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Abstract
Cyclin-dependent kinase 9 (CDK9), the kinase component of positive transcription elongation factor b (P-TEFb), is essential 
for transcription of most protein-coding genes by RNA polymerase II (RNAPII). By releasing promoter-proximally paused 
RNAPII into gene bodies, CDK9 controls the entry of RNAPII into productive elongation and is, therefore, critical for effi-
cient synthesis of full-length messenger (m)RNAs. In recent years, new players involved in P-TEFb-dependent processes have 
been identified and an important function of CDK9 in coordinating elongation with transcription initiation and termination 
has been unveiled. As the regulatory functions of CDK9 in gene expression continue to expand, a number of human patholo-
gies, including cancers, have been associated with aberrant CDK9 activity, underscoring the need to properly regulate CDK9. 
Here, I provide an overview of CDK9 function and regulation, with an emphasis on CDK9 dysregulation in human diseases.
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Introduction

Cyclin dependent kinases (CDK) are serine/threonine 
kinases that are involved in either cell division (by promot-
ing progression through the cell cycle),  transcription by 
RNAPII, or both [1, 2]. Both ‘cycling CDKs’ and ‘transcrip-
tional CDKs’ associate with a cyclin regulatory subunit that 
is essential for enzymatic activity. Contrary to cycling CDKs 
whose activity varies during the cell cycle, due to regulated 
cyclin degradation (this is the case for CDK1, 2, 3, 4 and 
6), transcriptional CDKs keep generally constant levels of 
expression and activity [3]. CDK9 is the most extensively 
studied transcriptional CDK. Together with a cyclin T subu-
nit, CDK9 forms the positive transcription elongation fac-
tor b (P-TEFb) that is required for efficient transcription of 
most RNAPII-transcribed genes. P-TEFb stimulates produc-
tive elongation through releasing promoter-proximal paused 
RNAPII into gene bodies [4, 5]. RNAPII pausing and release 
are decisive steps in the transcription cycle of the vast major-
ity of actively transcribed protein-coding genes in both 

basal- and stimulus-regulated conditions, and are thought 
to enable a synchronous response to developmental cues 
and external stimuli [6]. The impact of CDK9 on RNAPII 
transcription extends beyond transcriptional elongation, as it 
also influences transcription initiation and termination, and 
helps RNAPII compartmentalization into phase-separated 
biological condensates [7]. Accurate regulation of CDK9 
activity is, therefore, critical to maintain the right transcrip-
tional output, and various pathologies have been associated 
with dysregulation of P-TEFb activity [8]. Here, I review the 
current knowledge of CDK9 function and regulation, and its 
involvement in human diseases.

The general transcription factor P‑TEFb

CDK9 is a nuclear protein that is expressed in all human tis-
sues, with higher levels in terminally differentiated cells. The 
N-terminal region of CDK9 contains a modified PSTAIRE 
motif (PITALRE) which is characteristic of the CDK fam-
ily kinases [2]. Two isoforms of CDK9 are expressed from 
the same gene and termed CDK9(42) and CDK9(55) based 
on their respective molecular weight. The 55-kDa isoform 
results from the use of an alternative promoter that generates 
a 5’-expanded first exon encoding a 117 N-terminal amino 
acids extension [9]. While the CDK9(42) isoform is generally 
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the most highly expressed, the relative abundance of the two 
proteins varies among cell lines and tissues, with CDK9(55) 
more highly expressed in brain and liver. The ratio between 
the two isoforms can also change in response to intra- and 
extra-cellular signals [9–12]. CDK9(42) and CDK9(55) display 
the same reactivity and specificity towards substrates and 
seem to behave similarly [9, 11]. However, specific roles for 
CDK9(55) in muscle regeneration, DNA repair and apoptosis 
have been proposed [10, 11, 13].

Both CDK9 isoforms can form heterodimeric complexes 
with Cyclin T1, T2a or T2b [14] but Cyclin T1 is the pre-
dominant CDK9-associated cyclin. Cyclin T2a and T2b 
arise from alternatively spliced transcripts generated from 
the same gene. They are usually present at lower levels than 
Cyclin T1, and are considered as minor CDK9 partners. 
However, Cyclin T2 may have specific functions in muscle 
differentiation [15–18] and is essential for mouse embryo-
genesis [19]. All Cyclin Ts have a characteristic cyclin box 
at their N-Termini, and a histidine-rich domain implicated 
in substrate recognition in their C-terminal regions [20, 21]. 
Since T2-type cyclins often display the same biochemical 
properties as Cyclin T1, I will consider here the Cdk9(42)/
CycT1 heterodimer as the positive transcription elongation 
factor b (P-TEFb).

To be active, CDK9 needs not only to be associated with 
a Cyclin T, but also to be phosphorylated on the threonine 
186 residue (Thr186) located in a conserved region known 
as the T-loop [2]. Phosphorylation of Thr186 is primarily 
accomplished by CDK7, another transcriptional CDK, and 
maybe also by self-phosphorylation [22–24]. The resolution 
of CDK9/Cyclin T1 crystallographic structure suggests that 
phosphorylation of Thr186 positions the T-loop correctly for 
substrate recognition and generates the specificity for the 
Ser/Thr-Pro motif found in major P-TEFb substrates [23].

Functions of P‑TEFb in RNAPII transcription

Transcription by RNAPII can be subdivided into three main 
stages: initiation, elongation and termination. During initia-
tion, transcription factors (TFs) cooperate with coactivators, 
such as Mediator, to recruit the general transcription factors 
and RNAPII to a gene promoter to assemble the pre-initi-
ation complex (PIC). Initiation is a very intricate process 
that comprises several sequential steps leading to unwind-
ing of the DNA double helix. The transition to elongation 
occurs when RNAPII begins the synthesis of the RNA mol-
ecule and escapes the promoter. During elongation, either 
RNAPII ‘walks’ along DNA or the DNA is spooled through 
the polymerase [25]. However, after initiation and pro-
moter escape, movement into the gene is generally blocked 
30–60 bp downstream from the transcription start site (TSS) 
at an early elongation checkpoint (EEC) [6]. A failure of the 

RNAPII transcription complex to transition to productive 
elongation at this stage leads to abortive transcription. If 
paused RNAPII is successfully converted into elongation-
competent polymerase, RNA synthesis resumes and a full-
length pre-mRNA can be made. Finally, for genes encoding 
polyadenylated mRNA, termination occurs after transcrip-
tion of the polyadenylation site (pA site) when cleavage of 
the RNA and changes to the RNAPII elongation complex 
cause termination downstream [26].

P-TEFb activity is critical for release of RNAPII that is 
stalled at the EEC. CDK9-mediated RNAPII pause release 
has recently been shown to influence the frequency of tran-
scription initiation [27, 28]. In addition to this well-estab-
lished function in early elongation control, CDK9 activity 
is also required for co-transcriptional processing of nascent 
transcripts, and for the dynamics of RNAPII close to poly(A) 
sites [29–31]. Thus, P-TEFb potentially regulates, directly 
or indirectly, all stages of the RNAPII transcription cycle.

Regulation of RNAPII pausing during early 
elongation

Although other factors have been implicated in pause estab-
lishment and release, promoter-proximal pausing primar-
ily relies on the combined action of negative factors that 
impede RNAPII progression and positive factors that instead 
stimulate the transition to productive elongation [6] (Fig. 1). 
Shortly after initiation, RNAPII falls under the influence 
of two negative factors, DRB-sensitivity inducing factor 
(DSIF) and negative elongation factor (NELF) [32, 33]. 
DSIF, a heterodimer composed of Spt4 and Spt5, binds the 
transcription complex after RNAPII has escaped the pro-
moter when the Spt5-binding site becomes accessible [34, 
35]. Association of DSIF to the transcription machinery is 
also enhanced by the interaction of Spt5 with the emerg-
ing nascent RNA [36]. The four-subunit NELF complex 
(composed of NELF-A-B-C/D and -E) then joins the early 
elongation complex as it transcribes the promoter-proximal 
region through recognition of the RNAPII/Spt5 interface 
[32, 35, 37, 38]. The NELF-E subunit establishes additional 
contacts with the nascent RNA, where it recognizes a short 
consensus RNA element enriched at transcriptionally paused 
genes [39–41]. Whether this interaction assists in RNAPII 
pausing is not clear. NELF rather stabilizes paused com-
plexes through blocking access to TFIIS [35], the activity of 
which is needed to rescue backtracked polymerase to allow 
resumption of elongation [42, 43]. In addition, NELF bind-
ing restrains RNAPII mobility and maintains the active site 
of paused RNAPII in a tilted conformation that is incompat-
ible with RNA elongation [35]. Thus, DSIF/NELF-associ-
ated RNAPII is more likely to experience stable pausing, 
especially near the TSS, where it encounters the first nucleo-
some in the transcribed region [44–48]. Apart from DSIF 
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and NELF, other factors such as SIRT6 [49], Gdown1 [50, 
51], the PAF1 complex (PAF1C) [52, 53], and FACT [54] 
may also contribute to locking the poised RNAPII, but their 
direct involvement in pausing is still subject of debate.

