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Abstract
Ionotropic glutamate receptors (iGluRs) play key roles for signaling in the central nervous system. Alternative splicing and 
RNA editing are well-known mechanisms to increase iGluR diversity and to provide context-dependent regulation. Earlier 
work on isoform identification has focused on the analysis of cloned transcripts, mostly from rodents. We here set out to 
obtain a systematic overview of iGluR splicing and editing in human brain based on RNA-Seq data. Using data from two 
large-scale transcriptome studies, we established a workflow for the de novo identification and quantification of alternative 
splice and editing events. We detected all canonical iGluR splice junctions, assessed the abundance of alternative events 
described in the literature, and identified new splice events in AMPA, kainate, delta, and NMDA receptor subunits. Notable 
events include an abundant transcript encoding the GluA4 amino-terminal domain, GluA4-ATD, a novel C-terminal GluD1 
(delta receptor 1) isoform, GluD1-b, and potentially new GluK4 and GluN2C isoforms. C-terminal GluN1 splicing may be 
controlled by inclusion of a cassette exon, which shows preference for one of the two acceptor sites in the last exon. Moreo-
ver, we identified alternative untranslated regions (UTRs) and species-specific differences in splicing. In contrast, editing 
in exonic iGluR regions appears to be mostly limited to ten previously described sites, two of which result in silent amino 
acid changes. Coupling of proximal editing/editing and editing/splice events occurs to variable degree. Overall, this analysis 
provides the first inventory of alternative splicing and editing in human brain iGluRs and provides the impetus for further 
transcriptome-based and functional investigations.

Keywords  Next-generation sequencing (NGS) · Splicing error · Nonsense-mediated decay (NMD) · Single-nucleotide 
polymorphism (SNP) · C-to-U editing · Primate-specific

Introduction

The nervous system shows a remarkable degree of differen-
tiation, despite being built from a limited set of molecular 
and cellular entities. Splicing and RNA editing are important 
mechanisms to increase protein diversity and to adjust gene 
expression in a context-dependent manner. Splicing and edit-
ing are particularly widespread in the central nervous system 
(CNS) [1], where they contribute to differentiation [2, 3], 
synaptic organization [4], and the tuning of voltage-gated 
channels and receptors [5–7]. One important receptor fam-
ily is the family of ionotropic glutamate receptors (iGluRs).

iGluRs are tetrameric, neurotransmitter-gated ion chan-
nels, which relay excitatory signals and control synaptic 
plasticity in the CNS [8, 9]. In mammals, 18 different iGluR 
subunits have been described [10, 11], which are grouped 
into four subfamilies: AMPA receptors (subunits GluA1-4) 
[12, 13], kainate receptors (subunits GluK1-5) [14, 15], delta 
receptors (GluD1 and GluD2) [16], and NMDA receptors 
[17, 18]. NMDA receptors are obligatory heteromers of two 
GluN1 and two GluN2 (GluN2A-D) or GluN3 (GluN3A/B) 
subunits. Heteromer formation also appears to prevail within 
the AMPA and kainate receptor subfamilies, which allows 
for the integration of different functionalities within single 
receptor complexes [19–21].

With cloning of the first iGluR transcripts from RNA 
libraries (reviewed in [10]), editing and splicing were rec-
ognized as important mechanisms to increase the functional 
diversity of iGluRs. Prominent examples include the mutu-
ally exclusive splicing of AMPA receptor flip/flop exons 
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[22], which affects channel gating [23], and adenosine-to-
inosine (A-to-I) RNA editing in the GluA2 pore region (also 
in GluK1 and GluK2) [24], which causes a glutamine-to-
arginine (Q/R) substitution that abolishes the Ca2+ perme-
ability of receptors carrying these subunits.

Most reported splice events in iGluR transcripts affect 
functional receptor domains. iGluR subunits share a 
homologous domain structure and consist of an extracellu-
lar amino-terminal domain (ATD), an extracellular ligand-
binding domain (LBD), the channel-forming transmembrane 
domains (TMDs), and intracellular C-terminal domains 
(CTDs) [13, 25]. Glutamate binding at the LBDs closes the 
bi-lobed, clamshell-like LBDs, which induces the opening of 
the central ion pore. In AMPA and kainate receptors, gluta-
mate binding also causes subsequent desensitization (tempo-
rary receptor inactivation), which can be attributed to rear-
rangements of the LBD dimer interfaces. AMPA receptor 
flip/flop splicing, for instance, affects gating by modifying 
this LBD dimer interface and the linker region, which con-
nects the LBDs to the TMD [20, 26]. Most described splice 
events, however, affect the CTDs, which mediate interac-
tions with other synaptic proteins and which are extensively 
controlled by post-translational modifications [8, 9, 11, 27]. 
Alteration of the CTDs has also important consequences for 
receptor trafficking and turnover (e.g., [28–30]). Apart from 
changes to the protein sequence, splicing may also affect the 
5′- and 3′-UTRs, which have regulatory functions.

