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Abstract
Retrotransposons are genetic elements present across all eukaryotic genomes. While their role in evolution is considered as 
a potentially beneficial natural source of genetic variation, their activity is classically considered detrimental due to their 
potentially harmful effects on genome stability. However, studies are increasingly shedding light on the regulatory func-
tion and beneficial role of somatic retroelement reactivation in non-pathological contexts. Here, we review recent findings 
unveiling the regulatory potential of retrotransposons, including their role in noncoding RNA transcription, as modulators of 
mammalian transcriptional and epigenome landscapes. We also discuss technical challenges in deciphering the multifaceted 
activity of retrotransposable elements, highlighting an unforeseen central role of this neglected portion of the genome both 
in early development and in adult life.
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Introduction

Retrotransposons, which account for more than 40% of the 
human and mouse genomes, propagate themselves through 
transcription and reverse-transcription machinery based on 
a "copy-and-paste" mechanism [1, 2]. This class of transpos-
able elements (TE) is divided into different orders [3]. LTR 
(Long Terminal Repeats) retrotransposons comprise about 
8% and 10% of the human and mouse genomes, respectively 
[4, 5]. LTRs are autonomous elements only active in mice 
and other species [6], not humans [7]. A typical full-length 
LTR has LTRs at both ends and a central region carrying 
three retroviral open reading frames (ORFs): gag, pol, and 
truncated/mutated Δenv. Mouse and human LTRs can be 
further classified into several super families that include 
endogenous retroviruses (ERV) [3].

Among non-LTR retrotransposons, which are more 
abundant (17–20%) than LTRs in both human and mouse 
genomes [8], long interspersed nuclear elements (LINEs) are 
the major order. These autonomous transposable elements 
contain two ORFs: ORF1, and ORF2. ORF1 and ORF2 
are both required for retrotransposition. ORF1 encodes 
a ~ 40-kDa protein with nucleic acid-binding and chaperone 
activity. ORF2 encodes a ~ 150-kDa protein with endonu-
clease and reverse-transcriptase activity [9–11]. A complete 
retrotransposition event initiates with the transcription of a 
full-length LINE-1 RNA. The L1 transcript is then exported 
to the cytoplasm and translated into ORF1p and ORF2p. 
The binding of the two proteins to the L1 RNA produces a 
ribonucleoprotein (RNP) complex, which is imported back 
into the nucleus. Here, ORF2p uses a free 3′–OH produced 
through its endonuclease activity on the genomic DNA 
strand as a primer to reverse transcribe L1 RNA. Then, L1 
RNA is removed from the intermediate DNA:RNA hybrid, 
and a second DNA strand is synthesized by ORF2 to gener-
ate a novel L1 insertion. This molecular process is known 
as target-primed reverse transcription (TPRT) [12]. ORF0, 
characterized in humans and chimps, comprises 5′ outbound 
transcripts encoding potentially intriguing peptides involved 
in L1 mobility, although their function is unknown [13].

Of note, although the human and mouse genomes contain 
a high number of L1 copies, accumulating evidence indicates 
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that only around 100 copies and 3000 copies, respectively, 
are capable of retrotransposition [14–16]. Short interspersed 
nuclear elements (SINEs) are another order of retrotrans-
posons. As SINE elements utilize L1-encoded machinery 
to complete their propagation, they are usually called non‐
autonomous retrotransposons. In humans, active SINEs 
include Alu and SINE‐R‐VNTR‐Alu (SVA) retrotransposons 
[17–19], active SINEs in mice contain the 7SL‐derived B1 
elements and the tRNA‐derived B2 elements [20]. While 
LTRs and LINEs are transcribed by RNA polymerase II [4, 
21], transcription of SINEs depend on polymerase III [22].

