Mollalo et al., 2020; Cordes and Castro, 2020; Zhang and Schwartz, 2020) for
odeling risk of COVID-19, the research on modeling the potential changes in spatial patterns over

ime is still scarce. Providing more accurate time-varying risk maps offers a perspective about which
reas may be more affected and when given the time to the central decision-makers to intervene
n the local policies.
This study demonstrates a model developed in a generalized additive modeling (GAM) frame-

ork (Hastie and Tibshirani, 1990; Wood, 2004, 2017, 2011) is sufficiently flexible to model
he spatial–temporal dynamics of COVID-19 mortality risk, which is computationally fast with
ood discrimination and calibration. Models with three types of link functions for the binomial
egression were considered, since misspecification of the link function in binomial regression
ould result in substantial bias and increased mean squared error of parameter estimates and
he predicted probabilities (Czado and Santner, 1992). The non-linear and interactive effects of
he neighborhood-level factors, i.e., population density and the average of income, are modeled
s a two-dimensional smoother. The spatial–temporal interaction is modeled as a tensor product
etween a two-dimensional thin-plate regression spline (TPRS) (Wood, 2003) for the centroid of the
eighborhoods where the individuals are from and a one-dimensional cubic regression spline for
he time variable. The spatial terms can provide insight on detecting high-risk areas not explained
y the covariates and contribute to the elucidation of critical aspects of this outbreak, providing a
seful perspective in the study region on how the pandemic spreads.
In addition, spatial modeling of COVID-19 data often focuses on analyzing aggregated area-level

ata to date. The aggregated data are inexpensive to obtain, particularly through data repositories.
y combining the data at individual levels at varying levels of aggregation, the size of the data could
lso be reduced for computational convenience. However, data aggregation may lead to ecological
ias when important confounders are missing (Greenland, 2001). In this case, conclusions based
n a group-level analysis may differ from those that would have been drawn had an individual-
evel analysis (Harbarth et al., 2001). Moreover, analyzing aggregated count data can be inherently
hallenging due to overdispersion, heterogeneity, or the excessive number of zeros. The choice of
istributional assumptions for modeling the count outcome variable is crucial in order to draw
valid statistical inference. To date, little work has been conducted in the context of COVID-19
odeling to compare individual-level analysis versus aggregate analysis. Our study aims to fill this
ap by demonstrating the potential benefits of using individual-level data compared to using the
ggregated data for predictive accuracy. The predictive accuracy of the proposed model is evaluated
ased on both in-sample and out-of-sample predictive checking.
This paper is organized as follows. In Section 2, details related to the database are provided. In

ection 3, the general formulation of the spatial–temporal generalized additive model, as well as
2



C. Feng Spatial Statistics 49 (2022) 100526
Fig. 1. Left panel: Daily counts of COVID-19 positive cases (black curve) and daily mortality counts of COVID-19 (blue
curve). Right panel: Daily COVID-19 case fatality rate. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

the model selection ad diagnosis methods, are presented. Section 4 presents the results obtained
from the analysis. A comparison of analyses based on individual-level data and aggregated data
are carried out with emphasis on predictive accuracy based on in-sample and various schemes of
out-of-sample model validations. Finally, Section 5 contains the main conclusions and final remarks.

2. Data description

The City of Toronto in Canada contains 140 neighborhoods that were aggregated from census
tracts and created by the Social Policy Analysis and Research Unit in the City’s Social Development
and Administration Division with assistance from Toronto Public Health.

Data on n = 49,216 COVID-19 confirmed cases from March 1, 2020, until December 10, 2020, in
Toronto, Ontario, Canada, were retrieved from the Ontario Ministry of Health. Of those, 1938 (3.94%)
died from COVID-19. The time variable provided in this dataset is a derived/combined variable
that best estimates when the disease was acquired, which refers to the earliest available date from
symptom onset (the first day that COVID-19 symptoms occurred), laboratory specimen collection
date, or reported date. The other predictors include patient demographic (age and gender), ever
hospitalized (cases that were hospitalized related to their COVID-19 infection), ever in ICU (cases
that were admitted to the intensive care unit (ICU) related to their COVID-19 infection), and ever
intubated (cases that were intubated related to their COVID-19 infection). Neighborhood level
population density and median household income over the 140 neighborhoods in Toronto were
obtained from the 2016 Canadian Census data.

The daily counts of COVID-19 positive cases and mortality counts are displayed in the left panel
of Fig. 1, which indicates the COVID-19 infection peaked in April–May 2020, followed by a decline
in the summertime and increased substantially in Nov–Dec, 2020. However, such a pattern was not
observed in the daily COVID-19 mortality count. As shown in the right panel of Fig. 1, the risk of
mortality is much higher in the first wave as compared to the second wave.

3. Methodology

3.1. Model formulation

Let Yi denote the mortality status due to COVID-19 for the ith individual, i = 1, . . . , n, which
follows Y ∼ Bernoulli(π ) where π denotes the probability of mortality. A spatial–temporal GAM
i i i

3
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or modeling the mortality risk of COVID-19 is formulated as follows,

g(πi) = α0 + X iβ + ft (dayi) + fs(lati, longi)+
fngb(pop densityi, incomei) + fst (lati, longi, dayi),

(1)

here g(·) denotes the link function. Three link functions are considered including logistic link
unction, g(πi) = log {πi/(1 − πi)}, that corresponds to the inverse cumulative distribution function
CDF) of the standard logistic distribution, probit link function g(πi) = Φ−1(πi), where Φ(·) is the
tandard normal CDF, and complementary log–log (cloglog) function g(πi) = log {−log(1 − πi)},
hat is formed from the inverse CDF of the Gumbel distribution. The intercept term is denoted as α0;
i is a row of the design matrix for any strictly parametric model components, such as age groups,
ender and history health care use for COVID-19 condition and β is the corresponding parameter
ector; ft (dayi) is modeled as a TPRS function. To simplify the notation, let ft (t) denote ft (dayi),
hich takes the form,

ft (t) =

∑
i

δi|t − ti|3 + b1 + b2t, (2)

here δi and b1 and b2 are coefficients to be estimated, subject to the identifiability constraints
i δi =