RNA splicing and editing are regulated by cell- and 
tissue-specific developmental programs [31–34]. This is 
particularly true for the brain, where splicing is intricately 
linked to neurogenesis and development [2, 3, 35], and 
where transcripts are known to differ between cell types 
and brain regions [1, 36–38]. The differential expression of 
iGluRs has been studied in great detail [39], along with some 
well-documented changes in iGluR splicing and editing. For 
instance, AMPA receptor flip isoforms are already expressed 
before birth, whereas flop variants become expressed postna-
tally [40]. GluA2 appears to become fully Q/R-edited during 
early neurogenesis [41, 42], whereas editing of the GluA2 
R/G and other iGluR sites increases in later development 
[43, 44]. Lack of GluA2 Q/R editing is lethal [45–47] and 
even reduced editing has profound consequences [48]. Also 
activity-dependent changes in splicing and editing have been 
reported for GluA2 [49, 50]. Furthermore, many diseases 
have been linked to alterations in splicing (including splicing 
of iGluRs), which may influence the progression of these 
pathologies (see, e.g., [34, 51–55]).

Despite the widespread occurrence of iGluR splicing 
and editing, a systematic analysis is lacking, so far. The 
known iGluR isoforms were mostly identified by clon-
ing of rodent transcripts, but information on their abun-
dance often remains sparse and several reported isoforms 
appear to play only minor roles. Moreover, most research 

has focused on splicing events that appear to maintain 
the structural integrity of iGluRs. Databases such as 
GENCODE list numerous other transcripts, namely tran-
scripts with alternative untranslated regions (UTRs), tran-
scripts that may be subject to nonsense-mediated decay 
(NMD) [56], and/or transcripts that may simply reflect 
erroneous splicing events. However, without consistent 
abundance information and annotations, it remains diffi-
cult to assess the role of individual isoforms. Quite impor-
tantly, it also remains unclear, how findings from rat and 
mice extrapolate to humans, since splicing and editing are 
highly variable between species (see, e.g., [57–60]), even 
within primates [61, 62].

In the last decade, next-generation sequencing (NGS) 
emerged as a powerful method to analyze splicing and 
editing on a transcriptome-wide level: Exon-spanning 
reads provide direct information for identifying splice 
junctions, and the number of mapped reads can be used 
to infer information on the junction abundance and the 
coverage of the corresponding exons (Fig. 1A). Similarly, 
RNA editing can be inferred from nucleotide mismatches 
between RNA-Seq reads and genomic sequences [63]. The 
detection of alternative splice events is now part of many 
automated pipelines ([64, 65]; see also Ensembl and GTEx 
databases), but even for small gene families, manual anno-
tation and analysis are required for obtaining a meaningful 
overview.

Here, we set out to perform a systematic and comprehen-
sive analysis of iGluR splicing and editing in humans. Using 
datasets from different brain regions that had been acquired 
in two large-scale RNA-Seq studies [66, 67], we obtained 
consistent abundance information for novel splice events as 
well as for splice events that were described for rat, mouse, 
or human or had been annotated automatically. We found 
that some reported events occur rather rarely and identified 
differences between splicing in rodent and primate species. 
Moreover, our exhaustive de novo identification of splice 
junctions revealed several new splice events, which occur 
with medium-to-high frequencies, pointing to the existence 
of several, hitherto unknown isoforms, as for instance con-
firmed for an alternative GluD1 isoform, GluD1-b, and a 
GluA4-ATD variant. Finally, we investigated RNA editing of 
human iGluR transcripts and analyzed the interdependence 
of close-by splicing and editing events.

Materials and methods

We here give a brief method summary; full descriptions of 
the workflow (Fig. S1), bioinformatics tools, and individual 
parameters are given as Supplementary Information (SI) 
Methods.
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RNA‑Seq data and canonical isoforms

RNA-Seq datasets from human brain tissues (compare SI 
Table S1) were prefetched from the Sequence Read Archive 
(SRA, NIH) using SRA Toolkit 2.8.2. These datasets origi-
nate from RNAs that were extracted by poly(A) selection 
(593.7 Gb, [66]) or ribosomal RNA depletion (99.8 Gb, 
[67]) and subjected to paired-end sequencing (Wu et al. 
[66]: 100 nt read length, Illumina HiSeq 2000; Labonté, 
et al. [67]: 50 nt read length, Illumina HiSeq 2500). For 
referencing purposes, canonical transcripts were defined 
(Table S2), which typically encompass the most frequent 
splice junctions.

Alignments, quality control, and initial analysis

TopHat 2.1.0 [68] was used to align the reads to the human 
genome assembly hg38 GRCh38.p10 (Genome Reference 
Consortium) or to a reduced user-defined reference genome 
(udrg), which is based on the hg38 and encompasses the 18 
iGluR genes with ± 1 Mbp flanking regions (see SI Methods 
and Fig. S1). Sorting and indexing of aligned reads were 
performed with SAMtools 0.1.19 [69]. Data quality was 
assessed with respect to overall read-mapping rates, junction 
information, and read quality (see Fig. S2) using RSeQC 
[70] and custom-written MATLAB scripts. The SAMtools 

mpileup function was used to analyze the nucleotide cover-
age (see SI Methods).

Analysis of iGluR splice junctions

First, we obtained all known iGluR transcripts from the 
Ensembl 94 annotation [71] and extracted the correspond-
ing splice junctions to an in-house isoform database. All 
junction-spanning reads identified during the alignments 
were then compared against the known splice donor and 
acceptor sites using a custom-written MATLAB pipeline. 
We identified and counted reads that match to known iGluR 
junctions (being part of Ensembl transcripts) and reads that 
indicate primary new junctions, i.e., those that encompass 
new donor–acceptor combinations or one new splice site 
(Fig. S4A). New splice sites served for the subsequent iden-
tification of secondary new junctions, i.e., junctions that 
encompass two new splice sites (cf. SI Methods). All iden-
tified junctions are listed in Table S4.

