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Abstract
Recurrent loss-of-function mutations of BCL6 co-repressor (BCOR) gene are found in about 4% of AML patients with
normal karyotype and are associated with DNMT3a mutations and poor prognosis. Therefore, new anti-leukemia treatments
and mouse models are needed for this combinatorial AML genotype. For this purpose, we first generated a Bcor−/− knockout
mouse model characterized by impaired erythroid development (macrocytosis and anemia) and enhanced thrombopoiesis,
which are both features of myelodysplasia/myeloproliferative neoplasms. We then created and characterized double
Bcor−/−/Dnmt3a−/− knockout mice. Interestingly, these animals developed a fully penetrant acute erythroid leukemia (AEL)
characterized by leukocytosis secondary to the expansion of blasts expressing c-Kit+ and the erythroid marker Ter119,
macrocytic anemia and progressive reduction of the thrombocytosis associated with loss of Bcor alone. Transcriptomic
analysis of double knockout bone marrow progenitors revealed that aberrant erythroid skewing was induced by epigenetic
changes affecting specific transcriptional factors (GATA1-2) and cell-cycle regulators (Mdm2, Tp53). These findings
prompted us to investigate the efficacy of demethylating agents in AEL, with significant impact on progressive leukemic
burden and mice overall survival. Information gained from our model expands the knowledge on the biology of AEL and
may help designing new rational treatments for patients suffering from this high-risk leukemia.

Introduction

The BCL6 co-repressor (BCOR) gene is located on chro-
mosome Xp11.4 and encodes a transcription regulatory
factor that was initially identified as an interactor partner of
the germinal center-associated BCL6 protein [1, 2]. The
BCOR protein is located in the nucleus [3] where exerts its
function as a member of the non-canonical multimeric
polycomb group repressive complex 1 (PRC1) which is
recruited to the target sites independently of H3K27me3 [4].
This complex is involved in the control of various biolo-
gical processes, including pluripotency, reprogramming,
and hematopoiesis [4, 5]. Relatively high frequency of
BCOR mutations has been reported in aplastic anemia
suggesting that these genetic events may confer a selective
advantage in the context of aplastic anemia autoimmune
environment, although they do not appear to be associated
with an increased risk of secondary AML/MDS [6].
Moreover, various aberrations of the BCOR gene, such as
internal tandem duplications of the PCGF Ub-like fold
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discriminator domain, gene fusions, and loss-of-function
mutations play a role in promoting hematological and extra-
hematological malignancies [7, 8].

In 2011, we discovered recurrent loss-of-function
mutations of BCOR in AML (about 4% of cases with
normal karyotype) and found that they were usually
mutually exclusive of FLT3-ITD and NPM1 mutations,
co-occurred with DNA methyl transferase (DNMT3A)
mutations and were associated with a poor outcome [9].
Our findings have been subsequently confirmed by other
investigators both in AML and MDS [10–14]. Interest-
ingly, one study on Japanese patients reported a pre-
ferential co-occurrence of BCOR mutations with K-RAS,
N-RAS, and RUNX1 mutations [11]. BCOR 1 ligand
(BCORL1) gene has been also found to be mutated in
3.7–6% of AML patients [11, 15].

Bcor somatic heterozygous mutations in AML are
similar to the germline mutations that in females cause rare
genetic syndrome characterized by cranio-facial, ocular and
cardiac abnormalities [16]. The disruptive nature of these
mutations that usually results in a premature stop codon and
non-sense mediated decay or protein truncation are con-
sistent with a tumor-suppressive role of the Bcor gene in
myeloid malignancies. Accordingly, mice lacking Bcor
exons 9 and 10, which encode for a carboxyl-terminal
truncated Bcor unable to interact with the PCR1 core
effector components, are characterized by expansion of
myeloid progenitors [17], enhanced cell proliferation, and
myeloid differentiation associated with upregulation of
HoxA cluster [18].

However, Bcor deficiency is not itself sufficient to pro-
mote leukemia [17, 18], strongly suggesting that other
mutations are required to induce myeloid malignancies. The
type of myeloid neoplasm developing in Bcor-deficient
mouse may vary depending on the co-occurring genetic
lesions. For example, compound mice carrying concurrent
full deletion of Tet2 develop lethal MDS [19] whilst Bcor
loss cooperates with KrasG12D to drive AML [17].