∑
i δiti = 0. In fitting regression splines, the choice of knot locations and the number of

asis functions may have a substantial impact on modeling results. These problems can be avoided
y using a relatively large number of basis functions and at the same time imposing a penalty that
s designed to ensure that the fitted model is smooth; hence model flexibility is controlled by a
moothing parameter rather than the basis dimension (Ruppert, 2002; Wood, 2000, 2004, 2006,
008). For the roughness penalty associated with this TPRS basis is,

Jt (ft ) =

∫ [
df 2t (t)
dt

]2

dt = αT S tα. (3)

where S t contains known coefficients and α are the parameters.
The term fs(latik, longik) denotes the two-dimensional TPRS applied to the geographical locations

for the centroids of the neighborhoods where the individuals are from. For ease of presentation, let
fs(u, v) denote fs(lati, longi). A two-dimensional TPRS of s = (u, v)T can be defined as

fs(u, v) =

∑
i

δiη(∥s − si∥) + b1 + b2u + b3v, (4)

where δi, i = 1, . . . , n, b1, b2 and b3 are coefficients to be estimated, ∥ · ∥ denotes the Euclidean
norm, η(r) =

1
16π r2log(r2) for r > 0 and 0 for r = 0, subject to identifiability constraints that

i δi =
∑

i δiui =
∑

i δivi = 0. The wiggliness penalty functional of fs(u, v) is defined as,

Js(fs) =

∫ ∫ {(
∂2fs
∂u2

)2

+ 2
(

∂2fs
∂uv

)2

+

(
∂2fs
∂v2

)2
}
dudv = γT Ssγ, (5)

here S s contains known coefficients and γ are the parameters. A major feature of a two-
imensional TPRS is the isotropy of the wiggliness penalty, i.e., smoothing in all directions is treated
qually. The isotropy is often considered to be desirable for modeling the interaction between two
ariables on the same scale, such as geographic coordinates (Wood, 2017). Thin plate regression
plines can be seen as a Gaussian process with generalized covariance (Cressie, 1993). Other spatial
moothing techniques could be considered, such as Markov random field (MRF) (Waller et al.,
997; Lawson, 2008; Knorr-Held, 2000). The Bayesian MRF is often fitted using Markov chain
onte Carlo (MCMC) techniques, which may exhibit slow mixing (Christensen et al., 2006). A thin-
late regression spline is applied in this study primarily for its computational efficiency with large
atasets (Paciorek, 2007).
The interactive effect between neighborhood-level population density and average income,

ngb(pop densityi, incomei) is modeled as a tensor product smoother (Wood, 2006). Tensor product
moother often performs better than isotropic smoother, when the covariates of a smooth are not
n the same scale. For ease of presentation, let f (p, q) denote f (pop density , income ). Tensor
p,q ngb i i

4
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roduct smoother is formulated by firstly representing smooth functions for each of the bivariate
ariables as fp(p) =

∑L1
l1=1 ζl1bl1 (p) and fq(q) =

∑L2
l2=1 δl2bl2 (q), where bl1 (p) and bl2 (q) are known

basis functions and ζl1 and δl2 are corresponding basis coefficients. In this study, we used the cubic
spline basis function. Creating a smooth function of p and q is achieved by allowing the parameter
ζl1 vary smoothly with q, by representing ζl1 (q) =

∑L2
l2=1 δl1 l2bl2 (q), which gives

fpq(p, q) =

L1∑
l1=1

L2∑
l2=1

δl1 l2bl2 (q)bl1 (p), (6)

which allows for neighborhood average income to vary smoothly with population density. The
penalty of the interaction term is composed of two components. One applies the penalties of the
income to the varying coefficient of the marginal population density smooth ζl1 (q),

∑L1
l1=1 Jq

{
ζl1 (q)

}
.

The second component applies the penalties of the population density smooth to the varying
coefficients of the marginal income smooth, δl2 (p),

∑L2
l2=1 Jp

{
δl2 (p)

}
. Then, the roughness of fp,q(p, q)

can be measured by the sum of the two penalties

J(fpq) = λq

L1∑
l1=1

Jq
{
ζl1 (q)

}
+ λp

L2∑
l2=1

Jp
{
δl2 (p)

}
. (7)

where λq and space λp are the smooth parameters for q and p, respectively.
The space–time interaction is constructed as a three-dimensional tensor product smooth of

space and time (Augustin et al., 2009), which involves firstly specifying the marginal smooth
for time ft and a two-dimensional marginal smooth for space fs as ft (t) =

∑R
r=1 αrar (t) and

fs(u, v) =
∑M

m=1 βmbm(u, v), where αr and βm are parameters and ar and bm are basis functions with
r = 1, . . ., and m = 1, . . . ,M . The interaction between space and time is constructed by allowing
the temporal smooth ft to varying smoothly within the space dimensions u and v by specifying
αr (u, v) =

∑M
m=1 βrmbm(u, v), which yields

fst (u, v, t) =

R∑
r=1

M∑
m=1

βrmbm(u, v)ar (t), (8)

where βrm are the coefficients of basis functions of tensor product smooths. The penalty of the
space–time interaction term is composed of two components. One applies the penalties of the
spatial smooth to the spatially varying coefficient of the marginal temporal smooth αr (u, v),∑R

r=1 Js {αr (u, v)}. The second component applies the penalties of the temporal smooth to the
temporally varying coefficients of the marginal spatial smooth, βm(t),

∑M
m=1 Jt {βm(t)}. Then, the

roughness of fst (u, v, t) can be measured by the sum of the two penalties

J(fst ) = λs

R∑
r=1

Js {αr (u, v)} + λt

M∑
m=1

Jt {βm(t)} . (9)

where λs and space λt are the smooth parameters for space and time, respectively.