As escape of RNAPII from pause sites requires the kinase 
activity of P-TEFb (Fig. 1), treatment of cells with com-
monly used CDK9 inhibitors such as DRB (5,6-dichloro-l-β-
d-ribofuranosyl benzimidazole) or Flavopiridol (FP) results 
in an accumulation of RNAPII in the promoter-proximal 
region of most protein-coding genes [45, 55–58]. Mecha-
nistically, three main CDK9 substrates have been identified 
within the early elongation complex: the two negative elon-
gation factors, DSIF and NELF, and the carboxy-terminal 
domain (CTD) of RPB1, the largest RNAPII subunit. Prob-
ably the most important target of CDK9 in the pause release 
process is the Spt5 subunit of DSIF, the phosphorylation of 
which triggers dissociation of NELF from RNAPII [37, 59]. 
Phosphorylation of NELF itself, as well as its modification 
by PARP-1, may also help relieve the DSIF/NELF-mediated 
blockage of early elongation [60–62]. P-TEFb-mediated 

dissociation of NELF from the transcription complex should 
theoretically allow TFIIS to rescue backtracked RNAPII 
[35, 43] while converting Spt5 into a positive factor that 
remains associated with RNAPII across the gene body 
[58, 63]. Phosphorylation of Spt5 occurs in its repetitive 
C-terminal repeat region (CTR) that, like the RNAPII CTD, 
harbors the typical Ser/Thr-Pro motif found in most CDK 
substrates [59]. CDK9 strengthens SPT5 phosphorylation by 
also inhibiting protein phosphatase 4 (PP4), a phosphatase 
that stabilizes promoter-proximal pausing by keeping SPT5 
unphosphorylated in the 5′ region of genes [64] (Fig. 1). 
After RNAPII is released, Spt5 enhances RNAPII proces-
sivity during transcriptional elongation [59, 65–69] and 
promotes co-transcriptional recruitment of the PAF1C, Pin1 
and Tat-SF1 elongation factors, as well as RNA 3′ end pro-
cessing factors [70–74]. Located near to the exiting RNA in 
the elongation complex [65], the phosphorylated Spt5 CTR 
could thus behave as a recruitment platform for a number of 
factors that facilitate elongation and co-transcriptional RNA 
processing. The P-TEFb-dependent recruitment of PAF1C, 
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Fig. 1   P-TEFb promotes the release of RNAPII from pause sites. 
Shortly after initiation, progression of RNAPII along the gene is 
halted by the coordinated action of NELF and DSIF, while protein 
phosphatase 4 (PP4) helps maintain the Spt5 subunit of DSIF in an 
unphosphorylated state. Once P-TEFb is recruited, it phosphorylates 
DSIF, NELF and the RNAPII CTD. Phosphorylation of Spt5 con-
verts DSIF in a positive elongation factor, and NELF is evicted from 
the RNAPII complex. Phosphorylation of Spt5 is further reinforced 

by inhibitory phosphorylation of PP4. Upon pause release, accessory 
proteins join the elongation complex to increase RNAPII processivity 
and to increase the elongation rate. Phosphorylation of the CTD facil-
itates the recruitment of CTD reader proteins required for pre-mRNA 
processing. PIC: pre-initiation complex. CTD: carboxyl-terminal 
domain. NELF: negative elongation factor. DSIF: DRB-sensitivity 
inhibitory factor. TSS: transcription start site. Pre-mRNA: pre-mes-
senger RNA
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through Spt5, is of particular importance. PAF1C has been 
recently implicated in regulation of RNAPII pausing [52, 75] 
and also exerts critical functions in transcription elongation 
beyond the pause release step [75–78]. Structural studies 
indicate that NELF and PAF1C bind to RNAPII in a mutu-
ally exclusive manner [61]. P-TEFb-mediated phosphoryla-
tion of NELF and SPT5 influences the competition between 
PAF1C and NELF for binding of RNAPII, favoring NELF 
ejection and PAF1C recruitment. The prolonged presence of 
PAF1C within the elongation complex could prevent later 
reassociation of NELF, explaining why RNAPII is less prone 
to long-lived pausing during productive elongation. PAF1C 
also favours the later recruitment of CDK12 [75], another 
transcriptional CDK that targets the RNAPII CTD and rein-
force Ser2P in the body of the gene [79].

In addition to DSIF and NELF, the carboxyl-terminal 
domain (CTD) of the catalytic subunit RPB1 of RNAPII 
is also a major target of P-TEFb. CDK9 is commonly con-
sidered as a kinase targeting serine 2 residues (Ser2) in the 
consensus heptapeptide Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 
(YSPTSPS) that comprises the RNAPII CTD, but it may also 
phosphorylate Ser5 and Ser7 [80, 81]. Targeted post-transla-
tional modifications of residues within the CTD basic unit, 
which is repeated 52 times in the human enzyme, govern the 
association of factors with RNAPII during the transcription 
cycle and coordinate transcription with mRNA processing 
[82, 83] [84]. Although phosphorylation of Tyr1, Thr4 and 
Ser7 also occurs, mass spectrometry has revealed that phos-
phorylation of Ser2 and Ser5 are the most abundant CTD 
modifications in both yeast and humans [85, 86]. The CTD 
is hypophosphorylated when RNAPII is recruited within 
the PIC, and is first phosphorylated on both Ser5 and Ser7 
by CDK7, as part as the TFIIH complex, during initiation. 
Ser5P recruits the capping enzyme and stimulates rapid and 
efficient capping of the nascent RNA as soon as it emerges 
from RNAPII, while Ser7P, helped by Tyr1P, primes the 
CTD for subsequent Ser2 phosphorylation by P-TEFb [80, 
81]. Recruitment of P-TEFb to the transcriptional machin-
ery also relies on prior citrullination of a specific arginine 
residue (R1810) located on repeat 31 of the mammalian 
RNAPII CTD [87]. Thus, phosphorylation by CDK9 can 
only take place after prior decoration of the CTD, perhaps 
to ensure effective initiation and mRNA capping. Ser2P is 
considered as a hallmark of productive elongation and is 
markedly enriched across gene bodies, with a peak at the 
3′ end of genes, over terminator regions. Such high level of 
Ser2P likely reflects the cooperativity of CDK9 and CDK12 
at the 3′ end of genes (see below). Phosphorylation of the 
CTD of elongating RNAPII enables recruitment of addi-
tional CTD-associating proteins and positions them near the 
site of transcription. Factors that recognize the Ser2P mark 
mainly encompass chromatin-remodeling enzymes and RNA 
processing complexes [88–95]. Accordingly, CDK9 activity 

is critical for efficient splicing, and for the recruitment of 
polyadenylation factors at the 3’ ends of RNAPII-transcribed 
genes [88, 89, 91]. Recent data indicate that P-TEFb also 
phosphorylates the RNAPII CTD linker region that connects 
the catalytic core of the enzyme to the CTD during the tran-
sition to productive elongation and by doing so, promotes 
recruitment of the SPT6 histone chaperone to the elongation 
complex [61, 96, 97]. Spt6 supports efficient transcription 
elongation through stimulating disassembly and reassem-
bly of nucleosomes during RNAPII progression [98–101]. 
Finally, P-TEFb is often incorporated into large complexes, 
called Super Elongation Complexes (SECs), which com-
prise multiple transcription elongation factors [102]. When 
recruited to genes, the SEC simultaneously provides several 
activities that increase RNAPII processivity and stimulate 
RNA synthesis [103–105].

