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Genome-wide investigation identifies a rare copy-number
variant burden associated with human spina bifida
Paul Wolujewicz1, Vanessa Aguiar-Pulido1, Alice AbdelAleem2, Vidya Nair2, Gaurav Thareja3, Karsten Suhre3, Gary M. Shaw4,
Richard H. Finnell5, Olivier Elemento1,6,7,8 and M. Elizabeth Ross 1✉

PURPOSE: Next-generation sequencing has implicated some risk variants for human spina bifida (SB), but the genome-wide
contribution of structural variation to this complex genetic disorder remains largely unknown. We examined copy-number variant
(CNV) participation in the genetic architecture underlying SB risk.
METHODS: A high-confidence ensemble approach to genome sequences (GS) was benchmarked and employed for systematic
detection of common and rare CNVs in two separate ancestry-matched SB case–control cohorts.
RESULTS: SB cases were enriched with exon disruptive rare CNVs, 44% of which were under 10 kb, in both ancestral populations
(P= 6.75 × 10−7; P= 7.59 × 10−4). Genes containing these disruptive CNVs fall into molecular pathways, supporting a role for these
genes in SB. Our results expand the catalog of variants and genes with potential contribution to genetic and gene–environment
interactions that interfere with neurulation, useful for further functional characterization.
CONCLUSION: This study underscores the need for genome-wide investigation and extends our previous threshold model of
exonic, single-nucleotide variation toward human SB risk to include structural variation. Since GS data afford detection of CNVs with
greater resolution than microarray methods, our results have important implications toward a more comprehensive understanding
of the genetic risk and mechanisms underlying neural tube defect pathogenesis.
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INTRODUCTION
Neural tube defects (NTDs) are anomalies of the central nervous
system (CNS) present at birth that manifest with varying subtypes
and severity and are among the most common structural birth
defects. In more severe NTD subtypes the rostral neural tube
fails to close, exposing brain (anencephaly) or brain and
cervical–thoracic spine (craniorachischisis), resulting in intrauter-
ine or neonatal death. In contrast, spina bifida aperta (SB,
myelomeningocele) is a neural tube closure defect most often
confined to the caudal spine below the level of T10. With
advances in surgical repair and management, the majority of spina
bifida patients will live into adulthood, but will experience lifelong
physical challenges including paralysis, associated hydrocephalus
requiring cerebrospinal fluid (CSF) shunting, autonomic dysfunc-
tion, orthopedic issues, and more. With heritability estimates as
high as 70%,1 NTDs are thought to arise through an interplay of
multiple gene–gene interactions determining genetic predisposi-
tion and environmental factors that tip the balance toward failed
neurulation.2

The successes of folic acid supplementation for prevention has
led to an emphasis in genetic and epidemiological NTD research
on the disease association with candidate genes involved in folate
metabolic pathways. Moreover, it has prompted numerous studies
in animals of genes involved in one-carbon metabolism and their
link with structural birth defects. In addition, genetically engi-
neered animal models of NTD have revealed the importance to
neurulation of signaling pathways such as Wnt/planar cell polarity

(PCP),3 sonic hedgehog (Shh),4 and protein kinase A (PKA).5 Mouse
models of NTDs have established more than 250 genes whose
variants predispose to NTD in the mouse, often showing
incomplete penetrance that would suggest additional factors in
the genetic background or fetal environment are required for NTD
to be manifested.6 These insights have spurred a number of
candidate gene searches among affected patients and sometimes
parents in an attempt to identify genetic variants that confer risk
for developing an NTD. Nevertheless, there remains a translational
challenge to reconcile mouse and human NTD data in order to
pinpoint genes, pathways, and eventually discern patterns of
genetic variation that pose NTD risk in humans.
Despite years of clinical studies and investigations in animal

