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Abstract

Optimal post-remission therapy for adolescents and young adults (AYAs) with Ph-negative acute lymphoblastic leukemia (ALL)
in first complete remission (CR1) is not established. We compared overall survival (OS), disease-free survival (DFS), relapse,
and non-relapse mortality (NRM) for patients receiving post-remission therapy on CALGB 10403 to a cohort undergoing
myeloablative (MA) allogeneic hematopoietic cell transplantation (HCT) in CR1. In univariate analysis, OS was superior with
chemotherapy compared to MA allogeneic HCT (3-year OS 77% vs. 53%, P <0.001). In multivariate analysis, allogeneic HCT
showed inferior OS (HR 2.00, 95% CI 1.5-2.66, P<0.001), inferior DFS (HR 1.62, 95% CI 1.25-2.12, P<0.001), and
increased NRM (HR 5.41, 95% CI 3.23-9.06, P <0.001) compared to chemotherapy. A higher 5-year relapse incidence was
seen with chemotherapy compared to allogeneic HCT (34% vs. 23%, P =0.011). Obesity was independently associated with
inferior OS (HR 2.17, 95% CI 1.63-2.89, P <0.001), inferior DFS (HR 1.97, 95% CI 1.51-2.57, P <0.001), increased relapse
(1.84, 95% CI 1.31-2.59, P <0.001), and increased NRM (HR 2.10, 95% CI 1.37-3.23, P <0.001). For AYA ALL patients in
CR1, post-remission therapy with pediatric-style chemotherapy is superior to MA allogeneic HCT for OS, DFS, and NRM.

Introduction

The optimal post-remission therapy for AYAs with Ph-
negative ALL in CR1 is not known in the era of pediatric-
inspired chemotherapy regimens with more intensive post-
remission therapy than traditional adult regimens. Previous
studies suggested superiority of post-remission therapy with
allogeneic HCT over chemotherapy. MRC UKALLXII/
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E2993 compared traditional adult chemotherapy or auto-
logous HCT to MA allogeneic HCT in patients aged 15-59
years with Ph-negative ALL. Overall survival (OS) was
improved in standard-risk ALL patients with a donor, pri-
marily due to more relapse in the no donor group [1].
However, individual studies in adults comparing allogeneic
HCT to chemotherapy alone have not shown a clear benefit
of allogeneic HCT although meta-analyses support allo-
geneic HCT in CR1 [2, 3]. A meta-analysis of 13 trials
comparing allogeneic HCT to chemotherapy with or with-
out autologous HCT concluded that the benefit of allogeneic
HCT for patients with Ph-negative ALL in CR1 was limited
to those under the age of 35 [2], the age group now com-
monly treated with pediatric-style chemotherapy. In this
metanalysis, which included the UKALLXII/E2993 study,
S-year OS for patients <35 years of age was 53.7%, lower
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than the survival typically seen with pediatric-inspired
chemotherapy in the AYA population [2, 4-8].

Pediatric-style chemotherapy may improve outcomes
for AYAs with Ph-negative ALL [4-8]. A meta-analysis
of 11 trials showed superior OS, event-free survival
(EFS), and relapse rates in AYAs treated with pediatric-
inspired chemotherapy relative to conventional adult
chemotherapy [9]. The DFCI Adult ALL Consortium
reported on 74 patients aged 18-50 years with Ph-
negative ALL treated with pediatric-style chemotherapy
[10]. A 4-year EFS of 62% was observed. Seftel et al.
compared the DFCI regimen to MA allogeneic HCT
outcomes using data from the Center for International
Blood and Marrow Transplant Research (CIBMTR) [11].
Relapse rates were similar between the two groups but
pediatric-style chemotherapy was superior to allogeneic
HCT for 4-year OS and DFS, due primarily to lower rates
of NRM with chemotherapy. In multivariate analysis,
allogeneic HCT was the only factor associated with
inferior OS (HR 2.86, P <0.0001).