Normalization

Canonical splice junction counts were normalized to the 
mean of all canonical junctions belonging to that gene 
(Fig. 2A and Fig. S5A). Where possible, alternative junc-
tion counts were normalized to the canonical junction/s with 
identical splice site/s. Alternative junctions with two new 

single nucleotide coverage

AMPARs

KARs

δRs

NMDARs

10-1 100 101 102 103 10 104 5

GRIA1

5' exon
3' exon

GRIA2

GRIA3

GRIA4

GRIK1

GRIK2

GRIK3

GRIK4

GRIK5

GRID1

GRID2

GRIN1

GRIN2A

GRIN2B

GRIN2C

GRIN2D

GRIN3A

GRIN3B

BA
RNA-Seq
reads

alignment

RNA
splicing

RNA
editing

...G C G C T A C A T A G...

G
G

read
spliced read

exon
intron

~50/100 bp

reference genome
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splice sites were normalized to the closest canonical junc-
tion. The junction abundance was evaluated on the basis 
of individual datasets (local abundance) with sufficient 
coverage (see SI Methods) as well as globally, using the 
sum over all 35 analyzed data sets (Table S4). More abun-
dant (‘relevant’) splice junctions (for criteria see main text) 

were evaluated manually, see Fig. 2 and Tables 1–4. We 
further tested for sex-specific differences using the data by 
Labonté et al. [67], but observed no statistically significant 
differences in the junction counts and local abundance (cf. 
SI Methods and Table S5). Specific MegaBLAST queries 
on RNA-Seq datasets from chimpanzee, macaque, rat, and 
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Fig. 2   Analysis of canonical, known, and newly identified iGluR 
splice junctions. A All 259 known canonical junctions were identi-
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subunit shows that canonical junctions belonging to a gene occur with 
rather similar abundance (see also Fig. S7A). B Most known alter-
native splice junctions from previously annotated transcripts were 
identified (93/120), but only 46 were classified as relevant based on 
our abundance criteria (blue). Normalization was performed with 

respect to the corresponding canonical junctions, see Methods. C 
Another 772 junctions were newly identified using a de novo iden-
tification approach, but based on their relative abundances, only 19 
were classified as relevant (blue). D The relevant alternative junctions 
correspond to different events and iGluRs: C, alternative combination 
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alternative acceptor site; DA, alternative acceptor and donor sites. For 
splice site analysis see Fig. S6
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mouse (Fig. S12–S20, S22 and Table S6) are described as 
SI Methods.

Analysis of RNA editing events

De novo identification of potential iGluR editing sites was 
based on variant calling using SAMtools mpileup (Fig. 
S24). Only frequent mismatches were considered and base 
exchanges had to be consistent with A-to-I or C-to-U editing 
(Table S7, Fig. 5A and SI Methods). The remaining mis-
match positions were compared to known SNPs listed in the 
dbSNP (NIH) taking their reported abundance into account 
(Fig. S25). Figure 5B shows unequivocal editing positions 
in coding regions (see SI Methods and Table S7).

Analysis of splicing and editing relationships

The combination of splicing events at the GluN1 C-terminus 
(Fig. 4) was analyzed using Pearson correlation analyses. 
Possible relations between proximal editing sites as well 
as between editing and close-by splice events (Fig. 5C,D) 
were analyzed using MegaBLAST [72] searches. Here the 
datasets were queried with specific sequences (40 nt) that 
encompassed the corresponding RNA editing or splicing 
events (Table S8).

RT‑PCR analysis of selected splice events

The presence/absence of selected exons was verified in inde-
pendent human RNA samples purchased from BioChain 
using RT-PCR (Fig. 3D,E and Figs. S12D, S16C,D and 
S18D,E). cDNAs were prepared using the Maxima H Minus 
First Strand cDNA Synthesis Kit (Thermo Scientific) and 
non-saturating PCRs were performed using exon-spanning 
primer pairs. Semi-quantitative analysis of gel images was 
made with ImageJ 1.51f. For details see SI Methods.

Results

iGluR transcripts in RNA‑Seq data from human brain 
tissues

For our study, we chose 35 different publicly available RNA-
Seq datasets from two unrelated large-scale transcriptome 
studies [66, 67]. In total, the datasets comprised 8.18∙109 
reads of 50 or 100 nt length from different brain regions 
and individuals (693.5 Gbases; see Table S1 and Fig. S1). 
Alignment to the human reference genome hg38 showed rea-
sonable overall data quality (see SI Methods, Fig. S2). Only 
a low percentage of reads mapped to intronic sequences, 

as expected for reads that mostly originate from processed 
transcripts. Subsequent analyses were performed with a 
user-defined reference genome, which only encompassed the 
iGluR genes and adjacent chromosomal regions (± 1 Mbp; 
see SI Methods).