Retrotransposons may be a source of mutations leading 
to genomic instability and devastating consequences for the 
host [23]. Therefore, host genomes have evolved several 
mechanisms to restrict retrotransposition. Interferon-stimu-
lated factors restrain the retrotransposon pre-integration step 
through post-translational repression [24]. Hosts also rely on 
several transcriptional repression strategies: locus-specific 
deposition of repressive chromatin marks [25], like DNA 
methylation [26, 27] and histone H3K9 trimethylation [28, 
29], small RNAs [30, 31], motif-specific protein repressors 
like KRAB-ZFP/KAP1 module [32–34], which have been 
extensively discussed elsewhere [35]. Of note, the Human 
Silencing Hub (HUSH) complex is required for epigenetic 
repression of young LINE-1 elements [36–38]. However, in 
certain conditions, retrotransposons escape from the multi-
ple layers of host surveillance. This escape may result in new 
insertion events disrupting normal gene function with dra-
matic consequences and cytotoxic accumulation of TE inter-
mediates. Deregulated TE activity has been linked to cancer 
[39], neurological disorders [40], male sterility [41] or fetal 
oocyte attrition (FOA) [42]. However, TE-induced patholo-
gies are not only caused by retrotransposition, but may be 
triggered by chimeric transcripts [43], ERV-derived enhanc-
ers [44] and ERV-encoded proteins accumulation [45], or a 
TE-derived cDNA-induced interferon response [46, 47]. The 
latter plays an important role in defense mechanisms but also 
in chronic inflammation associated with neurodegenerative 
pathologies, which were reviewed extensively elsewhere [48, 
49].

Retrotransposons as cis‑regulatory elements

Several decades ago, Britten and Davidson proposed the 
"gene battery" theory in which repetitive sequences can be 
used as a pool to deposit regulatory sequences in specific 
genomic positions to bring multiple genes under the same 
regulatory network [50, 51]. By now, the non-random distri-
bution of repetitive elements has been demonstrated exten-
sively and we know that TEs can barcode genes with distinct 
functions, dictating the time and level of their expression 
during development by providing regulatory sequences and/

or sequestering their associated genes into distinct nuclear 
domains [52]. It is now becoming clear that retrotransposon 
integration sites can spread specific functions in a selec-
tive evolutionary manner [53, 54]. Indeed, several lines of 
evidence demonstrate that retroelements can modulate the 
expression of proximal or distal target genes by acting as a 
cis-regulatory element [44, 55], as cryptic splice sites, or as 
polyadenylation sites [56–60].

Among LTRs co-opted by host genomes, e.g., MT-C [61] 
and the primate-specific MLT2B3 LTR [62], most act as 
promoters. For example, during mouse early development, 
many transcripts produced at the 2-cell stage are initiated 
from MERVL derived LTR, suggesting that this co-opted 
sequence has played a leading role in cell-fate regulation in 
placental mammals [63, 64] (Fig. 1a). In human neuronal 
progenitor cells, epigenetic de-repression of evolutionarily 
younger L1 provides alternative promoters for many neu-
ronal protein-coding genes [26].

Enhancers act as central lineage-specific players in 
orchestrating complex gene expression program underlying 
developmental and tissue-specific transcriptional programs 
[65, 66]. One example is represented by the eutherian spe-
cific MER20 elements that integrate information to regulate 
pregnancy-related gene expression in endometrial stromal 
cells in placental mammals [67]. Interestingly, retroelements 
have been shown to contribute to enhancer-mediated crani-
ofacial morphological variation in primate evolution [68] 
(Fig. 1b).

Identification and functional characterization of 
enhancers elucidate several common features, includ-
ing unique epigenomic signature, ncRNA transcription, 
and TF binding sites [69–72]. Comprehensive common 
TF binding motif analysis and epigenomic modifica-
tion profile dissection have shown that retrotransposons 
exhibit similar enhancer signatures [73–78]. For example, 
RLTR13D6/RLTR9 and RLTR13D5/RLTR13B family ele-
ments acquire enhancer features in embryonic stem cells 
(ESCs) and trophoblast stem cells (TSCs), respectively. 
However, only a minor dysfunctional effect on transcrip-
tion was observed when these elements were perturbed 
by CRISPR-mediated transcriptional inhibition [79]. 
This result exposes a weakness of bioinformatics-based 
genome-wide correlation analysis and prediction as they 
do not prove functional aspects of TE-derived enhancers 
[80]. Therefore, several studies have rigorously tested 
putative enhancers through gain- or loss-of-function 
CRISPR-based approaches to determine their enhancer 
potential. Fuentes et al., systematically perturbed the ~ 700 
copies of HERVK element LTR5HS present in the human 
genome by combining CARGO (Chimeric Array of gRNA 
Oligos) with CRISPR technology and showed that acti-
vation/silencing of LTR5HS consistently modulated the 
expression profile of hundreds of human genes [81]. Pontis 
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et al., downregulated evolutionarily recent SVA, HERVK, 
and HERVH TE subgroups (TEENhancers) in naive hESC 
and demonstrated that these elements markedly influence 
transcription during human embryonic genome activation 