By counteracting the effects of negative elongation fac-
tors, decorating the RNAPII CTD, and supplying RNAPII 
with key elongation factors, P-TEFb not only releases the 
DSIF/NELF-mediated elongation barrier but also equips 
the polymerase to ensure the efficiency of downstream tran-
scriptional and co-transcriptional events. Modulating pause 
release by P-TEFb is, therefore, an elegant way to fine-tune 
gene expression to produce the right transcriptional output.

Functional significance of RNAPII pausing

In all metazoans, RNAPII distribution along genes shows 
an increased density just downstream of the TSS [106, 
107]. As this profile primarily results from an equilibrium 
between RNAPII recruitment, initiation, and pause release 
into either productive elongation or termination (see below), 
it suggests that the rate of pause release is generally lower 
than the rate of initiation. While the kinetics of these two 
regulatory stages were long considered to be independent 
of each other, recent studies have highlighted important 
connections between pausing and the frequency of tran-
scription initiation. In both Drosophila and human cells, an 
inverse correlation between the levels of promoter-proxi-
mally paused RNAPII and of newly initiating RNAPII has 
been observed, with highly paused genes displaying lower 
initiation rates [27, 28]. Accordingly, increasing RNAPII 
pausing through inhibition of CDK9-mediated pause release 
generally results in a concomitant decrease of transcription 
initiation (Fig. 2). The mechanisms underlying this relation-
ship are not clearly defined, but the presence of RNAPII at 
pause sites may sterically impede subsequent initiation by 
another polymerase and limit the frequency of re-initiation 
[28]. However, RNAPII pausing itself also have a positive 
effect on transcription initiation as accumulation of RNAPII 
in promoter-proximal regions creates a permissive chro-
matin structure that allows factors to access the promoter 
[108–110]. Indeed, RNA interference-mediated depletion 
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of NELF reduces RNAPII pausing, increases nucleosome 
occupancy at many promoters and decreases transcription 
initiation [109, 111] (Fig. 2). Thus, the emerging view is that 
CDK9-mediated release of pausing stimulates both produc-
tive elongation (by promoting progression of RNAPII into 
gene bodies) and initiation (by reducing RNAPII occupancy 
at pause sites), which could have synergistic effects on the 
amount of transcription.

Promoter-proximal pausing was also proposed to pro-
vide a window of time for co-transcriptional capping of the 
nascent RNA to occur [112]. As addition of a 5′ methyl-
7-Guanosine (m7G) cap protects the 5′ end of nascent 
mRNA from degradation [113], it is important that this 
happens as soon as possible after the RNA 5′ end emerges 
from RNAPII. Phosphorylation of Ser5 residues by CDK7 
early in the transcription cycle turns the RNAPII CTD into 
a landing pad for the capping machinery [114–117]. The 
capping enzyme can also access the nascent RNA through 
interaction with the Spt5 subunit of DSIF, that also stimu-
lates capping [118–120]. Capping appears to start when the 
transcript is only 20–25 nucleotides long [121] and may 
occur progressively as RNAPII moves towards the pause 
region, raising the possibility that nascent RNAs are already 
capped when NELF-mediated pausing occurs. NELF has 
recently been shown to recruit the cap-binding complex 
(CBC) to the transcription machinery [122, 123] to interact 
with the cap to protect the capped RNA from decapping 
[124]. The CBC may in turn help to recruit P-TEFb [91]. 

Thus, DSIF/NELF-mediated RNAPII pausing might func-
tion as a quality-control process ensuring that mRNA are 
properly protected at their 5′ end before RNAPII enters pro-
ductive elongation (Fig. 2).

On some genes, RNAPII is poised for activation and func-
tion as scaffold for integration of environmental and devel-
opmental signals [125] (Fig. 2). Promoter-proximal pausing 
could provide storage of transcriptionally engaged, ‘ready 
to go’ polymerases, awaiting activation stimuli for rapid and 
synchronous release of RNAPII into productive elongation 
[126, 127]. Several key biological processes may rely on 
poised RNAPII for gene activation, including the heat shock 
response [128, 129], early embryonic development [126, 
130, 131], inflammatory responses [132], the DNA damage 
response [133, 134] and hormone-regulated signaling [131, 
135]. Keeping the polymerase in a state of readiness could 
thus allow transcription of biologically relevant genes to rap-
idly respond to external/developmental cues [132, 136]. The 
early elongation checkpoint thus adds a further possibility to 
regulate transcription before RNAPII has gone very far [6] 
and allows synergic or antagonists signals to be integrated 
during the early steps of transcription.

On the majority of genes, paused RNAPII appears to be 
quite stable, with a residence time between 5 and 10 min [28, 
45, 137]. However, RNAPII can sometimes remain engaged 
on a gene for 30–60 min while awaiting signals for pause 
release [28, 56, 137]. It is likely that poor recruitment of 
P-TEFb to these genes is responsible for increased paused 

Fig. 2   Functions of promoter-
proximal pausing and regulation 
of pause duration. Promoter-
proximal pausing limits the 
rate of new initiation by 
RNAPII, facilitates capping 
of the nascent pre-mRNA and 
provides a window of time for 
integration of external signals 
or stimuli. Pause duration is 
tightly regulated and can vary 
from one gene to another. The 
residence time of RNAPII at 
pause sites is driven by the bal-
ance between P-TEFb recruit-
ment, phosphatase activities 
and recruitment of termination 
factors such as Integrator, 
which can promote premature 
termination. CTD: carboxyl-ter-
minal domain. NELF: negative 
elongation factor. DSIF: DRB-
sensitivity inhibitory factor. PP: 
protein phosphatase
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RNAPII stability. Since paused RNAPII blocks new initia-
tion, prolonged pausing may make a gene refractory to acti-
vation [138]. In contrast, a significant proportion of genes 
harbors very unstable promoter-proximally paused RNAPII 
that is quickly dissociated from the DNA template through 
premature termination [110, 139, 140]. The rapid turnover of 
RNAPII at these genes prevents the polymerase from enter-
ing productive elongation, thus repressing gene activity. The 
instability of this paused RNAPII is due to the recruitment of 
the integrator complex, whose endonucleolytic activity trig-
gers cleavage of nascent mRNA transcripts and promoter-
proximal termination [139]. Recent findings showed that two 
protein phosphatases, PP2A and PP4, can keep Spt5 unphos-
phorylated in the promoter-proximal region, thus promoting 
pausing by counteracting CDK9-mediated phosphorylation 
[64, 141, 142]. A non-canonical PP2A enzyme, associated 
with the Integrator complex, may also dephosphorylate the 
RNAPII CTD [142, 143]. Thus, competitive recruitment of 
P-TEFb, phosphatases and termination factors during early 
elongation likely determines the stability and the fate of 
paused RNAPII (Fig. 2).

CDK9 regulates transcription beyond pausing

Genome-wide nascent transcription analysis techniques 
such as global run-on sequencing (GRO-seq) confirm that 

RNAPII stalls close to the TSS of the majority of genes after 
addition of CDK9 inhibitors [29, 45, 84, 144]. As visualized 
on long genes, RNAPII that has already passed the EEC can 
continue to transcribe for long distances even if CDK9 activ-
ity is inhibited, demonstrating that sustained CDK9 activity 
is not mandatory for transcription through gene bodies [29, 
45, 145]. However, when RNAPII reaches the end of the 
transcribed region, it terminates transcription prematurely 
at the end of the last exon, near the poly(A) site, at what 
has been termed a poly(A)-associated elongation checkpoint 
[29]. Phosphorylation of Spt5 by CDK9 may be critical 
to negotiate this checkpoint, as Spt5 association with the 
poly(A) region is drastically reduced by CDK9 inhibition. 
Indeed, CDK9-mediated phosphorylation of Spt5 is nor-
mally erased by protein phosphatase 1 (PP1) when RNAPII 
passes the poly(A) site [30, 146]. This drop in Spt5 phospho-
rylation is followed by RNAPII slowing down downstream 
of the poly(A) site. RNAPII then accumulates downstream 
of the pA site and becomes heavily phosphorylated on Ser2, 
thus facilitating the recruitment of factors involved in mRNA 
3′ end processing and termination [79, 147, 148] (Fig. 3). 
CDK9 activity is required to maintain the phosphorylation 
status of Spt5 upstream of the poly(A) site, most likely by 
preventing Spt5 dephosphorylation by PP1. Indeed, PP1 
is a target of CDK9 in both yeast and human [30, 31] and 
this phosphorylation is inhibitory [30, 64]. Thus, CDK9 
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Fig. 3   CDK9 regulates transcription across the polyA site. During 
elongation, CDK9 phosphorylation inactivates PP4 and PP1 phos-
phatase activities, thus maintaining high levels of Spt5 phosphoryla-
tion. Once RNAPII transcribes through the polyA (pA) site, Ser2P 
recruits the cleavage and polyadenylation machinery (CPA), which is 

critical for proper termination. Concomittantly, CDK9 activity drops 
and PP1 becomes active, leading to dephosphorylation of SPT5. 
Unphosphorylated Spt5 acts as a brake for RNAPII that becomes a 
preferential substrate for CDK9-activated Xrn2 exonuclease. PP: pro-
tein phosphatase. CPA: cleavage and polyadenylation factors
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neutralizes PP1 activity during elongation, thereby preserv-
ing Spt5 phosphorylation until RNAPII reaches the poly(A) 
site. In turn, Spt5 phosphorylation prevents premature termi-
nation by maintaining rapid RNAPII elongation, and perhaps 
by delaying the action of termination factors until poly(A) 
site selection has occurred [147, 149].