We previously found that about 40% of AML patients
with BCOR mutations also carry mutations of DNMT3a
[9] catalyzing the addition of methyl groups to CpG
dinucleotides. Because BCOR and DNMT3A are both
epigenetic modifiers [4, 20, 21], mutations of these genes
could promote AML through a synergistic mechanism [9].
Murine hematopoietic cells lacking Dnmt3a have thou-
sands of focal, “canonically” located, hypomethylated
regions that are amenable to be “repaired” with partial
correction of dysregulated gene expression and myeloid
skewing [22]. Dnmt3a loss with its hypomethylated phe-
notype is known to promote expansion and immortaliza-
tion of hematopoietic stem cells, block in hematopoietic
differentiation [23] and development of myeloid
and lymphoid malignancies after a long period of latency

[23–25]. Mx1-Cre-mediated Dnmt3a ablation led to the
development of a lethal, fully penetrant myelodysplasia/
myeloproliferative (MDS/MPN) neoplasm characterized
by peripheral cytopenias and marked extramedullary
hematopoiesis with liver involvement [26]. Thus, Dnmt3a
deficiency establish an epigenetic state somehow predis-
posing to the emergence of cooperating mutations leading
to overt leukemia in mice [25]. Indeed, co-expression of
mutated Dnmt3a with other disease alleles (including
Tet2, Flt3, Npm1) promote overt leukemic transformation
in mice [2, 27]. However, information on the cooperation
between Dnmt3a and Bcor is still missing.

Therefore, we generated a conditional mouse model of
Bcor inactivation to explore its function in normal and
leukemic hematopoiesis either alone or in combination with
Dnmt3a loss. Bcor-deficient mice demonstrated impaired
erythroid development and enhanced thrombopoiesis.
Notably, the Bcor−/−Dnmt3a−/− double knockout mice
developed a fully penetrant acute erythroid leukemia (AEL)
sensitive to demethylating agents. Information gained from
this model expand our knowledge on the biology of AEL
and may help to design new rational treatments for patients
suffering from this high-risk leukemia.

Methods

Mouse strains

Mice were bred and housed by the “Service center of Pre-
clinical Research” of Perugia’s animal house facility, and
mouse manipulations were performed according to the
protocol reviewed and approved by the Italian Health
Ministry (generation on Supplementary Methods).

Peripheral blood counts

Mice were anesthetized with isoflurane followed by retro-
orbital bleeding. Peripheral blood (PB) was taken into glass
capillary tubes. Complete blood count was performed using
an XE-2100 hematology automated analyzer (Dasit).

Flow Cytometry and Cell Sorting

Bone marrow, spleen, and PB cells were stained with
antibodies from eBioscience (see list on Supplementary
Methods). Cell acquisition and analysis were performed on
BD FACS CANTO and BD FORTESSA. Sorting experi-
ments (LSK and MEP subpopulations) were performed
using the FACS AriaIII cell sorter. Gates were drawn to
exclude nonviable cells and debris. Part of the flow cyto-
metry data was analyzed with FlowJo software (Tree Star,
Ashland, OR).
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Histology and cytospins

BM, spleen, liver, kidney, lung, and spinal cord were har-
vested from moribund mice. Spinal cord was decalcified,
then spleen, liver, kidney, lung, and spinal cord were par-
affin embedded, and sections were stained with hematoxylin
and eosin and cytospins were stained with Giemsa. Cytos-
pins of BM and spleen were performed both before and
after red blood cell (RBC) lysis.

Gene expression profiling and accession numbers

Total RNA was extracted from LSK and MEP BM cells
using an RNA extraction kit (RNeasy plusMicro kit, Qia-
gen) and samples analyzed for Gene Expression Profiling.
Starting from the results of the differential analysis, the
comparisons of all three mutated genotypes with the wild
type were taken into consideration and the genes were fil-
tered considering only those with a p value < 0.05 and an
absolute fold change value >1.5.

The three resulting lists were compared to evaluate both
common and exclusive genes for each genotype. To show
these similarities and differences we have resorted to Venn
diagrams (GSE158018).

In vivo treatments

Mice were treated through intra-peritoneal injections with a
maximum tolerated dose of the demethylating agent 5-aza-
2’-deoxycytidine DEC (2.5 mg/kg, every 3 days 5 doses)
and Cytarabine ARA-C (50 mg/kg for 6 days).

Immunoblotting analysis

Gata1 protein was detected by western blot analysis on
lysates from 1 to 2 × 106 cells with an anti-rat primary
antibody against GATA-1 (N6) clone sc-265 (Santa Cruz
biotechnology). After washing, blots were incubated with
HPR-conjugated secondary antibody anti-IgG (Sigma).
Mouse a-tubulin antibody was used as control and obtained
from Sigma.

Results

Loss of Bcor induces red blood cells changes and
expansion of the megakaryocyte compartment

We generated a conditional knockout mouse model in
which Bcor deletion mimics truncating Bcor mutations
observed in AML. Our Bcor conditional knockout mouse
model was developed deleting exons from 8 to 10, resulting
in frameshift and premature stop codon in exon 11.