3.2. Parameter estimation

The model can be written as g(π) = Xθ, where g(·) is the link function; π = (π1, . . . , πn) is a
n-vector; X is the full design matrix and θ contains all the parameters need to be estimated. To esti-
mate the parameters θ, we maximize the penalized log-likelihood lp(θ|y) = l(θ|y)− 1

2

∑J
j=1 λjJj(fj) ,

onditional on smoothing parameters λj, operating on the penalty terms Jj, j = 1, . . . , J , where
denotes the total number of penalty terms. Here l(θ) is the log-likelihood associated with the
ernoulli response: l(θ|y) =

∑n
i=1

{
yilog [p(yi = 1|θ)]+(1−yi)log [1 − p(yi = 1|θ)]

}
. The smoothing

arameters λj control the tradeoff between the goodness of fit of the model and model smoothness,
with J (f ), j = 1, . . . , J penalizing sharp changes of the splines.
j j

5
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To estimate the parameters, penalized likelihood is maximized by a penalized iteratively
eweighted least squares (P-IRLS) algorithm. Given the smoothing parameter, at the kth P-IRLS
teration, the following penalized sum of squares would be minimized with respect to g = Xθ

to find the (k + 1)th estimate g [k+1]
= Xθ[k+1]:

n∑
i=1

{
w

[k]
i (z[k]

i − gi)
}2

+

J∑
j=1

λjJj(fj) , (10)

where z[k]
i = g [k]

i + g ′(µ[k]
i )(yi −µ

[k]
i ), and w

[k]
i = 1/

√
V (µ[k]

i )g ′(µ[k]
i )2 and V [k]

i is proportional to the
variance of Yi according to the current estimate µ

[k]
i .

The smoothing parameters λj are estimated by minimizing the generalized cross-validation
core (Craven and Wahba, 1979; Wahba, 1985) for each working penalized linear model of the
-IRLS iteration. The score has the following form:

GCV =
n ∥

√
W(z − Xθ) ∥

2

[n − tr(A)]2
, (11)

where A = X(XTWX+S)−1XTW is the influence matrix (Hastie and Tibshirani, 1990) and tr(A) is the
effective degrees of freedom, or the effective number of parameters, of the model; z is a vector of
pseudodata zi and W is a diagonal matrix with elements wi, defined previously, all of these values
would be calculated based on estimates of related quantity at each iteration (Hastie and Tibshirani,
1990; Wood, 2004).

Defining v = X TWz , based on large sample approximation, the distribution of β is derived as,

β|v ∼ N([X TWX +

∑
j

λjS j]
−1v, [X TWX +

∑
j

λjS j]
−1φ) (12)

where φ stands for scale parameter. In logistic regression, φ = 1. The uncertainty or confidence
interval of β can be estimated by plugging in the v and W estimates at convergence of R-IRLS
algorithm, along with the smoothing parameters. For more details of estimation for generalized
additive models, refer to Hastie and Tibshirani (1990) and Wood (2004).

3.3. Model selection and diagnosis

3.3.1. Model selection
Models with different link functions were considered, including logistic, probit, and cloglog

link functions. Under each model, model selection was carried out by adding an extra penalty
to each smooth term that penalizes functions in the null space of the penalty matrices for each
smooth (Marra and Wood, 2011). This is carried out by using the argument select = TRUE in
the gam function in R. After model selection, the choice of the link function was evaluated by
checking the model fit based on AIC (Akaike, 1973), deviance, percentage of deviance explained, area
under the ROC curve (AUC) (Harrell, 2015) and Brier’s score (Rufibach, 2010; Harrell, 2015). AUC
measures the discrimination ability of the model. Higher values of the AUC indicate better model
discrimination. AUC can examine the ability of the method to distinguish the patients who have the
outcome have higher risk predictions than those who do not, but cannot account for calibration,
i.e., the magnitude of the disagreement between the observed and predicted responses (Harrell,
2015). To quality how close the predictions are to the actual outcome, Brier’s score (Rufibach, 2010;
Harrell, 2015), the mean squared prediction error, is defined as, 1/n

∑n
i=1(Yi − π̂i)2, where Yi and π̂i

denote the actual outcome of the event and the predicted probability of the event, respectively.
Lower Brier’s scores indicate greater model accuracy. After determining the link function, the
relative contribution of each factor for predicting the COVID-19 mortality risk is evaluated by
examining the change of model fit by excluding each model term from the full model one at a

time.

6
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.3.2. Residual diagnosis
Residual plots are often used to check the assumptions of regression models; however, residual

lots from logistic regression based on deviance or Pearson residuals are generally not informa-
ive due to the discreteness of the data (Gelman et al., 2000). Randomized quantile residuals
RQRs) (Dunn and Smyth, 1996) were proposed in the literature to diagnose models for discrete
utcomes. However, the power of RQRs for diagnosing discrete models with a limited number
f unique values in the outcome variable, such as binary outcome, tends to be low due to the
andomness introduced to the estimated cumulative distribution function (Feng et al., 2020). To
vercome these challenges, the simulated envelope is recommended to be added to the quantile–
uantile (QQ) plot of deviance or Pearson residuals to detect overall departures from the model
ssumptions as well as outlying observations of the fitted model. For a well-fitted model, most of
he residuals are expected to fall within the simulated envelope. The graphical display of residuals
ersus fitted values or predictors can provide further focused diagnostics. An alternative standard
ay to make discrete residual plots interpretable is to work with binned residuals (Gelman et al.,
000), which divides the data into categories (bins) of equal size based on their fitted values. Then,
he average residual is plotted against the average fitted value for each bin. If the model were true,
he residuals should be closer to symmetric about zero, and one would expect about 95% of the
esiduals to fall inside the error bounds.