To compare the transcript abundance of the different 
iGluRs, we determined the mean single-nucleotide cover-
ages of their canonical exons across all datasets (Fig. 1 and 
Tables S2, S3). The highest coverage was obtained for exons 
belonging to the NMDA receptor subunit GluN1 (GRIN1), 
which were covered on average with 30,080 reads per nucle-
otide position. The median iGluR average coverage was 
1,848 reads per nucleotide position. GRIN2D and GRIN3A 
exons showed an average single-nucleotide coverage < 500; 
GRIN3B was hardly detectable (Fig. 1B).

As expected, transcript expression differed between dif-
ferent datasets and preparation methods (Fig. S3). Still, it 
should be noted that individual datasets cannot provide reli-
able information for comparing iGluR expression in different 
brain regions. Nevertheless, with the exception of GRIN3B, 
the aggregated data should allow for reliable detection and 
quantification of splice junctions as well as nucleotide mis-
matches caused by RNA editing.

Detection and analysis of splice junctions

Our aim was to identify and quantify iGluR splicing using 
direct experimental information. We thus focused our 
analysis on sequencing reads that mapped to splice junc-
tions: These reads align at two distant gene regions, thereby 
revealing the corresponding splice donor and acceptor sites 
(Fig. 1A and Fig. S4).

From our alignment, we extracted 1,747,402 junction-
spanning reads, which contained 1124 unique iGluR junc-
tions (Table S4). A large fraction of these junctions were 
sampled rarely (55% in ≤ 10 reads; Fig. S5), but all shared 
the characteristics of major spliceosome U2 donor and 
acceptor splice sites (Fig. S6). We continued by classify-
ing each junction as either (i) belonging to a canonical (ref-
erence) isoform, (ii) being an alternative junction, which 
has already been part of a human transcript reported in the 
Ensembl database (GENCODE; [71], or (iii) being a newly 
identified junction (Fig. 2A–C). Details on the workflow and 
de novo identification of splice junctions are reported in the 
Methods section.

For referencing purposes, we defined canonical 
iGluR isoforms, which typically represent the most fre-
quent splice events (all are human Ensembl transcripts; 
Table S2). We detected all iGluR junctions belonging 
to the canonical isoforms (259/259), most of them with 
high coverage (Fig. S5, S7). The canonical junctions of 
GRIN1, which is the highest expressing iGluR gene, were 
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covered with 17,541–78,603 reads. Even for low express-
ing iGluRs, such as GRIN2D and GRIN3A, we detected 
60–967 reads per junction. Only the junctions of GRIN3B, 
which shows extremely low transcript levels (Fig. 1B), 
were covered poorly, i.e., with only a few reads. Within 
individual iGluR genes, the canonical junction abundance 
was rather uniform, as seen by a narrow distribution after 
normalization to the respective mean abundances (stand-
ard deviation 0.42; Fig. 2A and Fig. S7).

Besides the canonical junctions, we also detected 93 
known alternative iGluR splice junctions out of 120 alter-
native junctions that were present in the human transcripts 
in the Ensembl database (Fig. 2B). To estimate the relative 
abundance of alternative junctions, we normalized their read 
counts to the corresponding canonical junctions. In cases, 
where this was not possible, we used the closest canonical 
junction for normalization (see SI Methods). Normalization 
shows that a large Fraction of the known alternative junc-
tions occurs rather rarely, as 58% (54/93 junctions) had a 
relative abundance ≤ 0.05 (Fig. 2B). We thus limited our 
subsequent analysis to more abundant events: We classified 
junctions as likely relevant, if they were covered with ≥ 35 
reads, and if they had either an overall (global) abundance 
of ≥ 0.05 or were clearly enriched in individual datasets 
(local abundance ≥ 0.15). These criteria were met by 46 of 
the 120 known alternative iGluR junctions (38%) (Fig. 2B), 
i.e., based on these criteria, more than half of the reported 
splice events may only play a minor role in adult human 
brain.

In addition to 352 known splice junctions, we detected 
772 novel splice junctions (Fig. 2C). Of those, 728 encom-
pass known donor and/or acceptor sites (primary novel junc-
tions), and 44 contain both, a new donor and a new acceptor 
site (secondary novel junctions; Fig. S4A). However, most 
newly identified splice junctions had negligible abundance: 
Only 2.5% (19/772 junctions) met our relevance criteria and 
were analyzed further. The large number of low-abundance 
junctions likely reflects erroneous splice events, i.e., noise 
[73]. In any case, it seems unlikely that we missed splicing 
events within our datasets that would have met our relevance 
criteria, since the number of unique canonical and relevant 
iGluR junctions saturated early (Fig. S8).

We next analyzed how the relevant alternative junctions 
differed from the canonical transcript junctions (Fig. 2D). 
In 37% (24/65 junctions), an alternative donor site (D) was 
present, in 34% (22/65) an alternative acceptor site (A), 
and in 20% (13/65) both an alternative donor and acceptor 
site (DA), which argues against particular detection biases. 
The remaining junctions, 9% (6/65), showed an alternative 
combination of canonical donor and acceptor sites (C), i.e., 
an exon skipping event. Applying our relevance criteria, 
we detected alternative splicing of all human iGluR genes, 
except for GRIK3, GRID2, GRIN2D, GRIN3A, and GRIN3B 

(Fig. 2D). Most relevant junctions were linked to either 
known or novel exons (Tables 1–4; Fig. S4B); only for 3/65 
junctions we were not able to trace the junction to another 
exon, i.e., they appeared to recede in intronic regions. In 
the following sections, we summarize the relevant splicing 
events observed in AMPA, kainate, delta, and NMDA recep-
tors and compare them to literature data.