A single-arm, prospective, US Intergroup study led by
the Alliance for Clinical Trials in Oncology (CALGB
10403) studied the feasibility of applying the pediatric COG
AALLQ0232 standard-risk arm regimen to AYAs aged
16-39 years with Ph-negative ALL [12]. The 3-year EFS
was 59% with a 3-year OS of 73%, an improvement com-
pared to young adults treated with historical adult CALGB
regimens [13]. Given the large size of the study and its
enrollment of patients across the US, we used it as a model
population to compare outcomes of pediatric-style post-
remission therapy to MA allogeneic HCT.

A major limitation of prior studies comparing allogeneic
HCT to chemotherapy is that the post-remission che-
motherapy was of lower intensity compared with current
pediatric-style chemotherapy regimens. Pediatric-style post-
remission therapy may improve relapse rates with low NRM
conceivably leading to superior survival relative to allo-
geneic HCT. This study was designed to compare OS, DFS,
relapse, and NRM in patients aged 16-39 years with Ph-
negative ALL in CR1 undergoing post-remission therapy
with pediatric-inspired chemotherapy on CALGB 10403 vs.
MA allogeneic HCT. Results from this study directly
inform the debate on the role of allogeneic HCT for AYA
patients with Ph-negative ALL in CR1.

Methods
Study population
The chemotherapy cohort consisted of patients receiving post-

remission chemotherapy on CALGB 10403 (NCT00558519).
Eligible patients from CALGB 10403 were patients aged

16-39 years with Philadelphia-chromosome/BCR-ABLI-
negative ALL in CR1 who started post-remission che-
motherapy. The MA allogeneic HCT cohort consisted of
patients aged 16-39 years with a diagnosis of Ph-negative
ALL in CR1 undergoing post-remission therapy with a MA
bone marrow or peripheral blood allogeneic HCT from a
matched sibling, matched related, or unrelated donor (URD)
in the U.S. from 11/1/2002 through 8/31/2012 reported to the
CIBMTR. Patients receiving syngeneic, haploidentical, or
umbilical cord blood HCT were excluded.

Objectives and endpoints

The start time for outcomes was the date of CR1. The primary
objective was to compare OS between patients receiving post-
remission therapy with MA allogeneic HCT vs. chemother-
apy. Secondary objectives included DFS, relapse rate, and
NRM rate between the allogeneic HCT and chemotherapy
cohorts. Additional secondary objectives included determi-
nation of patient and disease factors influencing outcomes of
post-remission therapy using either approach. The primary
endpoint of OS was defined as the time from CR1 to the last
contact date or death from any cause. Secondary endpoints
included NRM defined as time to death without evidence of
leukemia recurrence with relapse as the competing risk,
relapse was defined as the cumulative incidence of leukemia
recurrence after CR1 with NRM as a competing risk, and
DEFS was defined as the time from CR1 to leukemia relapse or
death. Surviving patients were censored at last time reported
alive and in continued remission. Allogeneic HCT cohort
endpoints included acute grade II-IV graft-versus-host dis-
ease (GVHD) fulfilling the Consensus criteria and chronic
GVHD defined as the occurrence of symptoms in any organ
diagnostic of chronic GVHD.