Originated mRNA preserves the polyA tail but is extremely
unstable due to the presence of five splicing junctions
between the STOP codon and the polyA tail (Supplemen-
tary Fig. 1A, B). To test the impact of Bcor deletion in adult
hematopoiesis, mutant mice were crossed with Mx1-Cre
mice carrying an interferon-inducible Cre recombinase
transgene under an hematopoietic stem cell promoter. PCR
genotyping of the offspring allowed the identification of
both the wild type and mutant alleles from tails DNA
(Supplementary Fig. 1Ci) and the recombination of loxP-
containing target alleles in Bcor-flox/flox-Cre+ BM after
pIpC induction of the Cre (Supplementary Fig. 1Cii). To
confirm that the induced Mx1-Cre+ Bcor mutant mice did
not express Bcor mRNA, RNA from BM Lin-Sca+c-Kit+
(LSK) was reverse transcribed and amplified by PCR. Bcor
mRNA was not detectable by this method in Bcor-flox/flox-
Cre+ (Bcor−/−) homozygous and Bcor-flox/Y-Cre+ (bcor−/−)
hemyzigous mice (Supplementary Fig. 2Ai). Western blot
analysis of BM lin- cells from Bcor-flox/flox-Cre+ (Bcor−/−)
homozygous and hemyzigous demonstrated loss of Bcor pro-
tein (Supplementary Fig. 2Aii).

To determine the effect of Bcor loss in mice hemato-
poietic system, we performed serial complete blood counts
that showed leukopenia (mainly due to B-cell lymphopenia
(Supplementary Fig. 3Ai–v), red blood cells’ (RBC)
reduction (Fig. 1Ai) with increased mean corpuscle volume
(MCV) (Fig. 1Aii), and platelet counts’ progressive increase
(Fig. 1Aiii; Supplementary Fig. 3B, C). Resulting throm-
bocytosis derived from the accumulation of both
megakaryocytic-erythroid (MEP, Lin−/Sca1−/Kit+CD34−

FCyRII/IIIlo/−) and megakaryocytic progenitors (MkPs,
Lin–c-Kit+Sca-1–CD150+CD41+) (Fig. 1Bi–iii;) relied
on a decrease of apoptosis (Fig. 1Biv) within BM cavity. To
assess the impact of Bcor loss on survival, we monitored
our mice cohort for an extended period (18 months).
Although Kaplan-Meier analyses showed low survival of
Bcor null mice (Fig. 1Ci), post-mortem pathological
examinations did not reveal any leukemia infiltration in
hematopoietic organs (BM, liver, spleen) (Fig. 1Cii). Taken
together, these data confirmed that Bcor loss negatively
influences mice survival by specifically subverting normal
hematopoietic compartments and PB output. The absence of
a frank acute leukemia phenotype clearly suggested the
need of additional cooperative leukemogenic events.

Bcor and Dnmt3a loss induces a highly penetrant
acute erythroid leukemia (AEL)

We crossed Bcor (Bcor−/−) and Dnmt3a (Dnmt3−/−) con-
ditional knockout mice with Mx1-Cre transgenic mutant to
generate Bcor−/−Dnmt3a−/−double knockout mice, single
ko Bcor−/−and Dnmt3−/− mice expressing Mx1-Cre and
mice with untargeted genes as wild type controls.

Bcor deficiency perturbs erythro-megakaryopoiesis and cooperates with Dnmt3a loss in acute. . . 1951



Bcor−/−Dnmt3a−/− mice developed a fully penetrant
and lethal leukemic phenotype with a median survival of
135 days (range from 59 to 234 days), significantly
shorter than the other groups (Fig. 2A). Interestingly, we
found a Bcor deletion both in the single knockout and in
the leukemic double Bcor−/−Dnmt3a−/− knockout mice
(Supplementary Fig. 4A), while regarding to Dnmt3a, the
deletion by Mx1Cre was partial in Dnmt3a−/− knockout,

while its complete loss occurred only in double mutant
leukemic mice. Interestingly, in preleukemic mice we
detected a strong but not the complete loss of Dnmt3a
expression. This suggests that the Bcor absence may
influence the loss of the Dnmt3a gene (Supplementary
Fig. 4B, C).

The leukemia diagnosis was primarily based on the
presence of leukocytosis and marked macrocytic anemia
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(Fig. 2Bi, ii). Moreover, the compound mutants showed a
consistent drop in platelets number (about 50%) comparing
to the preleukemic phase. Conversely, in the other geno-
types, platelet numbers remained stable during the entire
follow-up period (Fig. 2Biii).