(EGA) by acting as stage-specific enhancers [82]. A role 
for ERVs as cis-regulatory elements was also found in 
the innate immunity response by demonstrating their con-
tribution in shaping the evolution of the IFN-response 
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Fig. 1   Retrotransposons as cis-regulatory elements. a Example of 
transposable elements functioning as alternative promoters in 2C-like 
ES cells. Embryonic stem (ES) cells, the pluripotent cells derived 
from the inner cell mass of the blastocyst, are able to differentiate into 
all embryo tissues. However, a subpopulation of ES cells can be dis-
tinguished for its ability to differentiate into both embryo and extra-
embryonic tissues (totipotency). These cells recapitulate the same 
transcriptional state of totipotent 2 cells, where MERV elements are 

transcriptionally active and work as alternative promoters for two-cell 
stage specific genes. b Example of transposable elements functioning 
as enhancers. ERV and L1 enriched enhancers in cranial neural crest 
cells (CNCC) affect the expression of genes involved in craniofacial 
development. Divergent enhancers between human and chimp con-
tribute to species-specific facial phenotypes. The differential activity 
of these species-biased enhancers also affects intra-human facial vari-
ation
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transcriptional network in human [83]. On the other hand, 
TE-derived enhancers act in complex regulatory contexts. 
Their activity intersects additively, synergistically, hierar-
chically, or competitively with other enhancers embedded 
in the same regulatory landscape [84].

In addition to immobilized retroelements that modulate 
transcriptomic homeostasis, our team’s recent work has 
also demonstrated that developmentally regulated de novo 
insertions in somatic cells contribute to shaping the tissue-
specific transcriptional landscape. When mouse fibroblasts 
were reprogrammed into dopaminergic neurons (iDA), 
reactivation and retrotransposition of L1 elements occurred. 
De novo insertions mostly landed near neuronal genes and 
affected proximal chromatin accessibility, thus creating new 
transcriptional units, especially of lncRNA [85].

Novel non‑coding RNA derived 
from retrotransposons

The first evidence for developmental functions of LINE-
1 RNA came from a seminal study from Torres-Padilla’s 
group on early mouse embryogenesis, where they demon-
strated how early-stage transcription of L1 is important for 
blastocyst formation as it is the key driving force modulat-
ing global chromatin structure in cis [86, 87]. Nano-CAGE 
RNA-seq analysis showed TE stage-specific reactivation, 
with LINE-1 highly expressed in pre-implantation embryos 
and downregulated as the differentiation proceeded [87]. 
Perturbing the tightly regulated level of nuclear LINE-1 
RNA resulted in global chromatin accessibility impairment 
and reduction of blastocyst formation [86]. Reverse tran-
scriptase activity inhibition did not affect blastocyst forma-
tion, and cytoplasmic injection of exogenous L1 RNA did 
not revert the effect of nuclear L1 RNA silencing [86]. These 
observations strongly suggest a central role for endogenous 
chromatin associated L1 transcripts at early development 
stages in controlling chromatin opening, most probably in 
cis, independent of retrotransposition (Fig. 2a). Of note, the 
positive effects of L1 RNA were independent of DNA dam-
age. Percharde et al., dissected the mechanism underlying 
the role of L1 RNA in ESC. They demonstrated that LINE1 
RNA acts in cis as a nuclear scaffold to facilitate rDNA 
expression and repression of DUX, the master activator 
of the 2-cell embryo program, thus maintaining ESC self-
renewal [88] (Fig. 2a).