Statistical analysis

Patient-, disease-, and transplant-related factors were com-
pared between treatment groups using the Chi-square test
for categorical variables and the Wilcoxon two sample test
for continuous variables. Comparing outcomes in the
transplant and chemotherapy groups required adjustment for
two sources of bias: differences in time to treatment/time to
transplant and differences in baseline characteristics of
patients. Starting from CR1, left-truncated analysis methods
were used to address the first potential bias, that patients
must survive in CR1 a sufficient length of time until
transplant. At each time point () in this model, the risk set
in the chemotherapy cohort consists of all patients still
under study, while the risk set in the transplant cohort
includes only those whose waiting time to transplant was
less than the current study time point (¢). The probabilities
of DFS and OS were calculated using the left-truncated
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Kaplan—Meier estimator. Probabilities of NRM and relapse
were generated using left-truncated cumulative incidence
estimates to account for competing risks. The univariate
probabilities of relapse and NRM were compared using the
Gray’s test [14]. To adjust for the differences in baseline
characteristics, left-truncated Cox proportional hazards
regression was used to compare the two treatment groups.
Multivariate analysis factors included age, gender, race,
body mass index, Karnofsky performance status, ALL
immunophenotype, white blood cell count at diagnosis,
cytogenetic risk group, extramedullary disease at diagnosis,
and time to documentation of CR1 (Table 1). The
assumption of proportional hazards for each factor in the
Cox model was tested using time-dependent covariates.
When the test indicated differential effects over time
(nonproportional hazards), models were constructed break-
ing the post-transplant time course into two periods, using
the maximized partial likelihood method to find the most
appropriate breakpoint. A backward stepwise model selec-
tion approach was used to identify all significant risk fac-
tors. Each step of model building contained the main effect
for treatment groups. Factors, which were significant at a
5% level, were kept in the final model. The potential
interactions between main effect and all significant risk
factors were tested. Adjusted probabilities of DFS and OS
were generated from the final Cox models stratified on
treatment and weighted averages of covariate values using
the pooled sample proportion as the weight function. These
adjusted probabilities estimate likelihood of outcomes in
populations with similar prognostic factors. Chemotherapy
patients who received a transplant during CR1 were cen-
sored for OS at time of transplant (N = 20). HCT-related
variables were not analyzed in the multivariate since they
are not relevant in the chemotherapy cohort. The HCT
cohort included a planned sub-analysis of donor effect
evaluating HLA-identical siblings vs. well-matched (8/8)
URD or partially matched (7/8) URD and no differences
were seen in outcomes between the groups. Acute and
chronic GVHD was included following HCT as time-
dependent covariates.

Results
Patient populations

The chemotherapy cohort consisted of 263 patients treated
at 60 centers with a median age of 24 years (range 17-39)
and median follow up of 65 months (range 1-109). The MA
allogeneic HCT cohort consisted of 217 patients treated at
72 centers with a median age of 27 years (range 16—40) with
a median follow up of 98 months (range 23-179). Sig-
nificant differences between the chemotherapy and
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allogeneic HCT cohorts included race (Caucasian, 75% vs.
89%), Karnofsky performance score (280, 91% vs. 88%),
white blood cell count at diagnosis, cytogenetics, extra-
medullary disease at diagnosis (present, 48% vs. 19%), and
weeks from diagnosis to documentation of CR1 (median 4.4
vs. 7.6 weeks). A large majority of patients in the allogeneic
HCT cohort patients received TBI-based conditioning
(92%) from a well-matched related or URD (79%) within
6 months of documented CR1 (86%). Graft source was
peripheral blood for 73% of transplants. GVHD prophylaxis
was principally calcineurin inhibitor with methotrexate
based (70%) with in vivo T-cell depletion used in 21% of
transplants. Population characteristics are summarized in
Table 1.

Outcomes in univariate analysis

In univariate analysis, no differences in OS, relapse, or
NRM, were observed between allogeneic HCT and che-
motherapy at 100 days after the initiation of post-remission
therapy. At 3 and 5 years, OS was superior with che-
motherapy compared to allogeneic HCT (3-year OS 77%
vs. 53%, P <0.001, 5-year OS 66% vs. 47%, P <0.001).
Also, 3- and 5-year DFS was superior with chemotherapy
compared to allogeneic HCT (3-year DFS 68% vs. 50%, P
<0.001, 5-year DFS 58% vs. 44%, P = 0.004). Non-relapse
mortality was lower with chemotherapy compared to allo-
geneic HCT (3-year NRM 6% vs. 24%, P =< 0.001. 5-year
NRM 8% vs. 29%, P<0.001). Cumulative relapse at 5
years was significantly higher in the chemotherapy cohort
relative to the allogeneic HCT cohort (5-year relapse inci-
dence 34% vs. 23%, P =0.011). Univariate outcomes are
summarized in Table 2 and Fig. 1.