Alternative splicing of AMPA receptor subunits

The relevant splice junctions belonging to the GRIA1-4 
genes are shown in Table 1; for rare events, see Table S4. 
Information on the canonical reference isoforms is given in 
Table S2.

The AMPA receptor subunit GluA1 was the first cloned 
iGluR [74], which was followed by the identification of 
the subunits GluA2, GluA3, and GluA4 [10, 75]. At the 
same time, it was recognized that all four GluA subunits are 
expressed as flop and flip isoforms, due to the inclusion of 
mutually exclusive exons of 115 nt length [22]. The corre-
sponding flop and flip segments (38 aa) differ in 8–10 amino 
acid (aa) residues and are located at the end of the LBD S2 
segment, where they contribute to the LBD dimer interface 
[26, 76] and the S2-TM4 linker region [20]. The flop/flip 
isoform choice can have pronounced effects on desensitiza-
tion [20, 23, 77], assembly and trafficking [78–80], as well 
as regulation by allosteric modulators, anions, and TARPs 
[26, 76, 81]. As expected, we identified junction-spanning 
reads for inclusion of the flop or flip exons in all four AMPA 
receptors (Table 1). The ratios of flop to flip junctions varied 
across datasets (Figs. S9, S10A), which is consistent with 
reported expression preferences in different brain regions 
and cell types [22, 23, 37, 40, 82, 83]. However, overall, 
flop and flip transcripts were detected at similar abundance 
(Table 1). Flop/flip splicing is thus one of the most frequent 
alternative splice events in iGluRs (Fig. S9), which under-
lines its physiological importance. The regulatory mecha-
nisms of flop/flip splicing remain unknown, but activity-
dependent changes were observed after neuronal silencing 
with TTX [49] and in a mouse model of Rett syndrome [53].

Next to the junctions that indicate proper splicing of the 
flop or flip cassettes, we also found junctions, which link the 
flop and flip exons (GRIA2 (d) 12%, GRIA3 (c) 11%, GRIA4 
(g) 5%, Table 1; for GRIA1 0.7%, Table S4). Inclusion of 
both exons results in a frameshift introducing an early stop 
codon just before TM helix 4 (GluA1 806 aa; GluA2 813 
aa; GluA3 824 aa; GluA4 814 aa) and points to erroneous 
and/or incomplete splicing. These transcripts should be 
degraded by nonsense-mediated decay (NMD), since the 
premature stop codon is followed by several downstream 
splice junctions > 50 bp away [56]. In contrast, the numbers 
of junctions pointing to simultaneous removal of both the 
flop and flip exon were rather low for all subunits (global 
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Table 1   Alternative AMPA receptor splicing

alternative junction site1 state2 abundance3

global / max isoform description

GRIA1  chr 5, forward

GluA1-flop: 
16 exons, 5708 bp, 906 aa
a  153770415-153795476 A C 0.68 13.70 mutually exclusive splicing (-flop / +flip ; -/+115 nt):

GluA1-flip, 906 aa [22] (Fig. S10A)b  153795590-153802356 D C 0.34 5.25

c  153490449-153490929 DA T 0.05 0.31 and acceptor site in e1 (-383 nt):
N-terminal truncation (first 69 aa or more missing)

GRIA2  chr 4, forward

GluA2-flop, short:
16 exons, 3445 bp, 883 aa 
a  157361652-157362799 D C 0.70 6.25 mutually exclusive splicing (-flop / +flip ; -/+115 nt):

GluA2-flip, 883 aa [22] (Fig. S10A)b  157360143-157361538 A C 0.66 2.77

c  157221011-157221667 D T 0.21 1.77 alternative donor site in e1 (-119 nt):
N-terminal truncation (first 47 aa or more missing)

d  157361124-157361538 A T 0.12 0.30 flop+flip exon inclusion (+115 nt):
frameshift and truncation (813 aa; before TM4), NMD expected4

e  157220725-157221667 D T 0.06 0.15 alternative first exon (58 nt):
N-terminal truncation (first 47 aa or more missing)

f  157360143-157360709 A T 0.04 0.81 cassette exon inclusion (+41 nt):
frameshift and truncation (777 aa), NMD expected4 (Fig. S10B)g5 157360749-157361010 D T 0.01 0.05

h  157362933-157363435 D C 0.02 0.17 alternative donor site in e15 (-114 nt):
GluA2-long, 901 aa, alt. CTD [84] (Fig. S11)

i  157220144-157220908 DA T 0.01 0.15 alternative exon (242 nt) + acceptor site in e2 (-144 nt): 
alternative 5'-UTR

GRIA3 chr X, forward

GluA3-flip:
16 exons, 4943 bp, 894 aa

a  123465112-123465674 A C 0.95 2.00 mutually exclusive splicing (+flop / -flip ; +/-115 nt):
GluA3-flop, 894 aa [22] (Fig. S10A)b  123465788-123482799 D C 0.65 1.22

c  123465788-123480063 D T 0.11 0.40 flop+flip exon inclusion (+115 nt):
frameshift and truncation (824 aa; before TM4), NMD expected4

d  123185990-123202636 A T 0.06 0.32 2 alternative exons (147 + 284 nt):
-UTR with PAS6e  123202782-123204400 DA T 0.04 0.28

f5 123465013-123465674 D C <0.01 0.03 alternative donor site in e13 (-99 nt):
sGluA3, 861 aa, 33 aa deletion in LBD S2 [89]