CDK9 also directly regulates termination by promoting 
recruitment and activation of the 5′ to 3′ “torpedo” exonu-
clease Xrn2 via an RNAPII CTD-independent mechanism 
[31]. Phosphorylation of Xrn2 by CDK9 appears critical 
for chromatin localization of Xrn2 and efficient termination 
in human cells [31]. In the torpedo termination model, the 
pre-mRNA is cleaved after RNAPII transcribes the poly(A) 
site, and Xrn2 degrades the downstream RNA fragment co-
transcriptionally until it collides with RNAPII and dissoci-
ates it from the DNA template [26, 150]. As the torpedo 
model is based on the ability of Xrn2 to degrade nascent 
RNA faster than RNAPII synthesizes it, polymerases slowly 
elongating downstream of the poly(A) site are easily caught 
by the activated Xrn2, facilitating RNAPII dissociation and 
transcription termination (Fig. 3).

CDK9, therefore, plays an important role in regulating the 
elongation to termination switch, a step that is more strictly 
regulated than initially thought. The addition and removal of 
phosphate by the CDK9/PP1 pair is critical for Spt5-depend-
ent regulation of RNAPII dynamics during its entry to the 
terminator region. The mechanism by which PP1 becomes 
active once RNAPII has transcribed through the poly(A) 
remains unknown, but it could result from targeted dephos-
phorylation of PP1 and/or a drop in CDK9 activity. In yeast, 
the CDK9 homolog dissociates from the elongation complex 
upstream of the poly(A) site [151], which could provide an 
explanation for PP1 activation. Recognition of the poly(A) 
site is also required for the change in Spt5 phosphoryla-
tion, suggesting that assembly of a 3′ processing complex 
on the poly(A) site and/or cleavage of the nascent RNA is 
involved in PP1 activation [146] (Fig. 3). Interestingly, the 
yeast cleavage and polyadenylation factor (CPF) contains 
a PP1 holoenzyme [152, 153], and could target PP1 to the 
transcription machinery at the 3′ end of genes.

Additional targets of P-TEFb include the AFF1 and 
AFF4 subunits of the SEC [154, 155], the androgen receptor 
[156], pirh2 [157], pRB [158] and p53 [159, 160]. P-TEFb 
also phosphorylates the chromatin regulators histone H1, 
UBE2A, BRG1 and Tip60 [161–164]. A recent in vitro study 
aimed at identifying the full repertoire of CDK9 targets 
revealed numerous additional factors (more than 100), half 
of which are implicated in transcription and/or RNA metab-
olism [31]. Decker et al. (2019) used a CDK9 analog-sen-
sitive human cell line to identified 120 phosphosites which 
were quantitatively decreased upon CDK9 inhibition and 
confirmed that the major CDK9 substrates were transcrip-
tion- and RNA processing-associated factors [165]. Potential 

new P-TEFb targets include splicing factors, chromatin mod-
ifiers, pause release factors and proteins implicated in RNA 
quality control. One should, therefore, expect future studies 
to assign additional function(s) to CDK9 and further expand 
the mechanisms by which it regulates RNAPII transcription.

CDK9 and CDK12: distinct CDKs with the same CTD 
target

It is important to note that CDK9 is not the only Ser2P 
kinase, as two other ‘transcriptional’ CDKs, CDK12 and 
CDK13, also contribute to this critical CTD modifica-
tion [79, 166–170]. While both CDK12 and CDK13 are 
bound to cyclin K and target the CTD in vivo, most stud-
ies have focused on CDK12’s function, mainly because it 
has emerged as an important player in human cancers [171, 
172]. Depletion or inactivation of CDK12 leads to altered 
CTD phosphorylation in both Drosophila and human cells 
[166–168, 173–175]. Its genomic distribution suggests 
that CDK12 functions on elongating RNAPII, downstream 
of CDK9, and contributes to the increased Ser2P signals 
towards the 3′ end of genes [79, 176] (Fig. 3). However, a 
number of studies have also identified Ser5 of the CTD as a 
target of CDK12 [168, 173, 175, 177]. CDK9 and CDK12 
are close collaborators, as recruitment of CDK12 depends 
on CDK9 activity [75]. It makes the relative contribution 
of each kinase to Ser2P difficult to appraise. Although the 
CTD appeared to be the main substrate of CDK12 and 
CDK13, the exact function of these CDKs has long remained 
unclear [171]. Despite its localization on actively transcribed 
genes genome-wide [178], CDK12 was shown to specifi-
cally promote expression of subsets of human genes, i.e., 
DNA damage/DNA repair genes [167, 174, 178, 179] and 
DNA replication genes [173]. However, genome-wide nas-
cent transcription analyses indicate that CDK12 is a global 
regulator of RNAPII processivity, required for efficient 
elongation of transcription of the vast majority of RNAPII-
transcribed genes [168, 169]. CDK12 is required for stable 
association of PAF1C and Spt6, two critical elongation fac-
tors, with the elongating RNAPII machinery [168]. Main-
tenance of high RNAPII elongation rates by CDK12 may 
be critical to prevent premature transcription termination, 
particularly on long genes [173, 179–181]. Mechanistically, 
CDK12 activity suppresses cleavage at intronic polyade-
nylation sites, restricting production of truncated mRNAs. 
Since DNA damage response genes tend to harbor a higher 
density of intronic polyadenylation sites than other genes 
[179], loss of CDK12 primarily affects expression of this 
class of transcripts. CDK13 displays substantial redundancy 
with CDK12 for boosting RNAPII processivity [169], but is 
also specifically required for proper expression of small non-
coding RNA genes, by activating RNA processing rather 
than transcription [174]. Identification of CDK12-associated 
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proteins and CDK12 targets supports a broad function for 
this kinase in transcription, and in co-transcriptional pre-
mRNA processing [174, 179, 182, 183]. Accordingly, loss 
of CDK12 has been shown to impede 3′ end processing of 
C-FOS and C-MYC genes [79, 184], likely reflecting defec-
tive Ser2P-mediated recruitment of RNA processing factors. 
Thus, the primary function of CDK12 (and CDK13) may be 
to maintain a sustained level of Ser2 phosphorylation on the 
elongating RNAPII (Fig. 3). By doing so, it helps RNAPII to 
reach maximum elongation rates to suppress usage of cryp-
tic polyadenylation, which is particularly important on long 
and polyA site-rich genes [173, 179], but it also stimulates 
efficient co-transcriptional RNA processing.

CDK9, CDK12 and CDK13, therefore, all cooperate to 
ensure efficient elongation, as they all target Ser2 residues 
within the CTD and contribute to Ser2P [169]. Both CDK9 
and CDK12 have been proposed to be key players in RNA 
processing, but it is difficult to disentangle the precise func-
tion of each CDK. As blocking CDK9 activity will affect 
subsequent CDK12 recruitment to the transcription machin-
ery [75], the resulting effects could reflect the loss of both 
CDK activities. The use of pharmacological inhibitors has 
proven effective to block CDKs activity and study their 
functions. Although Flavopiridol and DRB inhibit CDK9 at 
lower concentrations than CDK12/CDK13 [177], complete 
inhibition of CDK9 could still significantly affect CDK12 
and CDK13 activities, and potentially other kinases as well 
[182]. The recent development of more selective CDK9 
inhibitors [185] and CRISPR/Cas9-engineered cell lines, 
which allow selective inactivation of CDK9, CDK12 and 
CDK13 by ATP analogs [27, 165, 168, 169, 173, 175], will 
help to decipher the function of each individual CDK in 
CTD phosphorylation and RNAPII transcription.