Multivariate outcomes by treatment modality

For the entire study population (N = 480), OS was worse
with allogeneic HCT (HR 2.00, 95% CI 1.5-2.66, P<
0.001) and obesity (BMI =30 kg/mz, HR 2.17, 95% CI
1.63-2.89, P<0.001). Post-remission therapy with allo-
geneic HCT led to inferior DFS (HR 1.62, 95% CI
1.25-2.12, P<0.001) and higher risk of NRM (HR 5.41,
95% CI 3.23-9.06, P <0.001). In the early post-remission
period (<15 months after CR1), relapse was more likely
with allogeneic HCT (HR 1.78, 95% CI 1.10-2.88, P =
0.02) while beyond 15 months after CR1 relapse was
more likely in the chemotherapy cohort (HR 0.34, 95% CI
0.19-0.62, P<0.001). In addition to worse OS, obesity
was associated with inferior DFS (HR 1.97, 95% CI
1.51-2.57, P<0.001), more relapse (HR 1.84, 95%
CI 1.31-2.59, P<0.001), and more NRM (HR 2.10, 95%
CI 1.37-3.23, P<0.001). We included a planned
multivariate  sub-analysis comparing outcomes of
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Table 1 Population characteristics.

Characteristic

CIBMTR HCT CALGB 10403 P value

No. of patients
No. of centers

Follow-up—median (min—-max)

Age at CR1, Years—no. (%) 0.08*

Median (min—max)
16-20
21-29
30-39
Gender—no. (%)
Male
Female
Race—no. (%)
Caucasian
Other
Unknown/missing
BMI—no. (%)
Not obese, BMI < 30
Obese, BMI > 30

Karnofsky performance score—

no. (%)

<80

>80

Missing
Immunophenotype—no. (%)

T-cell

B-cell

Unspecified

White blood count at diagnosis
(x10%)—no. (%)

B-cell, <30

B-cell, >30

T-cell, <100

T-cell, >100

Unspecified, <30

Unspecified, 30-100

Unspecified, >100

Missing
Cytogenetics—no. (%)

Normal

Poor

Other

Missing
Extramedullary disease at
diagnosis—no. (%)

No

Yes

CNS envolvement

Time to achieve CR1, weeks—
no. (%)

Median (min—-max)
<4 weeks
4-8 weeks
>8 weeks
Transplant characteristics

Table 1 (continued)

217 263
72 60
98 (24-173) 65 (1-109)
27 (16-40) 24 (17-39)
49 (23) 66 (25)
94 (43) 132 (50)
74 (34) 65 (25)
0.51°
140 (65) 162 (62)
77 (35) 101 (38)
<0.001°
193 (89) 197 (75)
24 (11) 41 (16)
0 25 (10)
0.55%
154 (71) 180 (68)
63 (29) 83 (32)
<0.001°
12 (6) 23 (9)
192 (88) 240 (91)
13 (6) 0
0.09*
43 (20) 65 (25)
169 (78) 197 (75)
5(2) 1(0)
0.05°
119 (55) 157 (60)
50 (23) 40 (15)
36 (17) 48 (18)
7 (3) 17 (6)
1(0) 0
3(1) 0
1(0) 0
0 1 (0)
<0.001*
88 (41) 57 (22)
35 (16) 63 (24)
68 (31) 39 (15)
26 (12) 104 (40)
<0.001*
176 (81) 137 (52)
41 (19) 126 (48)
11 (5) 27 (10)
<0.001*
7.6 (1.3-56) 4.4 (2.3-14.4)
35 (16) 25 (10)
82 (38) 234 (89)
100 (46) 4(2)

Time from CR1 to HCT, months—no. (%)

Median (min—max)

<6 months

3.3 (0.2-18.8)

186 (86)

Characteristic CIBMTR HCT CALGB 10403 P value
6—12 months 30 (14)
>12 months 1(0)