Consistently with the diagnosis of acute leukemia, BM,
PB, and spleen cytospins showed an expansion of nucle-
ated cells with blastic appearance (Fig. 2Ci, top panel,
Supplementary Fig. 5ai, ii). The latter was also supported
by the presence of paraspinal masses (Supplementary
Fig. 5Bi, ii). Disease aggressiveness was confirmed by
multiple organ infiltration (including lung, liver, and
spleen) and the monotonous blastic populations that par-
tially subverted the local tissue architecture (Fig. 2Ci, ii,
middle panel/bottom panel and Supplementary Fig. 5Ci,
ii). Flow cytometric analysis demonstrated that leukemic
cells co-expressed Ter119 and c-Kit (Fig. 3A), clearly
indicating they belonged to the erythroid cell lineage and
supporting the diagnosis of acute erythroid leukemia
(AEL).

This AEL phenotype was transplantable up to 9 sec-
ondary recipients, which developed a lethal AEL with a
median survival of 59 days (range 18–78 days) (Fig. 3B).
These secondary recipients displayed similar phenotypic
characteristics of the primary tumor. Furthermore, the
self-renewal capability of the Bcor−/−/Dnmt3a−/− BM
cells was evaluated in replating experiments using colony-
forming unit assay (CFU) demonstrating that double

knockout cells can regenerate for long time period as
compared to other groups (Supplementary Fig. 6).

Bcor and Dnmt3a loss induces a displacement
towards the erythroid profile starting from early
leukemia stages

To better understand the cellular effects of Bcor and
Dnmt3a loss in vivo, we analysed PB and BM samples of
unmutated, single and double knockout mice at both early
and overt leukemia stages.

At leukemia onset, it was observed an expansion of white
blood cells (WBC) in Bcor−/−Dnmt3a−/− due to increased
numbers of Gr1+Mac1+ granulocytes, Gr1+Mac- mono-
cytes and CD3+ lymphocytes together with a progressive
expansion of a population of immature cells co-expressing c-
Kit and the erythroid marker Ter119 (Fig. 3C). Double
knockout mice exhibited a constant increase of WBC count
and a drop in the hemoglobin levels (not shown) associated
with an increased MCV (Fig. 4A). However, while Bcor−/−

mice showed a progressive increase of platelets counts, the
Bcor−/−Dnmt3a−/− mutant only showed an initial expansion
followed by a significant decline associated with leukemic
phase (Fig. 4B).

Cellular alterations of BM and spleen were analysed
2–3 months after activation of conditional mutations in all
genotypes to investigate early leukemic stages. For compar-
ison, we included in the analysis Bcor−/−Dnmt3a−/− mice
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Fig. 3 Bcor−/−Dnmt3a−/− shows a progressive expansion of
immature erytrhoid cells populations. A TER119+ cKIT+ number
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unpaired t-test with Welch’s correction.

1954 P. Sportoletti et al.



developing leukemia 4–6 months after pIpC induction of the
Cre-recombinase. Lin−/Sca1+/Kit+ (LSK) stem cell com-
partment examination revealed a significant accumulation of
long term hematopoietic stem cells (LT-HSC Lin−/Sca1+/Kit
+CD34lo/−FLT3−) in leukemic Bcor−/−Dnmt3a−/− BM
compared to other groups, a feature not found at early leu-
kemic stages (Fig. 5Ai, ii Supplementary Fig. 7).

Short term hematopoietic stem cells (ST-HSC Lin−/Sca1
+/Kit+CD34+FLT3−) were markedly lower only in Bcor−/−

genotype. Multipotent progenitors (MPP Lin−/Sca1+/Kit
+CD34+FLT3+) were lower in double mutant mice both at
early and overt leukemic stages. However, statistical sig-
nificance was only reached when MPPs numbers were com-
pared to wild type animals (Fig. 5Aiii, iv). The analysis of
changes occurring during lineage commitment and maturation
revealed a striking 5-fold increase of megakaryocyte-erythroid
progenitors (MEP Lin−/Sca1−/Kit+CD34−FCgRII/IIIlo/−) in
preleukemic and leukemic Bcor−/−Dnmt3a−/− mice (Fig. 5Bi,
iv). Accordingly, only leukemic mice displayed a marked
expansion of other more committed erythroid-restricted pro-
genitors including the bipotent pre-megakaryocyte ery-
throcyte (Pre-MegE Lin−/FCgRII/III− CD150+CD105−) and
Pre-CFUe (Lin−/FCgRII/III− CD150+CD105+) (Fig. 5Bv).