To examine if there is spatial autocorrelation remained in the residuals, a permutation test for
oran’s I statistic (Moran, 1950; Cliff and Ord, 1981) is used using the spdep package (Bivand
nd Wong, 2018) in R, calculated by using 999 random permutations of the data over the study
egion, to establish a distribution of simulated Moran’s I based on a null hypothesis of spatial
andomness. The observed value of Moran’s I is then compared with the simulated distribution. The
emporal autocorrelation in the residuals was assessed by autocorrelation function (ACF) plot (Box
nd Jenkins, 1976) and partial autocorrelation (PACF) plots (Venables and Ripley, 2002), which
ompute autocorrelations for data values at varying time lags. If random, such autocorrelations
hould be near zero for any time-lags. If non-random, one or more of the autocorrelations will
e significantly non-zero.

.4. Predictive accuracy assessment

Using modeling techniques to predict the COVID-19 mortality could help effectively guide
ublic health policy-making to optimize the allocation of the limited resources. In literature, some
odeling methods are based on individual-level data (Das et al., 2020; Rosenthal et al., 2020; Xu
t al., 2020; Yu et al., 2020) and some are based on aggregated data (Talukder, 2020; Ujiie et al.,
020; Okeahalam et al., 2020; Chaudhry et al., 2020; Karmakar et al., 2021; Lima et al., 2021).
he predictive accuracy of the models based on individual versus aggregated data has not been
ell understood. As a result, this study also examined the accuracy and precision of predictions
y comparing the selected best-fitting model based on the individual-level data against commonly
sed count regression models for modeling the aggregated daily COVID-19 mortality count.

.4.1. Modeling aggregated daily COVID-19 mortality count
To avoid the potential loss of critical information in the process of data aggregation, the

ndividual-level data were aggregated according to the unique combinations of the levels of
he predictors considered in this study, i.e., day, neighborhoods, age groups, gender, ever been
ospitalized, ever been in ICU and ever been intubated. The neighborhood-level characteristics,
.e., population density and average income, were linked to this data by neighborhood. By doing
o, all the predictors considered in the analysis based on the individual-level data are included
n the regression models for modeling the aggregated daily death counts. The aggregation units
ithout COVID-19 positive cases were removed. The final dataset contains 40,882 aggregate units.
he outcome variable is the number of deaths within each aggregate unit, which ranges from 0 to
9. The logarithm of the number of positive cases within each aggregate unit is included as an offset

erm in the count regression models.

7
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Modeling count data involves many challenges, especially when the data exhibits a preponder-
nce of zeros and overdispersion. Although alternatives exist for modeling overdispersed count data
ith an excess of zeros, they are not widely and effectively applied and implemented in standard
oftware. In this study, Poisson, Negative Binomial (NB), and zero-inflated Poisson (ZIP) (Lambert,
992) models are considered. One major limitation of the Poisson regression is that it assumes
he mean and variance conditional on the covariates are the same, which can be restrictive in
ome applications. NB extends the Poisson by positing that the conditional mean of the response
ariable is not only determined by the covariates but also a latent component independent of the
ovariates. Although the NB model could model the overdispersed Poisson data, it is not appropriate
or modeling the data with a high percentage of zero counts as in the current context. ZIP is a
ixture of two statistical processes, with one always generating ‘‘structural’’ zero counts and the
ther both ‘‘sampling’’ zero and positive counts. That is, it assumes that each observation comes
rom one of two potential distributions, with one consisting of a constant zero while the other
ollowing Poisson. In a ZIP model, a logit model is typically used to model the probability of the
xcessive zeros, while the Poisson regression models the rest of the count data.

.5. Evaluation of the prediction performance

The predictive accuracy of the models is evaluated based on both in-sample and out-of-sample
rediction in terms of Root Mean Squared Prediction Error (RMSPE) as a measure of the agreement
etween the observed binary outcome and the predicted probability of the outcome. In-sample
nalysis means to estimate the model using all available data, and then compare the model’s fitted
alues to the actual realizations. The out-of-sample predictions are evaluated based on (1) K -fold
ross-validation, (2) moving window forecasting, (3) leave-one-location-out cross-validation, and
4) leave-one-location-out moving window forecasting cross-validation.

.5.1. In-sample predictive accuracy check
To ensure the individual and aggregate analyses are comparable, the predicted probabilities

f COVID-19 mortality based on the individual-level data analysis for the individuals from the
ame aggregate unit are summed together, which gives the estimated counts of mortality in that
ggregate unit.
The RMSPE for the in-sample predictive accuracy is defined as, i.e.,

RMSPEI
=

√1
J

J∑
j=1

(Zj − Ẑj)2, (13)

where Zj and Ẑj represent the observed and predicted death counts in the jth aggregate unit,
respectively, j = 1, . . . , J with J denoting the total number of aggregate units. For the analysis
based on the individual analysis, the observed and predicted death count in the jth aggregate unit
are Zj =

∑
i∈Aj

Yi and Zj =
∑

i∈Aj
Ŷi, respectively, where Aj denotes the set of individual observations

belonging to the jth aggregate unit.

3.5.2. K-fold out-of-sample cross-validation
In general, k-fold cross validation can be defined as follows:

• Randomly divide data into K equal groups. Let Ak denote the set of data points (Zj,X j) placed
into the k′th fold.

• For k = 1, . . . , K , train model was fitted on all except kth fold. Let f̂ −k denote the resulting
predicted probability of the fitted model based on the training dataset Ak, k = 1, . . . , K .

• RMSPECV can be then written as

RMSPECV
=

1
K

K∑
k=1

√ 1
J/K

∑
j∈Ak

(Zj − f̂ −k(X j))2. (14)
8
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Fig. 2. An illustration of the moving window forecast process, where Il and Al , l = 1, . . . , L denote the training and testing
datasets, respectively.