P‑TEFb promotes formation of compartmentalized 
‘elongation‑associated’ foci

Microscopy studies have revealed dynamic foci within the 
nucleus that are enriched in RNAPII, termed transcription 
‘factories’ or ‘condensates’ [7, 25, 186, 187]. These mem-
brane-less compartments can form by liquid–liquid phase 
separation and rely on cooperative interactions between intrin-
sically disordered protein regions (IDRs) [188]. Although their 
components can continuously interact with the neighboring 
environment, the local concentration of factors is high within 
condensates, favoring intermolecular interactions and efficient 
biochemical reactions. Some transcription (co)factors use 
their disordered transactivation region to form such conden-
sates at sites of active transcription [186, 187, 189–192]. They 
recruit and trap RNAPII through its intrinsically disordered 
hypophosphorylated CTD, providing a mechanism for effi-
cient recruitment of RNAPII to both enhancers and promoter 
regions to support high rate of transcription initiation [190, 

192, 193]. Importantly, CTD phosphorylation by CDK7 weak-
ens interaction with activators and disrupts phase separation 
as RNAPII escapes the promoter [193, 194]. Thus, transcrip-
tional condensates could be seen as dynamic hubs that enable 
efficient regulation of RNAPII transcription.

Recent data indicated a function for the histidine-rich 
domain (HRD) of cyclin T1 in creating another type of 
transcription condensate that instead of being connected 
to transcription initiation, is associated with elongation 
[7, 20] (Fig. 4). The low-complexity HDR of Cyclin T1 
is located within a broader IDR in its C-term domain and 
it was shown to support both interaction with the CTD of 
RNAPII and phase separation [20, 21]. Consistently, Cyclin 
T1 lacking the HDR is unable to form droplets, displays a 
reduced activity towards the CTD as well as a shorter resi-
dence time on chromatin. The Cyclin T1 HRD may organize 
a phase-separated environment leading to local accumula-
tion of RNAPII together with P-TEFb, thereby stimulating 
efficient hyperphosphorylation of the CTD and elongation. 
Recent data showed that Cyclin T1 can phase separate in the 
presence of SEC components [195]. These ‘elongation-asso-
ciated’ condensates can be visualized in cells by imaging 
techniques and correspond to the nuclear speckles [20, 194, 
196], which also contain a number of additional elongation 
and pre-mRNA processing factors [197, 198] (Fig. 4). Incor-
poration of the CTD within these compartments is enhanced 
upon pre-phosphorylation by CDK7 [20, 194], suggesting 
that CTD phosphorylation on Ser5/Ser7 relocates RNAPII 
from initiation-associated to elongation-associated conden-
sates during early elongation (Fig. 4). Thus, ‘elongation-
associated’ condensates could simultaneously concentrate 
pause release, elongation and co-transcriptional processing 
factors around transcriptionally engaged RNAPII complexes 
to favor robust transcription through chromatin. The fact that 
hypo and hyper-phosphorylated forms of RNAPII occupy 
contiguous nuclear locations [199] supports the hypothesis 
that RNAPII shuttles from ‘initiation’ to ‘elongation’ con-
densates, which would physically separate initiation- and 
elongation-related factors for increased efficiency. More 
work is needed to understand the impact of phase separation 
on each step of the transcription process. Given their revers-
ible nature, future studies should also establish whether the 
appearance and disappearance of transcription condensates 
plays a role in regulating transcription programs, such as 
responses to developmental stimuli, viral infection or exter-
nal cues.

Regulation of CDK9 activity

Since P-TEFb is a master regulator of RNAPII transcription, 
controlling its nuclear activity is of particular importance. 
Two main regulatory mechanisms together govern the rate 
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of CDK9-mediated release of paused RNAPII. First, CDK9 
cellular availability can be restrained by the 7SK inhibitory 
snRNP. Second, P-TEFb has to be efficiently targeted to gene 
promoters through interaction with transcription factors/
complexes.

The 7SK snRNP: a reservoir of CDK9 activity 
in the nucleoplasm

Binding of cyclin-kinase inhibitors (CKI) is a common way 
to regulate CDKs activity [200]. CDK9 is, however, the only 
known CDK that is regulated by an RNA-containing CKI. 
In human cells, a significant fraction of P-TEFb is found 
in a large, catalytically inactive complex, associated with 
the 7SK small nuclear (sn)RNA, MePCE, LARP7 and 
HEXIM1/2 proteins [5, 201]. Within this ribonucleoparticle 
(RNP), the 7SK methylphosphate capping enzyme (MePCE) 
and the La-related Protein 7 (LARP7) stably associate with 
the 5′ and 3′ ends of the 331 nucleotides-long 7SK snRNA, 
respectively, and are both essential for 7SK snRNA stabil-
ity and snRNP integrity [202–204]. Protected by the core 
snRNP proteins, the 7SK snRNA provides the structural 
RNA scaffold for the formation of the P-TEFb inhibitory 
complex. Its 5′ terminal hairpin forms a docking site for 
a homo- or hetero-dimer of HEXIM1/2 (Hexamethylene 
Bisacetamide-inducible Protein), binding of which relieves 
an auto-inhibitory conformation of HEXIM proteins and 
exposes their otherwise inaccessible P-TEFb binding sur-
face [205–208]. 7SK-dependent binding of HEXIM1 to both 
CDK9 and Cyclin T1 prevents substrates from accessing the 
CDK9 catalytic site, thus providing a plausible mechanism 

for P-TEFb inhibition [209, 210]. Additional interaction 
between LARP7 and CDK9 may further reinforce the 
assembly of 7SK/P-TEFb RNP [211, 212]. Although some 
structural hints have been provided for binding of MePCE 
and Larp7 to 7SK [213, 214], the structure of the complete 
7SK/P-TEFb snRNP has not yet been resolved. Importantly, 
only Thr186-phosphorylated CDK9 is successfully incor-
porated within the inhibitory RNP, ensuring that only acti-
vated, ready to use P-TEFb is sequestered into the 7SK/P-
TEFb snRNP [215, 216].

The amount of P-TEFb kept ‘in custody’ by the 7SK 
RNP is dictated by the overall transcriptional need, as well 
as the proliferative state of the cell [217]. For instance, 
50% of P-TEFb is inactivated in actively growing Hela 
cells, but 7SK binds up to 90% of P-TEFb in human pri-
mary blood lymphocytes [218–221]. While it considerably 
restricts CDK9 availability under normal conditions, the 
P-TEFb/7SK RNP rapidly disassembles in response to cel-
lular stress, robustly increasing CDK9 activity [220, 221] 
(Fig. 5). Thus, the 7SK/P-TEFb snRNP acts as CDK9 stor-
age complex that can release active P-TEFb under stress con-
ditions without requiring new protein synthesis. Stimuli that 
have been shown to trigger extraction of P-TEFb from its 
snRNP repressor include transcription blockade, DNA dam-
age, viral infection and activation of various signaling path-
ways [201, 220–223]. Acetylation of cyclin T1 [224] and 
ubiquitinylation and phosphorylation of HEXIM1 [225, 226] 
have all been shown to shift the P-TEFb equilibrium towards 
the active form at the expense of the inactive form. Erasure 
of CDK9 T-loop phosphorylation also disassembles the 7SK 
RNP [227–229], although in this case the released CDK9 
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Fig. 4   Cyclin T1 promotes the formation of ‘elongation conden-
sates’ through liquid–liquid phase separation. Intrinsically disor-
dered regions (IDRs) of transcription factors trigger the formation of 
‘initiation’ condensates at gene promoters and enhancers and favour 
recruitment of RNAPII and gene activity. The Cyclin T1 histidine-
rich region (HRD) organizes a phase-separated environment that 
promotes incorporation of P-TEFb into another type of condensate 

associated with transcription elongation (or nuclear speckles). These 
condensates simultaneously concentrate pause release, elongation and 
processing factors. CTD phosphorylation by CDK7 relocates RNAPII 
from ‘initiation’ to ‘elongation’ condensates, providing RNAPII with 
critical activities required for the next stage of the transcription cycle. 
CTD: carboxy-terminal domain
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needs re-phosphorylation on Thr186 to become fully active. 
Transient rearrangement of 7SK RNA structure [230], desta-
bilization of 7SK RNA [231–233], and binding of various 
RNA-binding proteins to the 7SK RNP [207, 234–240] may 
represent alternative/cooperative mechanisms to release 
P-TEFb. Nuclear speckles could be sites of active assem-
bly/disassembly of inactive P‐TEFb complexes [196] and 
transition from the inactive to the active form may involve 
phase separation too [195]. Indeed, CyclinT1 is unable to 
phase separate together with HEXIM1 and the P-TEFb/7SK 
snRNP is widely dispersed in the nucleus, suggesting that 
incorporation within the 7SK snRNP prevents CDK9/Cyclin 
T1 translocation into transcription-associated condensates.