Given the erythroid skewing of HSC differentiation of
Bcor−/−Dnmt3a−/− mice, we used CD71 and Ter119 staining
to further characterize later downstream stages of RBCs
development within the BM. Our data demonstrated an
accumulation of proerythroblasts both at preleukemic and
leukemic stages, while the increase of early basophilic, late
basophilic, chromatophilic, and orthochromatophilic erythro-
blasts was detected only in double knockout leukemic mice
(Supplementary Fig. 8A).

Altogether, these data suggest that the development of
overt leukemia is predated by changes in the composition of
hematopoietic stem/progenitor cells compartment, more
detectable among myeloid and erythroid progenitors (Fig. 5C).

No significant differences emerged in total number of dif-
ferent myeloid committed progenitors including granulocyte-
macrophage (GMP Lin−/Sca1−/Kit+CD34+FCgRII/III+),
common-myeloid (CMP Lin−/Sca1−/Kit+CD34+FCgRII/III−)
(Fig. 5Bii, iii) and pre-granulocyte-monocyte progenitors (Pre-
GM Lin−/FCgRII/III− CD150−CD105−), as well as more
mature BM granulocytes and monocytes, among all littermate
groups (data not shown).

Bcor and Dnmt3a loss determines altered GATA
factor switching and changes of p53 family
members in LSK and MEP compartments

Next, we performed RNA-seq experiments to get insight on
the molecular changes of Bcor and Dnmt3a cooperation in
AEL development. We performed a meta-analysis of the
differentially regulated genes from the following pairwise
comparisons: leukemic Bcor−/−Dnmt3a−/− vs wild type,
Bcor−/− vs wild type, Dnmt3a−/− vs wild type. Moreover,
we searched for significant two-way and three-way overlaps
among the differentially expressed gene lists. Analysis was
done on both LSK and MEP populations, given the sig-
nificant expansion of these cells in the BM of
leukemic mice.

Bcor−/−Dnmt3a−/− LSK and MEP showed a large
number of differentially expressed genes (560 and 269,
respectively). Within LSK population, 106/560 were upre-
gulated and 454/560 were downregulated (Fig. 6Ai,
Table S1) while, within MEP compartment 133/269 were
upregulated and 136/269 downregulated (Fig. 6Ai, Sup-
plementary Fig. 9A, Table S2). There were 35 genes for
LSK and 17 for MEP transcripts commonly altered between
Bcor−/−Dnmt3a−/− and Bcor−/−, on the other hand, there
were no transcripts commonly altered in all pairwise com-
parisons with Dnmt3a−/− (Fig. 6Ai and Supplementary
Fig. 9A).
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Interestingly, GATA1 scored as one of the most upre-
gulated genes in LSK compartment in line with an aberrant
erythroid skewing originating in the hematopoietic com-
partment of leukemic mice. In these cells, GATA2 levels
were highly downregulated (Fig. 6Aii) proving further

evidence of an altered switching of GATA factors as a
driving event in Bcor−/−Dnmt3a−/− mice with AEL
(Table S1). The dysregulation on GATA family members
was not detected in MEP compartment of leukemic mice,
confirming that this defect was directly linked to the
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leukemic stem cell population (Table S2, Supplementary
Fig. 9B).

Additional pathway analysis of LSK and MEP cells from
Bcor−/−Dnmt3a−/− mice showed the enrichment of deregu-
lated genes involved in cellular apoptosis, such as BID and
BAK pro-apoptotic genes and the anti-apoptotic Bcl2 family
genes. The PARP1 pro-survival gene was strongly upregu-
lated in LSK only (Fig. 6Aii and Supplementary Fig. 9B, C).
In addition, we found a notable decline of p53 levels, that has
been driven by the marked elevation of MDM2, that is its
master antagonist in the cell cycle machinery [28] (Fig. 6Aii,
b and Supplementary Fig. 9B, C).

In order to search for shared molecular alterations, RNA-
seq data on mouse LSK cells were used as a backbone for
comparison with human AEL samples [29]. By interpolat-
ing these data with the list of deregulated genes in our
leukemic mice, we found 104 genes, commonly upregu-
lated, and 136 genes, commonly downregulated, between
mouse LSK cells and human AEL (Supplementary
Fig. 10A, B, Supplementary Fig. 11, Table 1). Within genes
upregulated in both human and mouse cells, there was a
striking enrichment of genes regulated by GATA1
(Fig. 6C), suggesting a pivotal role of this transcription
factor in driving AEL. These findings provided evidence
that our AEL mouse may serve as an operational platform
for human Bcor−/−Dnmt3a−/− leukemia modeling.