In situ analysis of several mammalian cell lines revealed 
a class of repeat-containing RNAs, mostly L1-enriched, 
broadly and stably associated with euchromatin. These 
"chromosomal RNAs" are highly stable, accumulate in the 
nucleus, and remain localized strictly with the interphase 
chromosome territory in cis, where they may help main-
tain open chromatin structures [89]. In addition to these 

extensively studied transcripts derived from L1, other TE-
derived RNAs have been proven to have regulatory functions 
[90]. LINE-2 is a source of functional miRNA in the human 
brain [91], and Alu element-containing RNAs (aluRNA) 
were found to be involved in maintaining nucleolar struc-
ture and rRNA synthesis [92]. HERVH-derived transcripts 
provide functional binding sites for a combination of naive 
pluripotency transcription factors such as LBP9 and OCT4. 
Their interaction activates hESC-specific alternative and 
chimeric transcripts, including long non-coding RNAs that 
modulate pluripotency and maintain human embryonic stem 
cell identity [93].

RNAs from SINE B2 repeats in mouse and SINE Alu 
repeats in human, control gene expression by binding RNA 
polymerase II and suppressing transcription [94–96]. RNAs 
from these elements have been known for years to be upreg-
ulated during the response to various types of cellular stress. 
Both SINE Alu and B2 RNAs bind and inhibit RNA Pol 
II [97]. B2 RNAs and Alu RNAs are self-cleaving; upon 
stress, these RNAs become destabilized and release stalled 
Pol II to activate stress response genes [98, 99]. Interest-
ingly the cleavage reaction is facilitated by binding to the 
Polycomb component Ezh2, in this case, an activator [98, 
99]. Thus, SINE RNAs appear to play a key role in stress 
response by suppressing or activating transcription based 
on their processing status (Fig. 2b). In addition to tran-
scriptional regulation, SINE B2 regulates gene expression 
post-transcriptionally, by either blocking mRNA nuclear 
export [100] or by enhancing mRNA translation through 
the “SINEUP” mechanism [101, 102]. Recent studies report 
that TEs’ RNA half-life is strongly affected by m6A RNA 
modification, showing that m6A protects cells from aberrant 
TE transcript accumulation [103, 104].

Orchestrating 3D genome architecture 
as boundaries or compartmentalization 
factors

Growing evidence supports a pivotal role for retrotranspo-
sons in maintaining higher-order chromatin structure and 
3D genome organization in mammals [105].The spatial 
distribution of SINE and LINE retroelements has unveiled 
a differential re-location of those elements into active A 
compartments at the nucleus interior and inactive B com-
partments at the periphery of the nucleus (Lamina-associ-
ated domains, LADs) and nucleolus (Nucleolus-associated 
domains, NADs), respectively. This spatial segregation is 
highly conserved across all eukaryotes and is required to 
maintain euchromatin/heterochromatin compartmentali-
zation [52, 106–108] (Fig. 3a). Lu et al. recently showed 
that L1 RNA preferentially binds to L1-enriched genomic 
loci in ESC by ChIRP-seq [52]. Antisense oligonucleotides 
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(ASO) against L1 RNA triggered a dramatic re-location of 
L1 enriched chromosomal regions from the nucleolus and 
inactive LADs to the nuclear interior and, in turn, their de-
repression [52]. Intriguingly, one recent study highlights a 
novel mechanism where L1 DNA and RNA induce HP1α 
phase separation promoting heterochromatin compartmen-
talization [109]. These data indicate a role for L1 RNA in 
nuclear organization, where L1 RNA binding to L1 DNA 
silences L1-enriched genes by directing genomic regions to 
inactive compartments (Fig. 3a).

Retrotransposons act as either boundary elements or 
docking sites to facilitate folding and compartmentaliza-
tion of the genome, whose CTCF binding site bordered 
topologically associated domains (TADs) are important 
3D units. Using Capture-4Tran and 4Tran-PCR, Ravi-
ram et al. discovered several young mouse ERV families 
(IAPEz, ETnERV, RLTR6, and MuLV-int/RLTR) engaged 
in long-range intra-chromosomal interaction and loop-
ing formation in specific chromatin compartments [107]. 
In hESC, transcriptionally active HERV-H form TAD 
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Fig. 2   Retrotransposons as non-coding RNA. a Example of TE-
derived RNA functioning as non-coding RNA during early develop-
ment. In pre-implantation embryos L1 are transcriptionally active. 
L1 RNA association to chromatin led to global chromatin relaxation. 
L1 RNA associates with KAP1 and Nucleolin at rDNA loci inducing 
their transcription, while repressing DUX and 2C-specific genes to 