GRIA4  chr 11, forward

GluA4-flip, long:
17 exons, 5508 bp, 902 aa

a  105910545-105911876 A T 1.94 11.40 alternative last exon (1235 nt) with stop codon -UTR:
truncated protein GluA4-ATD (433 aa) (Fig. S12)

b  105966061-105974310 D C 1.11 6.10 mutually exclusive splicing (+flop / -flip ; +/-115 nt):
GluA4-flop, 902 aa [22] (Fig. S10A)c  105933969-105965947 A C 0.92 3.00

d  105974557-105979575 D C 0.40 1.53 alternative donor site of e16 (+113 nt): GluA4-short, 884 aa, 
alternative CTD [91, 92] (Fig. S11)

e  105945501-105965947 DA T 0.16 0.16 cassette exon inclusion (+39 nt): 
frameshift and truncation (771 aa), NMD expected4 (Fig. S10B)f  105933969-105945463 A T 0.13 0.09

g  105966061-105971914 D T 0.05 0.09 flop+flip exon inclusion (+115 nt):
frameshift and truncation (814 aa; before TM4), NMD expected4

h  105610023-105610908 D T 0.02 0.29 alternative first exon (30 nt): alternative 5'-UTR
1 splice sites different from canonical transcript;
2 state: C = characterized; T = part of annotated transcript; N = new junction;
3 abundance rel. to canonical junction/s (global = across all datasets; max = maximal local abundance);
4 potential NMD transcript: exon junction complex (EJC) more than 50 nt downstream of termination codon;
5 junction does not fulfill relevance criteria (supplementary junction);
6 PAS = polyadenylation signal;
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abundance < 1%; Table S4). These events again result in a 
frameshift, early truncation, and likely NMD. For GRIA2 
and GRIA4, we detected additional junctions into and out 
of another cassette exon, which is located right before the 
flop exon (GRIA2 (f, g) and GRIA4 (e, f), Table 1). Also 
these transcripts code for truncated subunits and should be 
subject to NMD. Interestingly, these cassette exons are not 
conserved between GRIA2 and GRIA4, but across species 
(Fig. S10B).

For GRIA1, only one other splice junction met our rel-
evance criteria, namely splicing from an alternative 5’-UTR 
exon to an alternative acceptor site in canonical exon 1 
(GRIA1 (c), Table 1). However, this transcript would result 
in an N-terminally truncated subunit, as it lacks the original 
start codon, signal peptide, and a part of the ATD.

Also splicing in the AMPA receptor C-terminal regions 
is partly conserved between different subunits, which is 
exemplified by the GluA2-long isoform (901 aa) [84]. This 
isoform results from an alternative splice donor site in the 
penultimate exon, which prolongs the reading frame to a 
stop codon in the last canonical exon. The C-terminus of 
GluA2-long lacks the C-terminal type II PDZ binding motif 
[85] and is homologous to the C-terminus of the canonical 
GluA1 and the GluA4-long isoform (Fig. S11). We detected 
the GluA2-long junction in 18/35 human datasets, but with 
low frequency compared to the corresponding canonical 
junction (global abundance 2%; Table 1). Also in rat, this 
isoform was reported to occur at < 10% abundance [84].

Several studies addressed variations in the 5′- and 
3′-UTRs of GRIA2, which include a polymorphic GU-repeat 
domain in humans [84, 86] and different polyadenylation 
sites in the 3′-UTRs [87], which contain regulatory micro-
RNA binding regions (see [88]). In addition, we found alter-
native splicing in the 5′-UTR (Table 1). However, two of 
these events, GRIA2 (c) and (e), would result in N-terminally 
truncated receptors without signal peptides; the third one 
occurs rather rarely (GRIA2 (i)).

GluA3 is subject to flip/flop splicing as described above 
(Table 1). A GluA3-long isoform does not exist, since the 
corresponding alternative 5’-donor site is missing in GRIA3 
(Fig. S11; [84]). Apart from this, we detected junctions 
to two alternative exons, which, however, would result in 
a drastically shortened and altered ORF encoding 144 aa 
(GRIA3 (d, e)). Another GluA3 variant with a dominant-
negative phenotype has been described to occur in the rat 
cochlea [89, 90]. In humans, this isoform would result from 
an alternative donor site in exon 13 (GRIA3 (f)), but in brain 
datasets, the corresponding junction was only present at low 
levels (< 1%; Table S4).

For GluA4, in addition to flip/flop splicing, alterna-
tive splicing is known to produce two C-terminal iso-
forms, GluA4-long (902 aa) and GluA4-short (884 aa; also 
named GluA4-c) [91, 92]. The GluA4-short C-terminus is 

homologous to the C-termini of GluA2-short (the canoni-
cal GluA2 isoform) and GluA3 (Fig. S11). In rodents, the 
GluA4-long isoform may prevail, since GluA4-short tran-
scripts were mainly observed in the cerebellum [91]. In 
humans, however, we detected the corresponding GluA4-
short junction (GRIA4 (d), Table 1) frequently and almost 
ubiquitously in 31 of 35 datasets occurring with a global 
abundance of ~ 40% (Fig. S9), which is in line with previ-
ous RT-PCR data [92]. Despite the abundance and loss of 
a PDZ binding motif in GluA4-long (Fig. S11C; [85, 93]), 
the physiological role of GluA4 C-terminal splicing has not 
been investigated so far.