Retention of P-TEFb within the 7SK RNP is a way of 
separating and storing pre-activated CDK9 in the nucleo-
plasm, away from the transcription complex. However, 
recent studies have raised the intriguing possibility that the 
7SK/P-TEFb regulatory RNP can also be anchored to chro-
matin, where it can activate RNAPII transcription locally 
through ‘on site’ release of active P-TEFb [241] (Fig. 5). 

First described as a gene-specific mechanism [228, 242], 
positioning of the 7SK/P-TEFb RNP on chromatin was next 
extended to more than 15,000 human genes, where LARP7, 
CDK9, HEXIM1 and RNAPII co-localize at promoter 
regions [238, 243]. Widespread 7SK/P-TEFb RNP anchor-
ing to chromatin is mediated by the Kruppel-associated box-
interacting protein KAP1 [243], while on site disassembly 
of the RNP can be driven by PPM1G, SRSF2, DDX21, 
WDR43 or JMJD6 [228, 232, 233, 236, 238, 244]. How-
ever, analyses of 7SK RNA occupancy by chromatin isola-
tion by RNA purification (ChIRP) argue against stable 7SK 
RNP association with promoter regions, with accumulation 
of 7SK snRNA being mainly detected on super-enhancers 
[233, 245], snRNA genes [246] and within the whole tran-
scribed regions of some human protein-coding genes [245, 
247]. Microscopy studies also failed to detect 7SK asso-
ciation with a stably integrated active gene [248]. Instead, 
7SK RNA transiently associates with the locus upon tran-
scriptional shutdown and was proposed to displace P-TEFb, 
raising the possibility that 7SK rather serves as a dynamic 
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Fig. 5   Regulation of CDK9 availability by the 7SK snRNP. In the 
nucleoplasm, a fraction of P-TEFb is sequestered into the 7SK/P-
TEFb snRNP, where CDK9 activity is inhibited by HEXIM1 in a 
7SK-dependent manner. After cellular stress, disassociation of the 
7SK/P-TEFb snRNP releases active P-TEFb, which can be loaded 
onto target genes by BRD4, Super Elongation Complexes (SEC) or 
gene-specific transcription factors (TF). The 7SK/P-TEFb snRNP is 

also directly targeted to gene promoters by KAP1. Factors such as 
SRSF2, DDX21 or PPM1G can activate P-TEFb from chromatin-
anchored 7SK/P-TEFb snRNP in the vicinity of the RNAPII complex 
for ‘on site’ transcriptional activation. Note that only the active form 
of P-TEFb can be incorporated into transcription-associated conden-
sates
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P-TEFb carrier ensuring its delivery and/or removal from 
genes. Thus, it is not clear yet whether the 7SK RNP com-
plex is stably anchored or only loosely associated with pro-
moters, and how widespread this mechanism is.

Targeted delivery of active P‑TEFb

The proportion of active and inactive forms of P-TEFb 
changes according to the proliferative/differentiation state 
of cells and transcriptional need [217, 249]. Even if the 7SK 
snRNP is capable of anchoring inactive CDK9 to genomic 
loci, recruitment of P-TEFb in its active form remains the 
main CDK9 delivery pathway. The level of P-TEFb brought 
to the gene will dictate the average pause duration and 
the fate of poised RNAPII. If active P-TEFb is efficiently 
recruited by a promoter, the duration of the pause will be 
shorter and more RNAPII will successfully enter productive 
elongation. Appropriate P-TEFb recruitment is, therefore, 
critical to establish specific gene expression programs.

A number of cellular activators can help to target CDK9 
to specific DNA or RNA sequences [4]. For example, the 
bromodomain protein 4 (BRD4) is an important partner 
of active CDK9 as it directs free P-TEFb to promoters and 
enhancers through interaction with acetylated histones and/
or the Mediator complex [233, 250]. BRD4 directly interacts 
with Cyclin T1 but the BRD4/P-TEFb interaction also relies 
on CDK9 phosphorylation on Ser175 [250, 251]. Most of the 
P-TEFb that is not sequestered in the 7SK/P-TEFb snRNP 
associates with BRD4 and P-TEFb freshly released from the 
7SK snRNP joins the BRD4 pool [240, 252]. Accordingly, 
RNAi-mediated depletion or chemical inhibition of BRD4 
has a profound impact on P-TEFb recruitment, RNAPII 
transcription elongation and gene expression [240, 250, 
253–255]. However, the use of a recently developed BRD4 
degron system showed that rapid depletion of BRD4 reduces 
RNAPII release into gene bodies without affecting P-TEFb 
occupancy on chromatin [256]. Thus, BRD4 may not be 
strictly required for targeting P-TEFb to genomic regulatory 
regions, but may largely function as an activator of chroma-
tin-bound P-TEFb [257]. For instance, BRD4 could collabo-
rate with JMJD6 (Jumanji C-domain-containing protein 6) 
at enhancer regions to evict P-TEFb from the 7SK inhibitory 
complex, through demethylation of 7SK cap and/or targeted 
degradation of MePCE [232, 233]. The resulting ‘on site’ 
activation of CDK9 would then facilitate pause release and 
gene activity. However, additional studies will be required 
to clarify the function of BRD4 in CDK9 recruitment and in 
P-TEFb-mediated activation of productive elongation.

While association with Brd4 may represent a general way 
to recruit CDK9 to genes, a number of specific transcription 
factors (TF) can interact with and deliver active P-TEFb to 
to their respective target genes to facilitate transcriptional 
activation under basal and/or signal regulated conditions. 

TFs targeting P-TEFb to chromatin in a gene-specific manner 
include NF-kB [258], c-myc [58], MyoD [16], STAT3 [259] 
or MEF2 [260]. P-TEFb can also be incorporated into larger 
Super Elongation Complexes (SEC or SEC-like) together 
with other elongation factors, such as the eleven-nineteen 
Lys-rich leukemia (ELL) family members (ELL1/2/3), AF9, 
ENL, EAF1/2, AFF1 and AFF4 [102]. The SEC stimulates 
RNAPII processivity very efficiently [104, 105, 124] and 
helps to recruit CDK9 to active promoters and enhancers 
through interaction with the Mediator [261], PAF1C [262] or 
the Integrator complex [263]. Thus, numerous transcription 
factors and macromolecular complexes orchestrate the coor-
dinated delivery of CDK9 to precise chromatin locations to 
regulate both basal and activated transcription.

CDK9 and diseases

Given the central importance of P‐TEFb in regulating gene 
expression and maintaining cellular homeostasis, it is per-
haps not surprising that CDK9 activity is linked to many 
pathologic processes. For example, P-TEFb is an essential 
cellular co-factor required for transcription and replication 
of the human immunodeficiency virus (HIV), and misregula-
tion of CDK9 activity is associated with cardiac hypertrophy 
and cancer development [8, 264] (Fig. 6).

P‑TEFb is an essential co‑factor of HIV

Viruses often subvert the host cell transcriptional machinery 
for their own needs. P-TEFb is a primary target of HIV, but 
is also used by other viruses such as human T‐lymphotropic 
virus (HTLV‐1), Herpes simplex virus (HSV‐1 and HSV‐2), 
human cytomegalovirus (CMV), Epstein‐Barr virus (EBV), 
human adenovirus, Influenza A virus, Dengue virus and 
Kaposi’s sarcoma‐associated virus (KSHV) [264]. Most 
of the viruses mentioned above hijack P-TEFb via physical 
interaction with virus-encoded proteins to promote efficient 
transcription of the viral genome. The discovery that P-TEFb 
has an essential function in HIV transcription greatly 
helped to elucidate the molecular mechanisms underlying 
the replication of the virus. In turn, HIV transcription has 
become a paradigm for studying P-TEFb function in RNAPII 
regulation.