Decitabine exerts inhibitory effects on the Bcor/
Dnmt3a null leukemic mice

In order to assess the impact of anti-leukemic therapies on
Bcor−/−Dnmt3a−/−AEL mice, we tested the therapeutic
efficacy of the standard chemotherapeutic agent cytarabine

compared to the demethylating agent decitabine in lethally
irradiated CD45.1 recipient mice transplanted with leu-
kemic cells. The rationale for using decitabine was based on
the fact that the Bcor transcriptional repression activity is
mediated by histone demethylase and the function of
Dnmt3a is to catalyse the addition of methyl groups to CpG
dinucleotides. Thus, in our double knockout mice, we
expected a hypomethylation status with leukemogenic
potentials.

Mouse treatments started at leukemia onset, defined by
the presence of WBC count above 20,000 cells/μl and/or
high MCV values and/or low platelets number. Cytarabine
was administered for 7 days continuously, while decitabine
for a total of 5 administrations twice a week, followed by
the assessment of disease burden (Fig. 7Ai). WBC count
was significantly reduced at the end of decitabine treatment
compared to vehicle, while chemotherapy determined only
a modest impact on leukocytosis (Fig. 7Aii). Two weeks
after the end of treatments, WBC count was significantly
lower in decitabine group, compared to cytarabine and
vehicle ones. PB flow cytometry showed a significant
reduction of immature c-KIT and Ter119+ c-KIT+ cells
after decitabine compared to other treatments (Fig. 7Bi, ii),
as also confirmed by post-mortem examination on patho-
logical splenic specimens (Fig. 7Biii), thus indicating that
Bcor−/−Dnmt3a−/− leukemic cells were more sensitive to
hypomethylating agent than to chemotherapy. Moreover,
there was a tendency for decitabine treated mice toward the
achievement of a longer survival, compared to cytarabine
and vehicle groups (Fig. 7C).

Discussion

Somatic recurrent loss-of-function mutations of Bcor have
been detected in AML [7] but their precise role in normal
and malignant hematopoiesis is still under investigation.
Here, we demonstrate for the first time that Bcor deficiency
perturbs erythro-megakaryopoiesis and cooperates with
Dnmt3a loss (a phenotype partially recapitulating that of
heterozygous Dnmt3aR662H mutations [30]) in promoting
AEL in mice.

Perturbation of the erythroid compartment in our Bcor-
deficient mice was characterized by a decrease in the total
number of red blood cells and macrocytosis, confirming
previous observations from Tara et al. [19] who demon-
strated mild macrocytic anemia in mice after the deletion of
Bcor exons 9 and 10. Besides the negative effects on ery-
throid cells, we also found a strong increase in platelets
counts due to a significant expansion of the MKP
population in BM.

Contribution of Bcor loss in promoting megakaryocytic
proliferation in mice is a novel finding that is also of

Fig. 5 Compound Bcor and Dnmt3a loss induce a strong dis-
placement toward the erythroid profile in mice. A Representative
flow-cytometric analysis (i) of stem cell compartment, long term
hematopoietic stem cells (LT-HSC Lin−/Sca1+/Kit+CD34lo/−FLT3-),
short term hematopoietic stem cells (ST-HSC Lin−/Sca1+/Kit+CD34+

FLT3-) and multipotent progenitors (MPP Lin−/Sca1+/Kit+CD34+

FLT3+) in BM of Bcor−/−Dnmt3a−/−, Bcor−/−, Dnmt3a−/−and WT
mice. Total number (Right panel) of LT-HSC (ii), ST-HSC (iii) and
MPP (iv) in BM of Bcor−/−Dnmt3a−/−, Bcor−/−, Dnmt3a−/−and WT
mice. B Representative flow-cytometric analysis (i) of progenitors cell
compartment, granulocyte-macrophage progenitors (GMP Lin−/Sca1−/
Kit+CD34+FCgRII/III+), common-myeloid (CMP Lin−/Sca1−/Kit+

CD34+FCgRII/III−) and megakaryocyte-erythroid progenitors
(MEP Lin−/Sca1−/Kit+CD34−FCgRII/IIIlo/−) in BM of Bcor−/−