Quite surprisingly, also no literature information can 
be found for an alternative GRIA4 splice junction that we 
detected at high abundance (194%) in all neuronal human 
datasets (GRIA4 (a), Table 1 and Fig. S9), but also in RNA-
Seq data from other primate and murine species (Fig. S12). 
This junction connects canonical exon 10 to an alternative 
exon, which introduces an early stop codon after 433 aa fol-
lowed by an alternative 3′-UTR and a polyadenylation signal 
(PAS) (Table 1 and Fig. S12). The resulting protein, which 
we termed GluA4-ATD (49 kD), would encompass the sig-
nal peptide and ATD of the full-length receptor followed by 
an additional 10 aa tail with a partly unique sequence (Fig. 
S12C). Using RT-PCR analysis with exon-specific primers, 
we independently confirmed the presence of the transcript 
in RNA from different human brain regions (Fig. S12D). 
Furthermore, mass spectrometric data suggest that this unu-
sual isoform is expressed on the protein level, as we found a 
specific peptide matching the alternative GluA4-ATD (Fig. 
S12E) in a human brain proteome search [94, 95]. Future 
studies will have to address the expression of the GluA4-
ATD isoform and possible physiological functions. In this 
context, it may be interesting to note, that the GluA4 ATD 
is involved in pentraxin interactions [96, 97]. Less frequent 
GRIA4 splicing events include the usage of an alternative 
5′-UTR exon (GRIA4 (h)), and inclusion of a 39 nt cassette 
exon before the flop exon (GRIA4 (e, f)), see flip/flop splic-
ing; Fig. S10B).

Alternative splicing of kainate receptor subunits

Several splicing events have been described for kainate 
receptors [15], most of them for the GluK1 subunit. When 
GluK1 was first cloned from rat [98], two isoforms were 
identified, GluK1-1 and GluK1-2. These isoforms differ by 
the inclusion of a cassette exon that codes for a 15 aa inser-
tion close to the end of the ATD (Table 2; Fig. S13AB). 
Although this insertion is not seen in any other iGluR, it 
appears to prevail in GluK1, as we detected the junctions 
corresponding to GluK1-1 more frequently than the more 
typical GluK1-2 junction (GRIK1 (a)), which occurred 
at 53% abundance compared to GluK1-1. In ‘fetal brain’, 
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Table 2   Alternative kainate receptor splicing

alternative junction site1 state2 abundance3

global / max isoform description

GRIK1  chr 21, reverse

GluK1-1b:
17 exons, 3234 bp, 920 aa

a  29591225-29598830 C C 0.53 3.35 exon 9 skipping (-45 nt): GluK1-2, 905 aa, 15 aa deletion in the ATD
[98] (Fig. S13)

b  29537884-29555052 A C 0.30 0.93 cassette exon inclusion (+87 nt): 
GluK1-c, 949 aa, alternative CTD [101]c  29537385-29537798 D C 0.24 0.76

d  29553704-29555052 A C 0.03 0.48 alternative last exon (453 nt):
GluK1-d, 918 aa, alt. CTD [102] -UTR with PAS5

e  29689985-29939383 C N 0.05 0.32 exon 2 skipping (-168 nt):
864 aa, 56 aa deletion at N-terminus of ATD

f7 29537778-29555052 A P n.d. n.d. alternative last exon (73 nt):
GluK1-a, 871 aa, alt. CTD [98]; no PAS5 in ae 

GRIK2  chr 6, forward

GluK2-a:
16 exons, 4789 bp, 908 aa

a  101393837-101398985 DA C 0.18 1.03 alternative exon (81 nt) and acceptor site in e1 (-197 nt):
alternative 5'-UTR (cf. [110]) (Fig. S14)

b  102055580-102063962 A C 0.08 0.50 cassette exon inclusion (+87 nt): 
GluK2-b, 869 aa, alt. CTD [107]c  102064048-102068347 D C 0.07 0.26

d  101686353-101744599 A T 0.07 0.24 AluSp element:
alternative ending (after 353 aa) and -UTR with PAS5

e  101620263-101621949 D N 0.06 0.24 cassette exon inclusion (+171 nt):
truncation (stop after 47 aa), NMD expected4f7 101399392-101620093 A N 0.01 0.05

g  102065928-102068347 D C 0.01 0.19 cassette exon inclusion (+132 nt):
GluK2-c, 892 aa, alt. CTD [108]h7 102055580-102065797 A C 0.04 0.12

GRIK3  chr 1, reverse

GluK3:
16 exons, 9101 bp, 919 aa

a 36804618-36804987 / T 0.096 / prolonged exon 15 (+369 nt): 872 aa, alternative CTD and -UTR with 
PAS5 (Fig. S15); differs from murine GluK3-b [112]