3.5.3. Moving window forecasting predictive check
The predictive ability of the model is further evaluated by its forecasting accuracy, which is

evaluated by comparing the forecasts against future realizations of the data. Fig. 2 illustrates the
moving window forecast process considered in this study, with l = 1, . . . , L, indexing the forecast
window, where L denotes the number of forecast windows during the study period. Il denotes the lth
training dataset, including all observations from the beginning observation period up till the starting
time point of the lth forecast window. The starting time point of forecasting, t∗, is set as 120 days
since the beginning of the study period allowing for enough observations for reliably fitting models
to the training dataset. The lth moving window forecast dataset is defined as Al. The forecast horizon,
i.e., length of time of forecasting into the future, ρ is set as 7, 14, 21, and 28 days, respectively.

The RMSPE at the lth forecasting window is defined as

RMSPEF
l =

√ 1
nl

∑
j∈Al

[Zj − f̂ (X Il )]2, (15)

where nl represents the number of observation units in Al and f̂ (X Il ) represent the predicted death
count for window Al based on the train dataset Il. The average RMSPE over all the L forecast windows
can be then defined as RMSPEF

=
1
L

∑L
l=1 RMSPEF

l .

.5.4. Leave-one-location-out cross validation
As the data are spatially correlated, leave-one-location-out (LOLO) cross-validation is also used

o predict the time series at an unobserved neighborhood. The average RMSPE for LOLO CV across
ll the neighborhoods is defined as,

RMSPELOLO
=

1
S

S∑
s=1

√
1
ns

∑
j∈As

[Zj − f̂ (X I(−s) )]2, (16)

here As denotes the testing data, which is the entire time series of observations at the sthe
eighborhood, s = 1, . . . , S, and ns represents the total number of aggregate units at the sth
eighborhood. I(−s) denotes the training dataset for the sth neighborhood, which includes the
bservations from all neighborhoods except for the sth neighborhood. Defining each CV fold as the
bservations taken at one neighborhood ensures that predictions are always being evaluated at a
eighborhood excluded from the data on which the prediction was trained.

.5.5. Leave-one-location-out moving window forecasting cross validation
In Section 3.5.4, the forecasting was made for the entire time series of a location, which does

ot effectively evaluate the model performance at predicting the future. The RMSPE for evaluating
patial–temporal extrapolation error is therefore examined, which is defined as

RMSPEF−LOLO
=

1
L

L∑
l=1

√1
S

S∑
s=1

⎧⎨⎩ 1
nsl

∑
j∈A

[
Zj − f̂ (X I(−s)l )

]2

⎫⎬⎭, (17)

sl

9
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Table 1
Comparison of the model fits in terms of AIC, deviance (dev), percentage
of deviance explained (dev.expl), AUC, and Brier’s score.

Logit Probit Cloglog

AIC 8175.273 8105.895 8293.470
dev 7942.698 7878.747 8055.724
dev.expl 51.4% 51.8% 50.7%
AUC 0.9668 0.9672 0.9661
Brier 0.0251 0.0251 0.0252

Table 2
Evaluation of the contribution of each predictor for modeling the COVID-19 mortality risk by excluding each predictor
from the full model, in terms of AIC, deviance, percentage of deviance explained (dev.expl), AUC and Brier’s score.
Model AIC Deviance dev.expl AUC Brier’s

Full 8105.895 7878.747 51.8% 0.967 0.025
-pop × income 8145.149 7936.670 51.4% 0.967 0.025
-space × time 8184.995 8087.861 50.5% 0.965 0.026
-gender 8191.274 7971.685 51.2% 0.966 0.025
-space 8252.505 8176.207 49.9% 0.964 0.026
-time 8352.776 8120.091 50.3% 0.964 0.026
-health condition 9518.019 9355.916 42.7% 0.947 0.028
-age 11115.384 10817.703 33.8% 0.925 0.031

where nsl denotes the total number of aggregate units at the sth neighborhood and the lth forecast
indow; Asl denotes the lth forecast window at the sth neighborhood and I(−s)l represents the
raining dataset, which contains the observations prior to the lth forecast window after excluding
he observations from the sth neighborhood, and f̂ (X I(−s)l ) denotes the predicted disease counts at
he sth neighborhood and the lth forecast window.

. Results

.1. Model selection and diagnosis

.1.1. Model selection
After the model selection, all the predictors remain significant regardless of which link function

s applied. The results of the model comparison (Table 1) indicate that the model with the probit
ink function outperforms the models with the logit or cloglog link functions, which yielded the
owest AIC and deviance, highest percentage of deviance explained, highest AUC and lowest Brier’s
core.
Evaluation of the relative contribution of each predictor for modeling the COVID-19 mortality

isk is also conducted by excluding each predictor from the full model. The results (Table 2)
ndicate that age or history health conditions for COVID-19 are the strongest predictors for mortality
tatus since excluding either of the two variables results in the most substantial change in the
easures of model fit. Space, time, and space–time interaction terms also improve the model fit.
he model with continuous space–time interaction performs better compared with the model with
n additive space–time effect. In addition, accounting for the neighborhood characteristics improves
he predictive ability of the model.

.1.2. Residual diagnosis
The QQ plots of the deviance residuals for the logistic, probit, and cloglog models with simulated

nvelopes are displayed in Fig. 3. As displayed, for the logistic and cloglog models, a few residuals
t a higher range of the residuals fall outside of the simulated envelopes. By contrast, the points in
he QQ-plots based on the probit model mostly fall within the simulated envelopes, which indicates

he probit model fits the data well.

10
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Fig. 3. QQ plots of the deviance residuals for the logit, probit and cloglog models. The gray areas are the simulated
envelopes based on 1000 simulated data from the fitted model. For a well-fitted model, most of the residuals are expected
to fall within the simulated envelope.