models, the patterns of human genetic variation that predispose
to NTD remain elusive, limiting our efforts to clearly define the
genetic architecture underlying the etiology of NTDs. This may in
part be attributed to the relatively small effect sizes of individual
genes and the narrow focus of investigations on variation within
protein-coding regions of the genome. Genome sequencing (GS)
data coupled with recent advances in algorithmic detection of
genomic variation offer opportunities to interrogate under-
explored forms of potential NTD risk such as structural variants
(SVs), whose effects on NTD risk are not well understood. SVs have
been shown to alter the structure and dosage of many genes and
rare SVs may exert stronger effects on gene expression compared
with rare single-nucleotide polymorphisms (SNPs). Rare SVs may
also ablate exons and create gene fusions, affecting downstream
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functionality independent from gene expression. Efforts thus far to
interrogate SVs and copy-number variants (CNVs) in NTD cases
have largely relied on array-based platforms or exome sequencing
(ES). Using those tools, deletions in several genes involving cilia
and proteoglycans have been implicated in NTD risk.7 Therefore,
we hypothesize that novel NTD risk genes and mechanistic insight
will be gained from a comprehensive genome-wide evaluation of
CNVs from GS data.
We report our first in a series of SV analyses of GS data from two

separate ancestry-matched human SB case–control cohorts,
focusing on the landscape of high-confidence, likely gene
disrupting CNVs. For complex diseases including NTDs, it is
important to account for population genetic differences to avoid
confounding effects of ancestral variation; thus, we sought to
maintain a representative balance of population admixtures in
each of our cohorts. In this work, we benchmarked an ensemble of
computational tools for CNV detection that was then employed to
characterize both common and rare CNVs in well-defined human
SB cohorts with the objective of further defining genomic risk
contribution in these CNS anomalies.

MATERIALS AND METHODS
Study cohorts and genome sequencing
SB subjects who displayed nonsyndromic myelomeningocele were
selected as cases for this study. Of the 140 SB cases, 67 were collected
in the United States and 73 from Qatar. The US cohort included an
additional 46 unrelated controls with another 30 control subjects obtained
from the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium.8

These additional 30 germline samples were analyzed and confirmed to
maintain similar admixtures as the US cases. The Qatar cohort included an
additional 107 unrelated individuals from the same geographic region and
who, again, displayed a population admixture similar to cases. In all, the US
cohort comprised 143 individuals and the Qatar cohort included 180
individuals. Altogether, 323 anonymized subjects were included in our
study encompassing the two populations. The presence of Y-chromosome
markers in individuals was used to determine sex ratios in our case–control
cohorts. The male:female ratio within in our case group is 0.69 and is 0.68
within our control group, indicating no sex bias in our study.
Genomic DNA was extracted from de-identified infant blood spot cards

obtained from the California Genetic Diseases Screening Program as well
as from venipuncture samples collected from subjects participating in the
national Spina Bifida Clinic at Hamad Medical Corporation in Qatar. DNA
extraction was done using the Puregene DNA Extraction Kit (Qiagen,
Valencia, CA) and all DNA samples were submitted for GS using an Illumina
HiSeq2500 platform to yield short insert paired end 2×100 bp reads.
Ancestry-aware study cohorts were obtained by extracting relevant loci via
PLINK (v.1.9)9 to calculate specific admixture components, and each cohort
constituted a representative admixture balance for both cases and
controls.

Alignment, SNV calling, and preprocessing
FASTQ reads were aligned to reference genome hg38 using BWA.10 After
reads were sorted and duplicates were removed, SNV and indel calling was
performed with GATK4 and joint genotyping was carried out on the whole
cohort according to GATK Best Practices recommendations.11 Only variants
with a “PASS” in the filter column were retained. SAMtools12 was used on
individual bam files to run quality control measures and to assess read
depth uniformity. Read depth statistics were also employed in SAMtools or
GATK. The median insert size for samples included in the analysis was 413
bp.

CNV and MEI detection
To maximize high-quality CNV detection from short-read GS data, we
deployed numerous callers known to perform well individually and
integrated their results into a consensus framework that we optimized and
packaged as an ensemble approach (Supplementary Figure 1). Manta
(v.1.4),13 Delly (v.0.7.7),14 Lumpy (v.0.2.13),15 CNVnator (v.0.3.3),16 and ERDS
(v.1.1)17 were each employed on individual sample bam files. ERDS also
used SNV calls as input for each individual to refine CNV breakpoints. The
CNVs detected using the read depth tools (CNVnator and ERDS) were only