The HIV virus integrates into the host genome, and viral 
gene expression from the Long-Terminal Repeat (LTR) pro-
moter is principally controlled at the early elongation stage 
by DSIF/NELF-mediated RNAPII pausing [265] (Fig. 6a). 
Synthesis of full-length HIV transcripts requires expression 
of a viral transactivator protein, Tat. Activation of elonga-
tion primarily relies on Tat-mediated recruitment of P-TEFb 
to the transactivation response element (TAR) that forms 
spontaneously at the 5′ end of nascent HIV transcripts [266]. 
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The HIV-encoded Tat protein binds to Cyclin T1 and targets 
P-TEFb to the TAR RNA structure to stimulate transcription 
elongation in the same way as it acts on cellular genes, i.e., 
through phosphorylation of DSIF, NELF and the RNAPII 
CTD. The crystallographic structure of the P-TEFb/Tat com-
plex indicates that binding of Tat induces a conformational 
change in CDK9 that may alter its substrate specificity [267]. 
Of note, only Cyclin T1-containing P-TEFb is targeted by 
Tat, as the interaction relies on a TRM motif that is not 
found in cyclin T2. Tat and P-TEFb are recruited to TAR 
within the SEC to stimulate proviral genome transcrip-
tion [103, 105] and remain associated with the elongating 
RNAPII machinery throughout transcription. Thus, the Tat/
TAR system illustrates another means of recruiting P-TEFb 
to the transcription machinery through an RNA tethering 
system. By recognizing the nascent RNA, P-TEFb is directly 
placed at the vicinity of the transcription complex, close 

to its phosphorylation targets, ensuring efficient release of 
RNAPII pausing.

Interestingly, HIV transcription appears highly sensi-
tive to the level of active CDK9 in the cell [268], making 
P-TEFb an attractive anti-HIV drug target. Reduced Cyclin 
T1 levels and hypophosphorylation of CDK9 on Thr186 
contribute to HIV latency in primary CD4( +) T cells and 
these are both substantially up-regulated upon activation 
[269]. In addition, expression of Tat was shown to signifi-
cantly increase the cellular pool of available P-TEFb. Tat is 
capable of disassembling the 7SK RNP by competing with 
HEXIM1 for binding to both Cyclin T1 and 7SK snRNA 
[105, 207, 218], and can then capture 7SK-evicted P-TEFb to 
support efficient viral transactivation (Fig. 6a). In addition, 
Tat promotes non-degradative ubiquitinylation of HEXIM1 
by the UBE2O ubiquitin ligase, which results in cytoplas-
mic retention of HEXIM1, which may impede reassembly 
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Fig. 6   Involvement of CDK9 in human disease. a CDK9 is a primary 
target of HIV-1. The virus-encoded protein Tat extracts P-TEFb from 
the 7SK/P-TEFb RNP and increases the level of active P-TEFb in 
infected cells. P-TEFb is then tethered to the viral genome through 
interaction with the TAR structure that forms at the 5′ end of the viral 
nascent RNA and serves as a landing pad for the P-TEFb/Tat/SEC 
complex. Once recruited, P-TEFb releases paused RNAPII in the 
same way as it does on host protein-coding genes. b In cardiomyo-
cytes, hypertrophic signals shift the equilibrium towards the P-TEFb 
active form. The resulting elevated CDK9 activity leads to the estab-

lishment of a hypertrophic transcription program and a global release 
of paused RNAPII into gene bodies. Elevated transcription leads to 
an increased level of mRNA and proteins and enlargement of cardio-
myocytes. c Misregulation of CDK9 activity can lead to development 
of cancers. P-TEFb drives the expression of key pro-survival genes 
such as C-MYC and MCL-1 (top). Mistargeting of P-TEFb by MYC 
or MLL-SEC fusion proteins promotes tumour-specific transcrip-
tional amplification (middle). P-TEFb represses tumor-suppressor 
genes through inhibitory phosphorylation of the BRG1 subunit of the 
BAF chromatin-remodeling complex
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of the 7SK/P-TEFb RNP [225]. Of note, the HTLV‐1 Tax 
transactivator protein also displaces P-TEFb from the 7SK 
snRNP, suggesting that 7SK RNP disassembly could be a 
wide-spread strategy used by viruses to promote viral gene 
expression [237]. Importantly, Tat and BRD4 form mutu-
ally exclusive complexes with P-TEFb as BRD4 interacts 
with the same region of Cyclin T1 as Tat [240, 250]. Con-
sequently, inhibition of BRD4 favors Tat/P-TEFb interac-
tion, increases HIV transcription and reactivates HIV from 
latency [270]. Thus, inhibitors of BRD4 such as JQ1 are 
good candidates to reactivate latent integrated proviruses to 
facilitate eradication of the viral reservoir. In contrast, CDK9 
inhibitors have been shown to be effective in suppressing 
replication of the virus, but their long-term cytotoxicity 
remains a serious obstacle to being broadly used in HIV 
treatment. Targeting the TAR RNA and/or the Tat/P-TEFb 
interaction surface could be used to inhibit HIV transcription 
[271]. Additional mechanistic insights into P-TEFb func-
tion and regulation may provide the opportunity to develop 
novel strategies to block RNAPII transcription of the HIV 
and other viral genomes in the near future.

P‑TEFb and cardiac hypertrophy

Cardiac hypertrophy is an adaptive response of the heart to 
mechanical overload and pressure, frequently seen in case of 
hypertension and myocardial infarction. It is characterized 
by an enlargement of the size of cardiac myocytes as a result 
of an overall increase in RNA and protein content [272]. 
P-TEFb appears to play a critical role in this process. Known 
hypertrophic signals, such as stimulation with endothelin-1 
or mechanical stresses, lead to disruption of the 7SK/P-TEFb 
complex and shift the P-TEFb equilibrium towards the active 
form [273, 274] (Fig. 6b). The molecular mechanisms that 
lead to P-TEFb de-repression under hypertrophic condi-
tions remain poorly understood, but likely involve activa-
tion of calcium-dependent (calcineurin) and Jak/STAT sign-
aling cascades [273, 274]. Disassembly of the 7SK RNP 
substantially increases the level of active P-TEFb in cells, 
where CDK9 activity is normally limiting [275], resulting 
in enhanced RNAPII transcription, increased mRNA/pro-
tein synthesis and cell enlargement. The SEC and BRD4 
are implicated in targeting P-TEFb to genes to stimulate 
RNAPII pause release genome-wide [276, 277] (Fig. 6b). 
Accordingly, a broad BRD4 redistribution occurs during 
establishment of the cardiomyocyte hypertrophic gene pro-
gram, with increased chromatin occupancy at promoters and 
super-enhancers [277, 278]. Consistent with a stimulation 
of productive elongation, the level of CTD phosphoryla-
tion, and in particular that of Ser2, rises under conditions 
of hypertrophic stress [274]. Besides globally activating 
RNAPII elongation, stimulation of CDK9 activity is also 
accompanied by a specific ‘hypertrophic’ transcriptional 

reprogramming (Fig. 6b). For instance, CDK9 is specifi-
cally targeted to cardiac hypertrophy-responsive promoters 
through association with important regulators of cardiomyo-
cytes proliferation such as GATA4 and MEF2 [260, 279]. 
Over-activation of P-TEFb also represses the promoter activ-
ity and subsequent expression of PGC-1 (peroxisome prolif-
erator-activated receptor-γ coactivator-1), a master regulator 
of mitochondrial function and biogenesis [280]. As a conse-
quence, constitutive activation of CDK9 leads to mitochon-
drial dysfunction, which engenders myocyte apoptosis and 
predisposes the patient to heart failure. Importantly, recent 
data indicate that the heart is refractory to Myc-driven tran-
scription due to the low P-TEFb availability in cardiomyo-
cytes [275]. Thus, abnormal P-TEFb activity in heart cells 
may profoundly reshape RNAPII transcription by allowing 
abnormal activation by various transcription factors, includ-
ing Myc.