The binned residual plots against the fitted values and the predictors are displayed in Fig. 4. The
op panels are the average residuals versus average fitted values for each bin under the models with
he different link functions. The results revealed that the probit model provided an adequate model
it with almost all the residuals falling within the simulated envelope. By contrast, for logistic and
loglog models, quite a few residuals fall outside of the simulated envelopes. A closer examination
f the binned residual plots against the continuous predictors indicates all the models underpredict
he mortality risk at one-time point during the second wave, but not substantially. Both the QQ
lots and the binned residual plots suggest the probit model provides a better fit to the data as
ompared to the logistic and cloglog models.
The examination of the temporal and spatial autocorrelation in the residuals of the space–

ime probit model is displayed in Fig. 5. The ACF and PACF plots do not reveal any significant
utocorrelation in the residuals, as shown in the first two panels of Fig. 5. The third panel of Fig. 5
uggests no spatial correlation remained in the residuals with a pseudo p-value of 0.953.

.2. Estimated model components

The results of the parametric terms for the full model are presented in Table 3 and the non-
arametric spline terms for the full model are presented in Figs. 6 and 7. As shown in Table 3,
he risk of mortality has no significant difference for age groups below 40–49 years, but the risk
ncreases drastically for the age groups 50–59 years and onward. The mortality risk is significantly
igher among males and those who had ever been hospitalized, ever in ICU, or ever intubated.
The left panel of Fig. 6 displays the estimated smooth term of the reporting date of COVID-19 on

he logit of mortality probability. The plot indicates that the mortality risk increased sharply and
eaked around April–May 2020, followed by a decline during summer and then increased again in
all, but the peak is lower than the first peak. The right panel of Fig. 6 displays the two-dimensional
ensor product smoother of the population density and average income, which clearly shows their
on-linear interactive effect. More specifically, the risk of mortality tends to be much higher for
eighborhoods with larger population sizes and lower average incomes. The risk of mortality is
he lowest for the neighborhoods with very high average income and moderately low population
ensity.
The spatial–temporal interaction terms (Fig. 7) reflect how the spatial pattern of mortality risk

volves over time after accounting for known risk factors. The results indicate localized differences
n the underlying attributes of neighborhoods can have a statistically significant impact on COVID-
9 mortality risk. The shifting of the high-risk regions might be attributable to the interventions
uch as lockdowns and social distancing practices, which reduced the community spread of infection

n some areas. Additionally, geographic disparity of health care capability may exist, such as access

11
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Fig. 4. Binned residual plots of the full models with logit, probit and cloglog link functions, respectively. The gray lines
indicate plus and minus 2 standard-error bounds, within which one would expect about 95% of the binned residuals to
fall, if the model were true.

to clinics, ICU beds, ventilators, or drugs and equipment to effectively treat people most severely

affected by COVID-19 infection complications.
12
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Fig. 5. Autocorrelation (ACF) and partial autocorrelation (PACF) plots for examining temporal autocorrelation in residuals
nd the Monte-Carlo simulation of Moran’s I statistic for examining spatial autocorrelation in residuals (p-value = 0.953).

Table 3
Significance of estimates from the space–time probit model. SE stands for the standard error
of the parameter estimate. ‘‘edf’’ represents the effective degrees of freedom of the functional
parameters.
Parametric terms Estimate SE p-value

Age (Reference: 19 years and below)
20 to 29 Years −0.448 0.438 0.306
30 to 39 Years −0.132 0.359 0.714
40 to 49 Years 0.119 0.315 0.706
50 to 59 Years 0.724 0.291 0.013
60 to 69 Years 1.278 0.287 0.000
70 to 79 Years 1.889 0.286 0.000
80 to 89 Years 2.397 0.286 0.000
90 and older 2.828 0.286 0.000

Gender (Reference: Females)
Male 0.314 0.034 0.000
Others 0.152 0.143 0.288

Health history (Yes vs. No)
Ever Hospitalized 0.938 0.037 0.000
Ever in ICU 0.623 0.096 0.000
Ever Intubated 0.549 0.112 0.000

Smooth terms edf p-value

ft (day) 8.184 <0.001
fngb(pop density, income) 12.994 <0.001
fs(lat, long) 25.327 <0.001
fst (lat, long, day) 53.069 0.0028

4.3. Predictive accuracy assessment

4.3.1. Predictive models based on aggregated data
This section compares the proposed model based on the individual-level data with the count

egression models based on the aggregated data constructed based on the individual-level data.
ig. 8 presents the observed versus predicted daily mortality count based on the probit model for
odeling the individual-level data and Poisson, NB, and ZIP models for modeling the aggregated
ata. The results clearly show that the count regression models severely underestimate the higher
13
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d

C

Fig. 6. The left panel displays the smooth function of day and the right panel shows the smooth function of the population
ensity and average income of the space–time probit model.

Fig. 7. The estimated partial effect of space–time interaction term at specified times t on the logit of probability of
OVID-19 mortality.
14
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Fig. 8. Predicted versus observed daily mortality counts based on the probit, Poisson, NB and ZIP models, respectively.

Fig. 9. QQ-plots of deviance residuals for Poisson, NB and ZIP models, respectively. The gray areas are the simulated
nvelopes based on 1000 replicates from the fitted models.

alues of daily mortality count. In other words, count regression models could adequately detect
pidemic peaks. In contrast, the probit model provides a much better fit to the data, with the
redicted mortality counts much closer to the observed mortality counts. The probit model also
nder-predicts the higher values of daily mortality counts, but the underestimation is not as
ronounced as the count regression models. Fig. 9 presents the QQ-plots of the deviance residuals
f the count regression models with simulated envelopes, which confirmed the inadequacy of the
ount regression models with larger values of residuals falling outside of the simulated envelopes.
his phenomenon is more pronounced for Poisson and NB models.
Table 4 presents the parameter estimates of the ZIP model. Similar results were observed based
n the Poisson and NB regression, which are not presented here. The results show that all the
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Table 4
Model estimates of the ZIP model for modeling the daily COVID-19 mortality count. SE stands for
the standard error of the parameter estimate. ‘‘edf’’ represents the effective degrees of freedom
of the functional parameters.
Parametric terms Estimate SE p-value