Dnmt3a−/−, Bcor−/−, Dnmt3a−/−and WT mice. Total number of GMP
(ii), CMP (iii) and MEP (iv) in BM of Bcor−/−Dnmt3a−/−, Bcor−/−,
Dnmt3a−/− and WT mice. (n= 16, 12, 10, 9) (v) Total number of
(Pre-MegE Lin−/FCgRII/III− CD150+CD105−) and Pre-CFUe (Lin−/
FCgRII/III- CD150+CD105+) in BM of Bcor−/−Dnmt3a−/−, Bcor−/−,
Dnmt3a−/− and WT mice. (n= 16, 12, 10, 9) C Summary of BM
hemopoietic development in mice; red arrows indicate the deregulated
populations. *p < 0.05, **p < 0.01; ***p < 0.001 unpaired t-test with
Welch’s correction. .
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potential clinical relevance. A missense Bcor mutation has
been reported in a patient with triple-negative essential
thrombocytemia and normal karyotype, suggesting a

possible role of this variant in the pathogenesis of the dis-
ease [31]. Moreover, Bcor mutations may occur in myelo-
dysplastic/myeloproliferative neoplasms (MDS/MPNs) that
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Fig. 6 Deregulated genes in Bcor−/−Dnmt3a−/− leukemia. A (i)
Overlap of differently gene expression (RNAseq) in the LSK cells of
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(n= 3 mice for each genotype). (ii) mRNA expression in the LSK cells
of the indicated genotypes for the most up- and downregulated genes.
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indicated transcription factor.
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share dysplastic and proliferative features [32]. MDS/MPN
disorders include chronic myelomonocytic leukemia
(CMML) and MDS/MPN with ring sideroblasts and
thrombocytosis (MDS/MPN-RS-T) in which Bcor is
recurrently mutated in 7.4% [33] and 24% of cases [34],
respectively. Although the most frequent mutation in MDS/
MPN-RS-T is that affecting the SF3B1 gene [35, 36], the
presence of variants in epigenetic genes, such as Bcor, may
contribute to the development of this myeloid neoplasm.
Co-occurrence of erythroid blood cell alterations and
thrombocytosis in our conditional knockout Bcor mice
support this hypothesis.

Similar to previous models [17, 19], Bcor deficiency
alone was not sufficient to drive a myeloid malignancy in
our mice. However, we could demonstrate that the com-
bined Bcor and Dnmt3a loss promoted a fully penetrant
AEL phenotype that killed mice in 5–6 months. Leukemic
mice showed leukocytosis due to the expansion of c-Kit+
blasts expressing the erythroid marker Ter119, macrocytic
anemia, and progressive reduction of the thrombocytosis
driven by the single Bcor deletion. The analysis of BM
subpopulations showed an erythroid skewing of HSC

Table 1 List of the commonly altered genes, up (right) and down (left)
regulated between BCOR−/−DNMT3a−/− LSK mouse cells and
Human AEL.

Human- Mouse

UP DOWN

ABCB9 MOSPD1 ABHD14A MFGE8

ACAP2 MXI1 ACCS MICU1

ACBD3 MYO5B ALDOC MOB3A

ACHE NCKAP1 ANKRD46 MOCS2

ACSL1 NDUFS1 ANXA4 MORN4

ACSL6 NOM1 APOM MRE11A

AFF2 OAT APOO NIT2

ARF6 OSTM1 ARMCX4 NRM

ARFGEF1 PDE12 ATG10 NT5C3B

ARG1 PDZD8 AUTS2 NUDT14

ASAP1 PFKFB3 BDH2 OSBPL1A

ASNS PHF10 BEX2 OXA1L

BAIAP3 PLEKHF2 BIVM P2RY14

BAZ1A POLG CAPNS1 PAPSS1

BCL6 POMC CCDC28A PEMT

BLOC1S4 PPM1D CENPM PEX11G

BRAF RAB22A CENPT PGK1

CAB39 RANBP2 CPXM1 PHF19

CCNY REPS2 CTC1 PHF20

CEP76 RFXAP CTR9 PIGL

CHD7 RGCC DHRS4 POC5

CHFR RHOB DHX30 POR

CLPTM1L RIN1 DNMT3A PPFIBP1

CRAT RSBN1 ECHDC2 PPP2R1A

DCUN1D5 SCYL2 ECSCR PRMT1

DDHD1 SLC16A1 ELK3 PSPH

DLEU2 SLC25A21 EMCN PSRC1

DNAJC25 SMC4 ENO1 RANBP17

DRP2 SPATA18 EPHB4 RBMX

EME2 SSX2IP ERI3 REC8

EXOC5 STK11 FABP5 RPAP2

FAM20B STT3B FAM64A SASH3

FBXW2 TACC1 FAM69B SELP

GARS TADA2B FBXL2 SGCB

GLRX5 TARS FBXO16 SIRT3

GPC4 TMEM167B FBXO6 SIRT5

HCFC2 TMEM56 FTO SLC2A9

HDLBP TMEM9B FXYD5 SOD1

HIPK3 TOP1 GALNT11 SORBS3

HIST1H4I TRIP12 GAS8 SORD

HIST4H4 UBA5 GCAT SPAG16

IBA57 UBE2Q1 GEMIN8 SSBP2

KLF1 UBE2S GOT2 STAP1

MAN2A1 UBXN2A GSTK1 SV2A

Table 1 (continued)