kept if there was an agreement between calls from each tool, which we
defined as those CNVs that are of the same type and that have breakpoints
located within close proximity of each other (<2 kb for CNVs<100 kb; <5 kb
for CNVs >100 kb). Only calls ≥ 1 kb were retained given the limited ability
of these read depth methods to capture smaller CNVs. We added to this
set of CNVs the consensus calls made from the tools that also utilize split-
read and read pair signatures (Manta, Lumpy and Delly). A consensus call
required two of these three tools to agree on the CNV type and that
individual breakpoints were located within 1 kb of each other. Only calls
≥300 bp and ≤100 kb were retained, since CNVs outside of this range are
prone to yield false positives. MELT (v. 2.0.5)18 was used for detection of
mobile element insertions, namely Alu, SVA, and L1 elements.
To ensure against software performance dependencies across study

cohorts, our ensemble CNV detection approach was implemented as a
Docker image and run on individual subjects, generating a single
consensus VCF for each sample. Sample VCFs were merged across all
samples via SURVIVOR19 resulting in a nonredundant set of high-quality
candidate CNVs.

SV annotation and filtering repetitive and low-complexity regions
Each CNV with any predicted overlap with any coding sequencing of the
canonical transcript of 20,246 protein-coding genes was annotated as
coding. Deletions were considered loss-of-function if they overlapped any
coding sequence and duplications were considered loss-of-function if they
affected an exon without extending outside the transcript boundaries.
Duplications were considered to be copy gain if they spanned the entirety
of a transcript. AnnotSV (v.2.0)20 was used for annotation of VCF using
reference genome hg38. We filtered those CNVs from our call sets that had
>70% reciprocal overlap with repetitive and low-complexity regions, which
may confound genomic variant detection. As a comprehensive set of
repetitive and low-complexity regions, we combined four data sets: (1) the
set of assembly gaps defined by University of California–Santa Cruz (UCSC),
including centromeres, telomeres, constitutive heterochromatin domains,
gaps between or within clones and contigs, and the repeat-dominated
short arms of chromosomes 13, 14, 15, 21, and 22; (2) the UCSC list of
segmental duplications; (3) the pseudoautosomal regions of the sex
chromosomes; and (4) repeat regions as defined by RepeatMasker.21

Benchmarking and CNV simulation analyses
To select the optimal combination of software and parameters included in
our ensemble CNV approach, we conducted a number of benchmarking
analyses deploying numerous detection algorithms on both real and
simulated genomes. We utilized the well-characterized HG002 genome for
benchmarking deletion calls obtained from the Genome in a Bottle (GIAB)
consortium,22 which provides tier 1 benchmark regions of high-quality
deletions that we utilized as our ground truth data set. For our simulation
data, we used RSVsim to simulate deletions and duplications of a range of
sizes at various genomic coordinates. Wgsim in the SAMtools package was
used to create comparable GS reads similar to our study cohorts for further
benchmarking and analysis. For sensitivity and precision evaluations, we
used Truvari for HG002 deletion benchmarking and in-house scripts for
accuracy metrics on simulated data.

Population genomic databases and BAM confirmation
We utilized the following population reference databases to extract
population allele frequencies for our detected CNVs: 1000 Genomes
Project,23 Database of Genomic Variants,24 gnomAD-SV.25 If the coordi-
nates for a given population reference were relative to reference assembly
GRCh37/h19, then they were converted using the UCSC Batch Coordinate
Conversion (LiftOver) tool.
To manually assess and validate rare coding CNVs, Integrative Genomics

Viewer26 and Samplot27 were used to visually compare the read depth of
the CNV with that of the surrounding regions. This manual curation
entailed examining deviations in read depth corresponding to the
predicted change in copy number; that is, a 50% reduction for a
heterozygous deletion or a 50% increase for a heterozygous duplication.
Predicted CNVs were required to have unambiguous start and end
breakpoints, which was refined using split-read and/or read pair
information.
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Pathway and statistical analyses
Ingenuity Pathway Analysis (IPA), Webgestalt,28 and GeneAnalytics29 were
used to investigate the genes affected by rare coding CNVs and both cases
and controls. We utilized the IPA software to identify the top canonical
pathways associated with our data set, which consisted of the genes
impacted by rare coding CNVs in our SB cases. We also conducted a
pathway overrepresentation analysis with the KEGG functional pathway
database, considering only protein-coding genes perturbed by rare CNVs
since our aim was to assess the impact of coding CNVs. For the burden
analyses, we applied two-sided Wilcoxon rank-sum tests to analyze the
distributions of common and rare CNVs as well as mobile element
insertions (MEIs) in our SB cohorts. Significance of differences between
cases and controls in mean values for the number of rare coding CNVs per
genome was assessed in each population cohort using two-tailed Student
t-tests.