Age (Reference: 19 years and below)
20 to 29 Years −0.652 1.293 0.614
30 to 39 Years 0.129 1.120 0.908
40 to 49 Years 1.677 0.955 0.079
50 to 59 Years 2.993 0.922 0.001
60 to 69 Years 4.137 0.918 0.000
70 to 79 Years 5.084 0.917 0.000
80 to 89 Years 5.788 0.916 0.000
90 and older 6.362 0.916 0.000

Gender (Reference: Females)
Male 0.354 0.046 0.000
Others 0.159 0.190 0.402

Health History (Yes vs. No)
Ever Hospitalized 1.143 0.050 0.000
Ever in ICU 0.731 0.112 0.000
Ever Intubated 0.628 0.127 0.000

Smooth terms edf p-value

ft (day) 7.525 <0.001
fngb(pop density, income) 7.548 <0.001
fs(lat, long) 21.434 <0.001
fst (lat, long, day) 18.886 0.1

significant predictors in analysis based on the individual-level data remain significant in the ZIP
model, except for the space–time interaction term. As a result, the analysis based on aggregated
data cannot reliably elucidate the space–time interactive effect, further demonstrating the potential
benefits of the individual-level analysis for gains in power and efficiency for detecting space–time
interaction. The inferior performance of the count regression models based on the aggregated data
compared to the probit model based on the individual-level data likely stems from the assumptions
of distributions for modeling count data.

4.3.2. Evaluation of predictive performance
Table 5 shows that RMSPE based on the in-sample, 10-fold CV, and moving window forecast,

eave-one-location out CV and leave-one-location out moving window forecast CV for the probit,
oisson, NB, and ZIP models. The results indicate the probit model had the smallest overall RMSPE
s compared to the count regression models. Among the count regression models, the ZIP model
ad better predictive accuracy than the other methods in most of the cases, except for RMSPEF and
MSPEF−LOLO. This implies the performance of the count regression models heavily depends on the
chemes of the model validation.
For completeness, we also compared the probit and count regression models for RMSPEF and

MSPEF−LOLO over the moving forecasting windows. As displayed in Fig. 10, both RMSPEF and
MSPEF−LOLO for all models decrease during summer 2020, followed by an increase during the
econd wave. The RMSPEF and RMSPEF−LOLO for count regression models tend to be higher than the
robit model during the second peak time. Such differences increases as the forecasting window
ize increases. The results imply the count regression models are less accurate for predicting the
eak mortality risk as compared to the probit model in this investigation.

. Discussion

This study demonstrated a spatial–temporal generalized additive model for modeling and pre-
icting COVID-19 mortality risk in the study region, which could help improve resource allocation
16
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Table 5
RMSPE of the probit model based on the individual-level data and the count regression models
(Poisson, NB and ZIP models) based on the aggregated data.

Probit Poisson NB ZIP

RMSPEI 0.1815 0.2381 0.2388 0.2336
RMSPECV 0.1629 0.2354 0.2453 0.2299
RMSPELOLO 0.1697 0.1816 0.1902 0.1841

RMSPEF

7 days 0.1422 0.1507 0.1491 0.1511
14 days 0.1456 0.1586 0.1572 0.1586
21 days 0.1512 0.1622 0.1602 0.1583
28 days 0.1459 0.1768 0.1752 0.1728

RMSPEF−LOLO

7 days 0.1162 0.1202 0.1182 0.1189
14 days 0.1257 0.1342 0.1324 0.1341
21 days 0.1360 0.1443 0.1416 0.1422
28 days 0.1374 0.1543 0.1526 0.1532

RMSPEI : RMSPE for in-sample prediction
RMSPECV : RMSPE for 10-fold CV
RMSPELOLO: RMSPE for leave-one-location-out CV
RMSPEF : RMSPE for moving window forecast
RMSPEF−LOLO: LOLO CV for moving window forecast.

across sub-populations. The study adds to the evidence showing the age of 50 years, and onward,
males and those who had ever been hospitalized, in ICU, or intubated are at a significantly higher
mortality risk due to COVID-19 at the study region during the study period. Neighborhood level
population density and average income also have a significant interactive effect on COVID-19
mortality risk. Moreover, we demonstrated a powerful and computationally efficient approach
for uncovering the complexity of the inter-correlated nature of space–time COVID-19 data. The
identified spatial–temporal effect may be driven by the neighborhood-specific characteristics, such
as social network and interactions, regulations and compliances of social-distancing policies, or
other socio-demographic information that are not captured by the neighborhood population density
and average income.

In this study, the model diagnostic indicated the independent error structure was adequate,
and no spatial–temporal heterogeneity was identified in the residuals of the best fitting model.
However, in some applications, if residuals exhibit spatial or temporal autocorrelation, generalized
additive mixed-effect model (GAMM) (Wood, 2006) including random effects with spatial or
temporal autocorrelation error structures should be considered. The random effect terms could
properly quantify the variability that was unexplained by the predictors in the model. However,
the computation for GAMM is typically slower than GAM, and not as numerically robust (Wood,
2006).