proceed with the development. b Example of TE-derived RNA func-
tioning as non-coding RNA in stress response. In resting cells SINE 
B2 RNA associates with stress response genes inhibiting RNA Pol II 
elongation. When cells are stressed the binding of EZH2 to stress loci 
enhances the self-cleavage activity of the B2 ribozyme, thus releasing 
Pol II and allowing transcription of stress response loci
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boundaries that are specific to pluripotent stem cells and 
their frequency weaken during differentiation to cardio-
myocites [107] (Fig. 3b). Indeed, Hi-C and ChIA-PET 
have shown that retrotransposon sequences are important 

anchoring sites for CTCF loops [110]. In particular, SINE 
elements are highly enriched for CTCF binding and over-
represented at TAD boundaries [110] (Fig. 3a). Interest-
ingly, CTCF ChIP-seq analysis in six mammalian lineages 
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Fig. 3   Retrotransposons as 3D genome architecture orchestrators. 
a L1 RNA associates to L1 DNA and mediates the sequestration of 
L1-enriched genes in the inactive compartment (B), at the nuclear 
periphery, for silencing. NAD Nucleolar-Associated Domain, LAD 
Lamina-Associated Domain. Active genes are barcoded by SINEs 
and localized in the nuclear interior (compartment A) where they are 
actively transcribed. SINE elements are enriched for CTCF binding 

sites, represent TADs (Topologically Associated Domains) bounda-
ries and contribute to chromatin looping. b In hESC, transcription-
ally active HERV-H forms pluripotent specific TAD boundaries which 
weaken during differentiation to cardiomyocytes. Transcription at 
HERV-H loci is crucial for maintaining chromatin looping at HERV-
H-dependent TADs
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unveiled a pool of SINEs containing CTCF binding sites 
that are not evolutionary conserved [105]. These data sug-
gest that TE expansion has produced new CTCF binding 
sites. Thus, altered chromatin architecture and gene regu-
latory networks may have contributed to the species-spe-
cific evolution of mammalian genome structures [74, 111].

However, the pervasive and non-specific distribution of 
retrotransposons in the genome has raised concerns regard-
ing the functional aspects of co-localization between retro-
elements and boundary elements, which has been consid-
ered a random phenomenon. To establish a functional link 
between TEs and genome folding, Zhang and Ren inves-
tigated a primate-specific HERV-H family’s ability to cre-
ate TADs in human pluripotent stem cells [108]. By editing 
endogenous HERV-H sequences, they proved that HERV-H 
elements are essential TADs boundary elements. As further 
evidence, PiggyBac assisted insertion of HERV-H induces 
de novo organization of TADs at acceptor loci [108].

New methods to study 
retrotransposition‑independent functions 
of retrotransposons

In the last decade, advances in the field have shed some light 
on retrotransposons’ role and dynamics during early embryo 
development, cell differentiation, and specific pathological 
circumstances. Genomic and epigenomic genome-wide stud-
ies have uncovered the importance of retrotransposons in 
the genome, even if these studies are mainly correlational. 
However, many questions have not been fully addressed 
because of the complex nature of repetitive elements. Thus, 
the improvement and development of new technologies are 
fundamental to achieving a more in-depth understanding of 
retrotransposons’ functional impact on genome evolution, 
structure and function, and its mechanisms.

Improved genome editing technologies have allowed 
modulation of expression/repression of genomic loci, 
including transposable elements [112–115]. In particular, 
CRISPR-activation/interference has been used to evalu-
ate LTR elements’ ability to act as enhancer elements [79, 
81]. Church and colleagues have successfully knocked out 
human LINE-1 elements using base editors in HEK293T, 
and human iPS stem cells [116]. As mentioned, there are 
around 100 and 3000 active LINE-1 elements in the human 
(L1-Hs) and mouse (L1-Gf, -Tf, and -A family) genomes, 
respectively [8]. A detailed map of active LINE-1 loci is 
fundamental to manipulating these elements’ expression 
through CRISPR-based technologies and testing the effects 
on genome functions and dynamics.