Real-time quantitative PCR
Select rare coding CNVs identified in our cohorts were validated using real-
time quantitative polymerase chain reaction (PCR) in samples for which
DNA remained available after GS. DNA from four separate individuals that
harbored a rare coding CNV was amplified using primers designed to
hybridize in the region containing the putative CNV. Fold changes of
expression were calculated and compared with the average value of three
control samples, which contained two copies of the gene-specific region in
which primers were designed. All reactions were performed in technical
triplicates and ß-actin was used as an internal control. Fold changes of
expression were calculated using the 2−ΔΔCT method and the gene-specific
primers used for four CNVs are listed in Supplementary Table 2.

RESULTS
Cohort characteristics and CNV workflow
Two separate ancestry-matched cohorts (US and Qatar) were
subjected to GS and were analyzed in this study comprising a total
of 323 subjects. The US cohort included 67 cases and 76 controls
and the Qatar cohort included 73 cases and 107 controls. Cases in
each cohort had a clinical diagnosis of nonsyndromic SB and
controls were balanced with similar ancestry admixture compo-
nents as the cases in each study cohort. Principal component
analysis (PCA) of the population admixtures for each cohort show

that the cases and controls are comprised of similar ancestral
backgrounds (Fig. 1a).
We devised an optimized methodology for CNV detection

featuring a consensus strategy that utilizes five CNV/SV callers as
well as input from SNV detection for call refinement. This
ensemble approach leveraged multiple genomic signatures into
a joint consensus integrative framework (Supplementary Figure 1).
The approach employed a combination of read depth callers that
performed among the best with regard to accuracy metrics in
benchmarking studies and our own analyses.30 Our approach also
incorporated split-read and discordant read pair evidence from
several tools to yield high-quality deletions and duplications
>300 bp. As part of initial analyses, our method was benchmarked
against the well-characterized HG002 genome from the GIAB
consortium22 yielding an F1-measure= 82.53 in calling deletions.
Since this benchmarking data set does not include tandem
duplications or copy-number gains, results were further refined
and tested on simulated genomes with 30× coverage harboring a
number of duplications of various sizes. These initial benchmark-
ing efforts led to our goal of utilizing an ensemble approach for
CNV detection that performs at an optimized balance of sensitivity
and precision compared with other combinations of callers and
tested parameters (Supplementary Figure 2).

Detection of common and rare coding CNVs
Our ensemble CNV approach detected a mean of 2,389 deletions
and 692 duplications per genome with only slightly more CNVs in
the Qatar cohort, consistent with similar observations in popula-
tion substructures including African ancestry (Fig. 2a). Although
CNV sizes spanned from several hundred base pairs to several
megabases (Mb) in size, no statistically significant difference in the
CNV size distribution was seen between cases and controls (P=
0.548) (Fig. 2d). In addition to our CNV analyses, we deployed a
computational pipeline in a subset of our NTD cases and controls
to analyze and compare the distributions of MEIs. Aside from
encompassing over 50% of human genomes, genomic variation
caused by Alu, SVA, and LINE-1 (L1) elements are associated with
risks for multiple human diseases.31 We investigated these
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detection in reliable genomic regions using genome sequencing data. PE paired end, RD read depth, SR split-read.
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abundant forms of genomic variation to ascertain whether they
contribute to NTD cases disproportionately more than in controls.
Finding no significant difference in the distribution of the number
of MEIs between our SB cases and controls (P= 0.491), our data
did not support a role of mobile elements in SB (Supplementary
Figure 3).
We sought to identify CNVs with greatest potential to disrupt