Human- Mouse

UP DOWN

MAP2K4 UFSP1 GTF2IRD1 TBC1D16

MAPKAPK5 UGGT1 HNRNPA1 TBXAS1

MCPH1 UROS HSCB TCEAL1

METAP2 USP15 HYAL3 TERT

MFSD2B USP33 IFITM3 TEX9

MINPP1 WAPAL IFT122 TLDC1

MMP14 WDR7 IL12RB2 TMEM231

MON2 ZDHHC5 INCA1 TMEM41A

IRAK1BP1 TMEM98

ITGA2 TOX

JAM2 TPM2

JKAMP TRMT61B

JPX TSPAN3

KHDRBS3 TSTD2

KLHL3 TTC7B

LETMD1 TXLNA

LGALS3BP TYW3

LRRC36 UBE2I

LRRC49 UBE3B

LUC7L UNG

LYRM9 YY2

MAGED2 ZCCHC10

MBOAT4 ZIK1

METTL10 ZSCAN2
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differentiation demonstrating that AEL was driven by loss
of Bcor and Dnmt3a.

The 2016 WHO classification of hematopoietic tumors has
adopted rather restrictive criteria for the diagnosis of pure
erythroid leukemia (or AEL), moving cases with an increased
percentage of myeloid blasts (previously named ery-
throleukemia) in the group of MDS [37–39]. Thus AEL,
described for the first time by Di Guglielmo in 1928 under the
term of “acute erythremic myelosis” [40], is now included as
an entity within the category of AML not otherwise specified

(NOS) of WHO-2016 [37]. However, targeted next-generation
sequencing has clearly demonstrated the molecular hetero-
geneity of this apparently homogeneous morphological form
of AML [41, 42] that shows a mutational spectrum inter-
mediate between MDS and AML [29]. Notably, two cases of
AEL were characterized by the co-occurrence of Bcor and
Dnmt3a mutations only [29], thus supporting the findings
described in our mice model.

In order to define the gene expression signature of AEL
in our mice, we performed RNAseq analysis on the LSK
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population of the four different genotypes. We identified an
altered switching of the Gata factors that are known to play
a key role in controlling mechanisms underlying erythroid
differentiation [43]. Specifically, Gata1 was one of the most
upregulated genes in leukemic mice compared to the other
genotypes whereas Gata2 was downregulated. The latter
finding is unexpected since in physiological conditions [44],
the transcription factor Gata2 is highly expressed in
hematopoietic stem cells, whereas its expression declines
after erythroid commitment of progenitors [43]. In contrast,
the start of Gata1 expression coincides with the erythroid
commitment and increases along with the erythroid differ-
entiation. Collectively, these data provide evidence for an
imbalance towards an erythroid phenotype starting from the
LSK stage and point to Gata factors deregulation as an early
event altering the HSC fate and sensitizing cells to further
malignant transformation in the context of concurrent Bcor
and Dnmt3a deficiency, as it has been also very recently
demonstrated in both human and mouse AEL samples [45].

Our AEL mouse model also exhibited dysregulation of
various oncogenes and tumor suppressor genes involved in
cancer pathways, including decline of Tp53 levels and
marked elevation of Mdm2. Accordingly, an in vivo mouse
model demonstrated a key driver leukemogenic function of
Tp53 supported by the potent interaction with Ntrk1 [29].
Moreover, the presence of more than a single TP53
abnormality seems to play a key role in the molecular
pathogenesis of AEL in patients [46].

AEL is usually poorly responsive to intensive che-
motherapy and shows a dismal outcome [47] that may be
due, at least in part, to the accumulative impaired TP53
function and consequent genomic instability. Similarly, our
AEL mice were resistant to the nucleoside analog cytar-
abine but showed significantly improved survival when
treated with the epigenetic drug decitabine. The benefit of
this drug suggests an important role of epigenetics in pro-
moting AEL in our Bcor−/−Dnmt3a−/− compound mice.
Accordingly, the presence of TP53 mutations appears to be
associated with a high degree of decitabine sensitivity in
AML patients in one study [48], although it has not been
confirmed in another study [46].

In conclusion, we provide the first demonstration that
concurrent Bcor and Dnmt3a loss promotes AEL in mice
and sheds light, at least in part, on the cellular and
molecular features underlying this leukemia. Our model
also represents a potential platform for the identification
and validation of drugs for improving therapy of AEL
patients.
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