TBI given for conditioning— 199 (92)
no. (%)
Donor type—no. (%)
HLA-identical sibling 75 (35)
Other related 4(2)
Well-matched unrelated 93 (43)
Partially matched unrelated 39 (18)
Mis-matched unrelated 6(3)
Donor age, years—median 34 (19-59)
(min—-max)
Donor/recipient gender—no. (%)
F/M 49 (23)
Others 168 (77)
Donor/recipient CMV match—no. (%)
+/— 71 (33)
—/+ 57 (26)
—/— 34 (16)
+/+ 52 (24)
Missing 3(1)
Graft type—no. (%)
Bone marrow 58 (27)
Peripheral blood 159 (73)
Year of transplant—no. (%)
2002-2005 93 (43)
2006-2008 60 (28)
2009-2012 64 (29)
GVHD prophylaxis—no. (%)
Ex-vivo or CD34 selection 10 (5)
Tac + MTX =+ others 109 (50)
CSA + MTX + others 42 (19)
Others 52 (24)
Missing 4(2)
T-cell depletion (ATG/ 45 (21)

Alemtuzumab)—no. (%)

Bold denotes variables included in regression models. Poor: complex
(23 abnormalities), #(9;22), #(4;11), #(8;14), #(14;18), hypodiploid
(<46); normal: no abnormality; other: any abnormality not in poor.
Others:_ATG + CsA + MTX + MMF + ursodiol (n=1), ATG+
tacrolimus + others (n=7), corticosteroid + CsA + others (n=3),
cortisosteroid + tacroimus =+ others (n =5), CsA + tacrolimus (n = 1),
CsA + MMF (n=3), CsA + MTX + MMF (n = 1), tacrolimus (n =
3), tacrolimus + sirolimus + others (n=15), tacrolimus + MMF =
others (n = 10), MMF + sirolimus (n = 1), MTX (n=2).
“Hypothesis testing: Pearson chi-square test.

®Hypothesis testing: Fisher exact test.

HLA-identical siblings and well-matched (8/8) URDs to
the chemotherapy cohort but findings were similar to the
complete transplant cohort. Multivariate outcomes are
summarized in Table 3. In addition, multivariate analysis
evaluating outcomes by cytogenetic risk (standard vs.
poor) and HCT time period (2002-2006 vs. 2007-2012)
showed similar results to the full study population (Sup-
plementary Tables 1 and 2).
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Table 2 Univariate estimates for allogeneic HCT vs. chemotherapy.

Outcome Myeloablative Pediatric chemotherapy
allogeneic HCT (CALGB 10403)
(CIBMTR)
N Probability, % N Probability, % P
(95% CI) (95% CI)
Overall 217 263 <0.001
survival
100-day 95 (88-99)% 99 (98-100)% 0.090
1-year 72 (65-79)% 91 (87-94)% <0.001
3-year 53 (46-60)% 77 (71-82)% <0.001
S-year 47 (40-54)% 66 (60-72)% <0.001
Relapse 215 256 0.016
100-day 0 (0-2)% 0 (0-2)% 0.909
1-year 11 (7-16)% 10 (7-15)% 0.803
3-year 21 (16-27)% 26 (21-32)% 0.216
S-year 23 (17-29)% 34 (28-40)% 0.011
Non-relapse 215 256 <0.001
mortality
100-day 1 (0-3)% 1 (0-2)% 0.536
1-year 17 (12-22)% 4 (2-1% <0.001
3-year 24 (19-30)% 6 3-9% <0.001
5-year 29 (23-35)% 8 (5-12)% <0.001
Disease-free 215 256 <0.001
survival
100-day 95 (88-99)% 99 (97-100)% 0.133
1-year 66 (59-73)% 85 (80-89)% <0.001
3-year 50 (43-57)% 68 (62-73)% <0.001
S-year 44 (38-51)% 58 (52-65)% 0.004
Discussion

Allogeneic HCT is indicated for Ph-negative ALL in CR1
based on trials using donor vs. no donor comparisons.
UKALLXII/ECOG2993 showed improved survival with
allogeneic HCT for adults aged 15-54 years with Ph-
negative ALL when compared to chemotherapy or auto-
logous HCT (5-year OS 54% vs. 44%, P =0.007) [1].
Gupta et al. found in a meta-analysis of 13 studies that
allogeneic HCT for Ph-negative ALL benefited patients
under age 35 years relative to traditional adult chemother-
apy (Odd ratio of death =0.79; 95% CI, 0.70-0.90, P =
0.0003) [2]. However, pediatric-style regimens with more
intensive post-remission therapy appear to have improved
outcomes for AYA patients with Ph-negative ALL in ret-
rospective comparisons [4-9]. A retrospective analysis of
GRAALL2003/2005 studies showed that, for adults aged
15-55 years with high-risk Ph-negative ALL, allogeneic
HCT demonstrated equivalent survival to pediatric-style
chemotherapy in patients MRD-negative after induction and
a survival benefit for patients MRD-positive after induction

SPRINGER NATURE

[15]. The finding suggested that allogeneic HCT is a safe
and effective option for all high-risk ALL patients regard-
less of MRD status.