gene function and thus contribute to NTD pathophysiology.
Therefore, our analyses focused on coding CNVs, which we
defined as those variants that overlap a coding exonic region by
at least one nucleotide. We analyzed common and rare CNVs
separately under the assumption that while common CNVs may
modify genetic risk, rare CNVs are under more selective pressure
and are thus inherently more deleterious. Among common
coding CNVs (>1% minor allele frequency [MAF] in population
genomic databases), we observed no significant difference
between cases and controls in our two cohorts (Fig. 3a, c). In
contrast, among the rare coding CNVs, which we defined as those
<0.1% MAF, we observed a statistically significant enrichment in
cases compared with controls in both the US cohort and the
Qatar cohort (P= 7.59 × 10−4 and P= 6.75 × 10−7, respectively)
(Fig. 3b, d). As with the common coding CNVs, variant size was
not a significant factor between cases and controls for the rare
coding CNVs (P= 0.917), including when we stratified by each
cohort (Qatar: P= 0.914; US: P= 0.652). Moreover, the distribu-
tions for the coding CNVs that were within the 0.1–1% MAF range
did not reach significance in either cohort (Qatar: P= 0.182; US:
P= 0.234). More CNVs in the Qatar SB case–control cohort were
classified as rare compared with the US SB case–control cohort,
presumably due to less Middle Eastern representation in existing
population databases. This, however, does not alter the
significance of the burden analysis as each case–control
comparison was ancestry-matched.

Rare coding CNVs and potential functional significance
Chromosomal locations of rare CNVs seen in SB cases as well as
size breakdowns of rare coding CNVs in our cohort are shown in
Fig. 4. Slightly more than half of the rare coding CNVs detected
were gene disrupting deletions compared with duplications
(52.75% vs. 47.75%), which was true for both cohorts (Supple-
mentary Figure 4). The mean number of genes per genome that
were disrupted by rare coding CNVs was significantly higher in SB
cases relative to controls in both cohorts (P < 0.01) (Fig. 4c). The
genes affected by rare CNVs in our human SB cases were
subjected to pathway analysis using IPA software and, in both
cohorts, defined several canonical signaling pathways associated
with NTDs, including retinoic acid, protein kinase A (PKA), PCP,
and, in the US cohort, WNT/ßcatenin pathways (Fig. 5a). However,
these pathways did not reach statistical significance after
correction for multiple hypothesis testing. Taking another
approach, overrepresentation of genes perturbed by rare coding
CNVs in KEGG pathways did suggest potential disruption for cAMP
signaling (P= 1.18 × 10−3), though at a relaxed false discovery
rate (FDR) of 0.176 (Supplementary Figure 5).
Within metabolic pathways, we found rare coding CNVs in

genes serving several cellular and mitochondrial processes,
including choline transport and catabolism, which are closely
associated with NTD formation (Fig. 5b). Choline’s oxidation to
betaine within the mitochondria provides a link to folate-
dependent, one-carbon metabolism, suggesting that the observed
gene disrupting variants are likely to contribute to SB risk. For
example, SLC44A2 and SLC44A3 belong to the SLC44 family of
transporters that exhibit choline transmembrane transporter
activity. BHMT2, which has been associated with NTDs,32 functions
as a methyl transferase to catalyze the transfer of a methyl group
from betaine to homocysteine. Homocysteine is an intermediate
of methionine metabolism and has also been linked with NTD risk
in a number of studies.33 DMGDH is directly involved in the
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catabolism of choline to form sarcosine and is an essential enzyme
in the glycine cleavage system, an important mitochondrial
process known to harbor genetic risk variants for SB.34 The visual
representations of the CNVs we highlight in the metabolic
pathway in Fig. 5b are also included as Supplementary Figure 6
to aid in clearer inspection of the reads near the breakpoints of
the CNVs. These visualizations display consistent genomic read
signatures for each of these CNVs, and was part of the manual