The space–time smoother is set up using the multi-dimensional tensor product smoother, with
the marginal spatial and temporal bases being scale-invariant. This provides flexibility by allowing
for different degrees of smoothness for each dimension. The alternative approach of modeling
the spatial correlation could also be considered, such as using Markov Random Field (MRF), also
called conditional autoregressive prior for spatial random effect term, which is often used for
analyzing spatially aggregated data (Waller et al., 1997; Lawson, 2008; Knorr-Held, 2000). Such
models are often implemented in the Bayesian framework, which offers the advantage of using prior
information to improve inference. In fact, MRF approximation to a thin plate spline that involves
only nearby grid cells as neighbors (Rue and Held, 2005; Yue and Speckman, 2010). However, the
areal unit problem may arise from using political boundaries that are arbitrarily related to public
health. Bayesian models are also more difficult to specify, especially for investigating space–time
interaction on a daily basis over a long period. Bayesian estimation methods also require examining
prior distributions through a sensitivity analysis. The fitting process may fail in ways that are
17
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Fig. 10. RMSPELOLO (left panels) and RMSPEF−LOLO right panels) for comparing the predictive accuracy between the probit
and count regression models for 7 days, 14 days, 21 days and 28 days ahead prediction. Note that in most cases, the
RMSPEs based on the count regression models differ only minimally, hence they can hardly be distinguished.

difficult to diagnose and rectify. The computation can also be intensive or even prohibitive in fitting
the model to large datasets. One way to remedy the computational challenge of implementing the
Markov Chain Monte Carlo method is to use the Integrated Nested Laplace Approximation (INLA)
framework (Rue et al., 2009). INLA uses analytic Laplace approximation and efficient numerical
integration schemes to achieve a highly accurate analytical approximation of posterior quantities of
interest with relatively short computing times. However, it could be challenging to know when such
approximations are adequate. For these reasons, the spatial–temporal generalized additive model
18
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y specifying space–time smooth as tensor product smoother offers computational advantage and
lso significant flexibility for modeling space–time interaction.
This study also demonstrates that the individual-level analysis provided a better fit for the

ata than the analysis based on the aggregated data. The inferior performance of the latter one
ould be due to the inappropriate distributional assumption of the daily mortality count variable.
eneralized additive models for location, scale, and shape (GAMLSS) (Rigby and Stasinopoulos,
005; Stasinopoulos and Rigby, 2007) are an extension to GAMs that allows all parameters of a
ertain response distribution to be modeled separately. GAMLSS provides a general framework
or fitting regression type models where the distribution of the response variable does not have
o belong to the exponential family and includes highly skewed and kurtotic continuous and
iscrete distribution (Rigby and Stasinopoulos, 2005). Comparing analyses based on individual
ersus aggregated data based on GAMLSS is interesting to explore as a new project. Further,
his study considered three commonly used link functions for binomial regression. Both logit and
robit links are symmetric links, which assume that the probability of a given binomial response
pproaches 0 at the same rate as it approaches 1. The cloglog link function is asymmetric, with the
robability of a given binomial response increasing slowly from 0 but then tapering off more quickly
s it approaches 1. The results of the model validation and residual diagnosis indicated model with
he probit link function provided an adequate fit to the data considered in this study. However, in
ome other applications, these popular links may not always provide the best fit for a given dataset.
ther flexible link function for binomial regression can be chosen, such as a two-parameter class of
eneralized logistic models (Stukel, 1988; Ghosh and Alzaatreh, 2018), skewed t-link function (Kim
t al., 2007), skewed probit link function (Chen et al., 1999). However, these models may not be
traightforward to be implemented. Future studies to develop spatial–temporal GAM or GAMLSS
ith more flexible link functions is therefore warranted.
In addition, previous research showed the overall coverage of the GAM model is reasonably

lose to the normal level, and the component-wise intervals can only be used as a rough guide
o the uncertainty of the components, since the intervals are conditional on the smoothing pa-
ameters (Wood, 2017; Marra and Wood, 2012). One way to improve the performance of the
ntervals is to account for the smoothing parameter uncertainty. However, obtaining the distribution
f the smoothing parameter is computationally intensive, which requires MCMC simulations or
sing parameter bootstrap approximation of its sampling distribution (Wood, 2017). Despite the
nderperformance of component-wise intervals, the performance of all confidence intervals in a
AM setting improves as sample size increases (Wood, 2017; Marra and Wood, 2012). Further,
he theoretical argument suggests that component-wise confidence intervals could achieve nominal
overage probability provided that heavy smoothing and collinearity among predictors are avoided.
s a result, the empirical coverages of the confidence intervals are expected to be close to the
ominal level in this study, since the sample size is fairly large and no heavy smoothing and
ollinearity among the predictors were identified. However, more rigorous investigations in the
ontext of spatial–temporal GAM through extensive simulation studies would be needed.
COVID mortality data may also exhibit a more complex spatial–temporal dependence structure

r even discontinuities due to lockdown or distancing policies. Such complexity may not be
dequately reflected using tensor product smoothing spline, which may smooth out the abrupt
hanges. Locally adaptive spatial models proposed in a Bayesian framework (Lee and Mitchell,
013) could be useful for capturing the spatial discontinuities. Nevertheless, the main constraint of
pplying the Bayesian model in disease mapping (Lawson, 2008; Knorr-Held, 2000; Lee, 2011) is the
omputational complexity for large-scale data, which may lead to infeasible computational times.
computationally efficient algorithm for modeling the discontinuity of spatially and temporally

orrelated infectious disease surveillance data could be developed.
Several limitations of this study need to be acknowledged. First, no information on the individual-

evel socio-economic status, human mobility pattern, and social restrictions at a local level are
vailable, which may contribute to explaining the spatial–temporal pattern identified in the study.
econd, survival models to model the time from the date of infection or symptom onset until death
r censoring would be a more appropriate approach than logistic regression for modeling mortality
isk. However, the time variable provided in the dataset used in this study is a derived/combined
19
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ariable that best estimates when the disease was acquired and refers to the earliest available
ate from symptom onset (the first day that COVID-19 symptoms occurred), laboratory specimen
ollection date, or reported date. Another variable is available in the dataset is called reported
ate, which is the date on which the case was reported to Toronto Public Health. However, 4513
ut of 49,216 (9.2%) of the subjects have episode dates equal to or greater than the reported
ates, reflecting the imperfect and incomplete information on the time variables. In addition, death
ccurrences are subject to reporting delay, and the analysis of deaths by reported date is therefore
nevitably distorted by such delay. The lack of accurate information on the dates of symptom onset
nd mortality thus limits the capacity of carrying out survival analysis in this study.
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