To help clarify the role of allogeneic HCT in AY As with
Ph-negative ALL in CR1 treated with pediatric-style che-
motherapy, Seftel et al. compared 108 adults 18-50 years of
age treated with the Dana-Farber Consortium pediatric-style
regimen at 13 centers in the northeastern US and eastern
Canada to a CIBMTR allogeneic HCT cohort [11]. No
difference in relapse was observed but higher NRM, lower
DFS, and lower OS was seen with allogeneic HCT. Nota-
bly, allogeneic HCT was the only multivariate factor pre-
dictive of shorter OS (HR 3.12 (1.99-4.90), P <0.0001).
Limitations of the study included a chemotherapy cohort
with small numbers of patients from a select and geo-
graphically limited group of centers compared to the
CIBMTR cohort. As such, the generalizability of the find-
ings is unclear but support deferring allogeneic HCT for
relapse in AYAs receiving pediatric-style post-remission
therapy.

CALGB 10403 was a national, single-arm, Phase II
study of the feasibility of treating patients aged 16-39 years
with Ph-negative ALL with the standard-risk arm of the
COG AALLO0232 regimen [12, 13]. The study analyzed 295
patients at 60 centers across the United States, among which
263 achieved complete remission after initial treatment.
Comparing this patient cohort to a contemporary CIBMTR
allogeneic HCT cohort, we found improved OS with
pediatric-style post-remission chemotherapy relative to MA
allogeneic HCT with an absolute 5-year survival improve-
ment of 19%. Although overall relapse was higher with
pediatric-style chemotherapy, the high NRM with allo-
geneic HCT had a large negative impact on OS. In multi-
variate analysis, allogeneic HCT was significantly
associated with reduced OS, reduced DFS, and increased
NRM. Differences in relapse between the cohorts seen in
our study versus the Seftel et al. study [11] may be related
to differences in chemotherapy regimens, patient com-
pliance, patient eligibility, and/or statistical power. In con-
trast to the high-risk Ph-negative ALL patients treated on
the GRAALL2003/2005, patients treated with CALGB
10403 consolidation had significantly improved survival
relative to allogeneic HCT patients. The different patient
populations or possibly the different post-remission regi-
mens may explain the superiority of chemotherapy over
allogeneic HCT seen in our study.

In pediatric patients with ALL receiving chemotherapy,
obesity is associated with increased NRM, increased
relapse, and decreased OS [16-22], but a negative effect of
obesity has not been routinely seen in adults [23]. CALGB
10403 found that obese AYA patients with ALL had sig-
nificantly reduced DFS compared with nonobese patients
[13]. We found that obesity was associated with decreased
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Fig. 1 Overall survival,
disease-free survival, relapse,
and non-relapse mortality
from first complete remission
(CR1) of chemotherapy
(chemo) and allogeneic HCT
(HCT) cohorts. Upper

left, adjusted overall survival;
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OS and DFS in this study and the effect was seen in both the
chemotherapy and allogeneic HCT cohorts. The difference
was due to both increased relapse and increased NRM in
obese patients. The curative potential of both chemotherapy
and allogeneic HCT appears to be reduced in obese AYAs
with ALL. Adipocytes appear to protect ALL cells from the
toxic effects of chemotherapy including daunorubicin, by
sequestration and metabolism, and asparaginase, through
the release of glutamine [24-29]. NRM was also higher in
obese patients perhaps owing to lower tolerability of treat-
ment due to comorbidities, high doses of therapy dosed on
body-surface area, or alternative pharmacokinetics or
pharmacodynamics of drugs in the obese population.
Prior large studies focusing of obesity in adults undergoing
allogeneic HCT for hematologic malignancies have
not found a deleterious effect of obesity on OS or relapse
with some studies showing increased NRM [30-34]. It is
possible that the negative effect of obesity on OS and
relapse seen here may be unique to ALL and the
AYA population.