curation and validation process. Additional potentially SB-relevant
rare CNVs that were detected only in cases are listed in
Supplementary Table 1. This includes partial duplications we
identified in SB cases impacting PARD3, an established NTD risk
gene35 that directs polarized cell growth and affects asymmetric
division, as well as VAV2, which has several roles in actin dynamics
and cytoskeletal remodeling. These cell polarity and cytoskeletal
processes are increasingly associated with NTD risk and have led
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to the discovery of additional novel candidate genes.36 For the
samples harboring relevant CNVs in which DNA remained
available, qPCR was performed to experimentally validate our in
silico findings and we include examples as Supplementary Figure 7
(primer designs provided in Supplementary Table 2). Finally,
Supplementary Table 3 shows the positions of qualifying rare exon
disruptive CNVs that fell within IPA-defined signaling pathways in
both Qatar and US cohorts and overlap those CNV regions
previously identified37 as having an impact on human neurode-
velopment. Five of the CNVs so identified in our study overlapped
CNVs associated with autism spectrum disorder (ASD), attention
deficit–hyperactivity disorder (ADHD), obsessive compulsive dis-
order (OCD), or schizophrenia and were considered by those
investigators37 to be clinically relevant according to American
College of Medical Genetics and Genomics (ACMG) guidelines.

DISCUSSION
Here we report a systematic interrogation of the CNV landscape in
human SB and find an increased burden of rare CNVs directly
affecting coding nucleotides. Integrative CNV pipelines from GS
data provide better resolution for variant detection over other
conventional methods including array comparative genomic
hybridization (aCGH) and ES. In particular, 44% of the rare coding
CNVs in our cohorts were less than 10 kb in size, and many would
have gone undetected using array-based or ES assays. The
ensemble approach used here for CNV discovery in SB cases
detected rare CNVs disrupting genes not previously associated
with SB, but that participate in pathways of biological significance
for neurulation. Moreover, the observation of rare CNVs in some
known NTD risk genes and pathways, including one-carbon
metabolism, reinforces the validity of this strategy.
Digenic variants have been observed in a number of mouse

models of NTDs38 as well as in human studies, suggesting
synergistic deleterious effects of variants in genes involved in

folate metabolism39 or in PCP component genes.40 While larger
cohorts will be needed to reach statistical power necessary to
pinpoint specific gene combinations indicative of individual risk,
an oligogenic or polygenic model of SB risk is gaining traction and
should be considered when evaluating genomic contribution.
Indeed, we previously reported evidence using predicted deleter-
ious exonic SNPs genome-wide to propose an omnigenic model
of NTD risk. This threshold model of NTD risk was based on
accumulation of singleton loss-of-function variants (SLoFVs),
regardless of the genes harboring these variants.41 In the current
study, demonstration of the enrichment of rare gene disrupting
CNVs in cases supports extending this threshold burden model of
SB risk to include these SVs. That the burden of rare coding CNVs
is present in both SB cohorts interrogated in this study supports
the notion that our results are not due to effects of population
stratification that could confound the interpretation of rare CNVs.
The overlap of the rare gene disrupting CNVs identified here

contributes to a resource that may one day enhance clinical utility
as it may soon be possible to examine the GS of an infant with SB
for prognostic indicators. For example, SB individuals with rare
CNVs disrupting genes previously associated with neurodevelop-
mental disorders may alert to the need for early and vigorous
intervention to optimize cognitive development and communica-
tion skills in addition to physical therapy. There is much more to
be explored, as our high-confidence detection approach to
identify rare CNVs using short-read GS data almost certainly
underestimates the contribution of structural genome variation to
SB risk. In the future, multiplatform approaches and integration of
long-read sequencing technology promise to enable detection of
more SVs per genome. Clearly, SVs, including CNVs, are an
understudied form of genomic variation in SB that warrants
further investigation.
Our analyses of the CNV landscape in our SB cohorts underscore

that candidate gene approaches limited to exons do not capture
the full scope of genomic variation contributing to risk. Functional
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experiments will ultimately be critical for vetting genomic variants
as they relate to NTD predisposition. Nevertheless, interrogating
CNVs genome-wide expands the repertoire in SB research of
variants and genes with potential to contribute to genetic and
gene–environment interactions that interfere with neurulation.
Evidence is accumulating to support the view that threshold
burden models of SB pathogenesis and GS analyses will achieve a
more thorough characterization of the genetic architecture
of NTDs.
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