Interestingly, Ranjan and Gene used a system based on 
the fusion of an RNA endonuclease with a nuclease-dead 
Cas9 (dCas9) to target and eliminate toxic microsatellite 

repeat RNA [117], a transcript produced from a locus that 
cannot be targeted by an sgRNA with the canonical CRIS-
PRi methods. This approach can be extended to all the other 
classes of transcripts produced by repetitive or particularly 
complex loci [117]. RNA editing technology can be applied 
to follow the dynamics of repetitive RNAs by CRISPR-
Cas13-based RNA-labeling with higher specificity than 
probe hybridization-based probe assays (e.g., fluorescent 
in-situ hybridization, FISH) [118]. This approach has been 
used to track lncRNA NEAT1 with a just one sgRNA com-
bined with dCas13b-EGFP [119].

Mounting evidence suggests that retrotransposon-derived 
transcripts may behave like lncRNAs. Global RNA-DNA/
chromatin interaction profiles have been mapped using 
RNA-centered genome-wide analysis. For instance, LINE-
1 was found to be preferentially bound to LINE-1 DNA-rich 
regions of the genome [52]. To understand the function of 
the thousands of transcripts originated from retrotransposons 
and other repetitive DNA elements, it is necessary to charac-
terize the RNA–protein interactome to reveal potential regu-
latory roles of repetitive RNAs in genome structure and gene 
expression. Towards that end, the improvement of gRNA 
driven proximal protein labeling assays (e.g., CRISPR-
APEX2 technology) [120–122] or RNA pull-down coupled 
with protein mass spectrometry methods (e.g., ChIRP-MS 
and RAP-MS) have been instrumental [123–125]. However, 
immunoprecipitation/pull-down-based assays show sev-
eral pitfalls when applied to RNAs derived from repetitive 
sequences or retrotransposons because proper experimental 
controls and high-specificity probe sets are lacking [126, 
127].

Applying these techniques to in vivo studies in animal 
models or human biopsies is exceptionally challenging 
because of the limited amount of starting material. The 
evolution of protein mass spectrometry instruments, like 
the recent release of 4D (m/z, retention time, ion mobility 
and signal intensity) proteomics platform, has significantly 
reduced the peptide detection limit, making it possible to 
study RNA–protein interactions quantitatively with low 
input samples [128–130].

Another unresolved and controversial question is whether 
transcription of retrotransposons or retrotransposon-derived 
transcripts is a real driver of biological processes [86, 88]. 
Chromatin-associated lncRNA species enrichment [131] 
and specific RNA Pol II elongation form precipitation [132] 
coupled with long-read RNA-seq [133] could address this 
outstanding question.
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Concluding remarks and future perspective

Initially, retrotransposons were exclusively considered 
hazardous genetic elements that required strict epigenetic 
mechanisms for silencing. Now, largely thanks to the devel-
opment of novel technologies, mounting evidence unveils an 
essential role of retrotransposon dynamics in fundamental 
physiological cell functions, from co-option as regulatory 
elements to orchestrate cell type specific transcriptional pro-
grams, chromatin remodeling, 3D genome organization up to 
immune systems involved in tissue homeostasis and defense 
mechanisms. A deeper integration of retrotransposons and 
host genome in which the dynamic nature of mobile ele-
ments includes not only DNA but also RNA impacting both 
nuclear and cytoplasmic functions may be envisaged.

How have these processes evolved? The relatively abun-
dant amounts and quality of ncRNAs produced by these 
elements in response to environmental signals and the 
emerging role of RNA in nuclear structure and function, 
may indicate how these two apparently separated portions of 
the eukaryotic genome began talking to each other. The two 
systems could have merged into a unified functional unit, 
and perhaps further evolved based on epigenome-mediated 
somatic phenotype variation. As summarized above, retro-
transposon-derived RNAs have a strong regulatory potential 
due to their interaction with proteins involved in chromatin 
and transcriptional regulation, indicating an exciting new 
frontier in epigenome biology, developmental processes and 
control of functional tissue homeostasis. Indeed, finely regu-
lated expression of retrotransposons is essential for proper 
genome function, as their aberrant expression is strictly cor-
related to embryo development failure and the onset of sev-
eral pathologies associated with accelerated aging, cancer, 
and chronic inflammation.

The development of new technologies, and improvements 
of the available one, will deepen our understanding of how 
the host genome balances the detrimental and beneficial 
effects of retroelements in evolution, development, and 
pathological conditions.
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