Control of P-TEFb availability by the 7SK snRNP appears 
to be an essential mechanism for cardiomyocyte function 
and development. Accordingly, manifestation of cardiac 
hypertrophy can be recapitulated by artificial activation of 
P-TEFb in mice. For instance, the genetic deletion of the 
HEXIM1 murine homolog, CLP-1 (cardiac lineage protein 
1), results in embryonic lethality and mimics the characteris-
tics of cardiac hypertrophy [281]. Similarly, RNAi-mediated 
inactivation of 7SK RNA in cardiomyocytes induces CDK9 
activation and abnormal cell growth, and mice overex-
pressing Cyclin T1 also exhibit cardiac hypertrophy [274]. 
Finally, a recent study showed that 7SK destabilization 
through LARP7 knock-down also increases Ser2P phospho-
rylation and cardiomyocyte proliferation in zebrafish [282]. 
Together, these studies demonstrated that CDK9 is a pivotal 
regulator of the cardiomyocyte transcriptional program, the 
perturbation of which can lead to cardiomyopathies. Since 
CDK9 pharmacological inhibitors dampen hypertrophic sig-
nals [274], modulation of CDK9 activity may thus be a rel-
evant therapy for some kinds of heart failure [283]. Reducing 
CDK9 activity to normal baseline levels could theoretically 
reduce heart growth, reverse the adverse’hypertrophic’ tran-
scriptional program and restore mitochondrial function. 
From a scientific point of view, cardiac hypertrophy repre-
sents an ideal physiopathological model to interrogate the 
molecular mechanisms that govern sequestration of P-TEFb 
by 7SK/HEXIM, and may provide insights into the signaling 
cascades and post-translational modifications that modulate 
this critical transcriptional regulatory system.

P‑TEFb in cancers

Given that the P-TEFb-dependent transition into produc-
tive elongation is an abundantly exploited step in regu-
lating cellular gene expression, it is not surprising that 
CDK9 contributes to the progression and the maintenance 
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of many cancer types. Accordingly, P-TEFb hyperactivity 
promotes malignant transformation of fibroblasts in vitro 
and is associated with hematological, prostate, ovarian, 
mammary, hepatic, pancreatic and lung cancers [8]. Due 
to the broad requirement for P-TEFb during embryonic 
gene expression, genetic alterations affecting the CDK9 
or Cyclin T1 loci are relatively rare. Instead, cancers are 
often associated with increased CDK9 function resulting 
from modulation of CDK9 association with regulatory 
proteins and/or increased targeting to genes (Fig. 6c). 
Cancers are accompanied by a profound transcriptional 
reprogramming, and a large proportion of cancer cells dis-
play widespread effects on mRNA transcription elongation 
and processing [284].

Importantly, P-TEFb promotes transcriptional elonga-
tion of key signal-responsive genes that are themselves 
critical for proliferation, development and stress responses 
(Fig. 6c, top panel). Among genes whose expression is 
highly dependent on CDK9 activity are those encoding 
MYC, BCL2 (B cell lymphoma 2) and MCL1 (myeloid cell 
leukemia 1), which have been found to be over-expressed 
in a wide range of human malignancies and are thought to 
drive cell survival [8, 285]. Expression of these pro-survival 
genes is controlled by super-enhancer-mediated transcrip-
tion, which can be effectively inhibited by CDK9 inhibitors 
such as Flavopiridol [286]. Super-enhancers activate key 
oncogenic drivers in many tumor cells [287]. Interestingly, 
BRD4, the major CDK9 partner, is heavily loaded onto 
super-enhancers, including that of C-MYC, and could help 
to recruit P-TEFb to super-enhancer-regulated (onco)genes. 
Accordingly, BRD4 inhibition impairs CDK9 recruitment to 
MYC, reduces MYC transcripts levels, down-regulates Myc-
dependent target genes, and has anti-proliferative effects in 
cancer cells [253, 254, 288]. Thus, CDK9 and BRD4 have 
emerged as druggable targets for the development of cancer 
therapies, through suppression of constitutive expression of 
anti-apoptotic proteins.

Of particular significance is the physical interaction of 
P-TEFb with MYC [58]. c-Myc is a potent oncogene that 
drives proliferation by globally amplifying gene expression 
in a P-TEFb-dependent manner [58, 289] (Fig. 6c, middle 
panel). Mechanistically, Myc-mediated loading of CDK9 
to active genes is intensified in cells with high Myc lev-
els, boosting the production of transcripts and resulting in 
transcriptional amplification. Thus, the interplay between 
MYC and P-TEFb can contribute to the establishment of 
tumor-specific gene expression signatures in cancer cells. 
Incorporation of P-TEFb into the SEC is another source of 
transcriptional activation in MLL-associated leukemia. As 
a result of in-frame gene translocations, several components 
of the SEC, such as AFF1, AFF4, AF9, ELL1 and ENL, 
form chimeric fusion proteins with the mixed lineage leu-
kemia (MLL) protein [104, 290]. Consequently, SEC can 

be mis-targeted to MLL-dependent genes, where P-TEFb 
can release RNAPII into productive elongation in an uncon-
trolled manner (Fig. 6c).

Malfunction of the 7SK/P-TEFb regulatory machine 
that abnormally increases P-TEFb activity can also lead to 
uncontrolled growth. Low expression levels of 7SK RNP 
components have been associated with various types of 
human malignancies, including cervical, thyroid, gastric and 
breast cancer [291–293]. Accordingly, shifting the P-TEFb 
functional equilibrium towards the active state causes mam-
mary epithelial transformation [202]. Disruption of the 
P-TEFb functional equilibrium also promotes an epithe-
lial–mesenchymal transition (EMT), invasion and metasta-
sis of breast cancer cells by favoring the P-TEFb-dependent 
expression of EMT/metastasis-related genes [293]. Finally, 
frequent frameshift mutations in the LARP7 gene are found 
in gastric cancers, pointing to a tumor suppression function 
for LARP7 [202, 292]. Together, these observations sug-
gest that shifting back the P-TEFb equilibrium towards its 
inactive form may reduce proliferation and aggressiveness 
of cancer cells. In line with this, the anti-cancer activities 
(inhibition of growth, apoptosis) of BRD4 inhibitors have 
been shown to rely, at least in part, on transcriptional induc-
tion of the HEXIM1 gene, which allows recapture of P-TEFb 
into the 7SK inhibitory complex [294, 295].

Like CDKs in general, CDK9 targeting has been an active 
area of research in oncology, and a number of CDK9 inhibi-
tors have reached preclinical and clinical development [8]. 
Interestingly, CDK9 inhibition also reactivates, in multiple 
cancer cells, tumor-suppressive genes that were epigeneti-
cally silenced. Reactivation occurs through BRG1-mediated 
chromatin remodeling at promoters, and it was proposed that 
P-TEFb-mediated phosphorylation of BRG1 prevent the 
BAF complex being recruited to chromatin [164] (Fig. 6c, 
bottom panel). Thus, the anti-tumoral effects of CDK9 inhi-
bition can be attributed to both suppression of constitutive 
expression of anti-apoptotic proteins (such as MCL1 and/or 
MYC) and re-expression of tumor suppressor genes.

Concluding remarks

Releasing promoter-proximally paused RNAPII into produc-
tive elongation by P-TEFb is now recognized as a key regu-
latory step in gene expression. In the last decade, CDK9 has 
emerged as a critical coordinator of RNAPII transcription 
operating at multiple locations throughout the transcription 
unit. Mechanisms that dictate the duration of the pause and/
or regulate loading of P-TEFb onto selected promoters are 
currently being intensively dissected, since recruitment of 
active P-TEFb to genes seems to be the rate-limiting step 
for pause escape. Through coupling pause release with both 
initiation and termination, CDK9 has a major impact on 
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transcriptional outputs. As such, CDK9 represents an attrac-
tive target for cancer therapeutics [8], and there are great 
hopes that inhibition of CDK9 can be used to effectively 
and selectively restrict cell growth. The list of CDK9 targets 
and interactors continues to grow, unveiling new avenues of 
investigation. It is now critical to fully characterize the tran-
scriptional regulatory networks that are organized around 
CDK9 to understand how they are regulated during develop-
ment, stress or signaling-induced activation. The most recent 
advances have uncovered that phosphatases and termina-
tion factors can counteract CDK9 activity to regulate pause 
duration and finely control gene expression. A particularly 
important objective is now to fully characterize the complex 
interplay of P-TEFb and the other transcriptional kinases 
with phosphatase activities throughout the transcription 
cycle.
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