48 60 720 12 24 36 48 60 72

Months from CR1
Chemotherapy —— —— Allogeneic HCT

One limitation of this study is that minimal information
on MRD in both cohorts prevented meaningful comparisons
between MRD-positive and MRD-negative patients in both
cohorts. As such, the role of allogeneic HCT vs. che-
motherapy in MRD-positive patients could not be explored.
In addition, it is possible that the allogenic HCT cohort had
higher risk features not identified here, including higher
rates of MRD positivity, although if true this did not
translate into high relapse rates in the allogeneic HCT
cohort and would not be expected to affect NRM, the pri-
mary reason for the reduced survival seen with allogeneic
HCT relative to pediatric-style chemotherapy. The che-
motherapy regimens received prior to allogeneic HCT in the
transplant cohort were also not available and this may affect
relapse rates and possibly NRM. Again, however, relapse
rates were low with allogeneic HCT and superior to che-
motherapy whereas NRM was substantially higher with
allogeneic HCT, an outcome less likely to be impacted by
prior treatment with ALL-directed chemotherapies relative
to the chemotherapy cohort. Another limitation is the lack
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Table 3 Multivariate analysis.

Outcomes N  HR (95% CI) P value
Opverall survival
Main effect
Chemotherapy 261 Reference
Allogeneic HCT 217 2.00 <0.001
(1.50-2.66)
Body mass index (kg/m?)
<30 332 Reference
>30 146 2.17 <0.001
(1.63-2.89)
Disease-free survival
Main effect
Chemotherapy 261 Reference
Allogeneic HCT 215 1.62 <0.001
(1.25-2.12)
Body mass index (kg/m?)
<30 331 Reference
230 145 1.97 <0.001
(1.51-2.57)
Relapse
Allogeneic HCT vs. chemotherapy < 15 months after CR1 1.78 0.02
(1.10-2.88)
Allogeneic HCT vs. chemotherapy > 15 months after CR1 0.34 <0.001
(0.19-0.62)
Body mass index (kg/m?)
<30 331 Reference
230 145 1.84 <0.001
(1.31-2.59)
Non-relapse mortality
Main effect
Chemotherapy 261 Reference
Allogeneic HCT 215 5.41 <0.001
(3.23-9.06)
Body mass index (kg/m?)
<30 331 Reference
230 145 2.10 <0.001
(1.37-3.23)

of testing for the Ph-like phenotype and IKAROS mutation/
loss in the allogeneic HCT cohort. Although traditional
high-risk cytogenetic features had no impact on outcomes,
we were unable to assess if patients with Ph-like ALL may
benefit from allogeneic HCT in CR1. Notable difference in
the cohorts included extramedullary disease at diagnosis
and longer time to documentation of CRI1 in the allogeneic
HCT cohort. Outside a formal clinical trial, documentation
of extramedullary disease may be incomplete and the timing
of remission assessments may vary based on treatment
regimen used and post-induction marrow assessments,
which in the transplant cohort were not determined by trial
timepoints. Last, changes in treatment modalities, addition
of new therapeutic agents, and improvements in supportive
care may have changed relapse rates and NRM in both
populations since 2012.

For AYAs with Ph-negative ALL in CR1, we conclude
that AYAs receiving post-remission therapy with pediatric-
style chemotherapy for Ph-negative ALL in CR1 should not
routinely undergo allogeneic HCT. Allogeneic HCT is
warranted for patients refractory to or relapsing after
pediatric-style regimens and may be warranted for high-risk

SPRINGER NATURE

MRD-positive patients in CR1, although more study is
needed. Obesity in AYAs with ALL warrants further
investigation as a potentially modifiable factor that nega-
tively impacted survival.
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