GRIK4  chr 11, forward

GluK4:
21 exons, 5861 bp, 956 aa
a  120575904-120576388 DA T 0.25 0.19

alternative 5'-UTRb7 120576563-120653685 D N 0.07 0.09

c  120576563-120577002 DA N 0.15 0.08 alternative acceptor site in intron (no exon identified):
no defined ORF

d  120874218-120875143 A N 0.09 0.18 alternative acceptor site in e11 (-4 nt):
frameshift and truncation (374 aa; in ATD), NMD expected4 

e  120836844-120874066 C N 0.06 0.20 exon 9 skipping (-162 nt):
GluK4-2, 902 aa, 54 aa deletion in lower ATD part (Fig. S16)

GRIK5 chr 19, reverse

GluK5-a:
20 exons, 3308 bp, 980 aa 

a  42065387-42065714 D N 0.07 0.17 alternative donor site in e2 (-22 nt):
frameshift and truncation (57 aa), NMD expected4

b  42006810-42042552 C N 0.03 0.28 exons 13-15 skipped (-114-110-174 nt):
frameshift and truncation (523 aa; until LBD S1), NMD expected4 

c7 42002546-42003332 A T <0.001 0.05 (761 nt): 
GluK5-b, 981 aa, alt. -UTR with PAS5 (Fig. S17)

1 splice sites different from canonical transcript (C = novel combination);
2 state: C = characterized; T = part of annotated transcript; N = new junction; P = described but not detected (n.d.);
3 abundance rel. to canonical junction/s (global = across all datasets; max = maximal local abundance);
4 potential NMD transcript: exon junction complex (EJC) more than 50 nt downstream of termination codon;
5 PAS = polyadenylation signal;
6 based on coverage analysis due to lack of a specific splice junction;
7 junction does not fulfill relevance criteria (supplementary junction);
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however, the GluK1-2 isoform was threefold more abundant 
(Table S4). Queries of datasets from other species suggest 
similar overall abundances (Fig. S13C). Interestingly, the 
physiological and functional implications of GluK1-1/2 
splicing remain unknown. The affected ATD/LBD-linker 
region has modulatory functions in other iGluRs (NMDA 
receptors; [99]), but experimental data are only available 
for the GluK1-2 isoform, with the exception of a study that 
reported a different sensitivity of GluK1-1 towards NS3763, 
a non-competitive inhibitor [100].

Moreover, four C-terminal GluK1 variants, GluK1-a–d, 
have been described [98, 101, 102]. In all analyzed human 
datasets (except ‘dura mater’), the GluK1-b isoform [98] 
junction was the most abundant junction. We thus defined 
GluK1-1b as canonical isoform [29, 103]. Also the two junc-
tions reporting on the GluK1-c isoform occurred frequently 
in humans (24% and 30% abundance, respectively; GRIK1 
(b,c)) Table 2) and other species (Fig. S13D). GluK1-c is 
known for poor trafficking in heterologous systems, but 
may play an important role in controlling presynaptic inhi-
bition at immature synapses [104]. The junction encoding 
the GluK1-d isoform (GRIK1 (d)) was only enriched in a 
single dataset (‘subiculum’), and we did not detect a single 
junction-spanning read for GluK1-a (GRIK1 (f)), which is 
the shortest reported GluK1 isoform [101]. Specific queries 
showed that this isoform is also weakly expressed in mouse 
and rat brain (< 2% abundance; Table S6; Fig. S13D), which 
is in agreement with earlier studies that detected GluK1-a in 
the spinal cord and brain stem, but not the mouse forebrain 
[29, 104, 105]. Notably, the annotated GluK1-a 3′-UTR in 
human, mouse, and rat lack a polyadenylation signal. Never-
theless, most functional data reported in the literature were 
obtained with the GluK1-a isoform, as it shows favorable 
trafficking in heterologous expression systems. Besides 
known splicing variants we also detected skipping of canoni-
cal exon 2 (GRIK1 (e)), which preserves the signal peptide 
but deletes 56 aa in the N-terminal part of the ATD (864 aa), 
but overall this event occurs rather rarely.

For GluK2, two alternative isoforms, GluK2-b and 
GluK2-c, are known, which differ in their CTDs compared 
to the canonical GluK2-a isoform, due to the inclusion 
of different cassette exons before the last canonical exon 
[106–108]. In human datasets, the GluK2-a junction pre-
vailed (Table 2), while we detected the two GluK2-b specific 
junctions (GRIK2 (b,c)) with ~ 8% abundance (see also Fig. 
S9). GluK2-a is known for particularly effective membrane 
trafficking [29], whereas heteromer formation with GluK2-
b is thought to allow for additional intracellular interac-
tions, e.g., with Ca2+ signaling associated proteins [109]. 
We detected also detected reads belonging to the GluK2-c 
isoform junctions (GRIK2 (g,h); Table 2), but at even lower 
levels (Fig. S9). This is in line with previous reports that 
GluK2-c may be more common in human non-neuronal 

tissues [108]. Similar abundances of these C-terminal iso-
forms are also seen in other species (Fig. S14C).

Apart from the known GluK2 isoforms, we identified a 
frequently occurring junction that points to an alternative 
human 5′-UTR (GRIK2 (a), maximal abundance 1.03; Fig. 
S14A). The corresponding splice event has been detected 
before [110], but the 5′-exon appears to be shorter than 
reported. Apart from splicing, a polymorphic TAA region is 
present in the 3′-UTR [111]. Furthermore, we detected two 
splice events, which occur at low-to-moderate abundance, 
but encode truncated subunits. One is splicing to an early 
termination exon, which appears to contain an Alu element 
(AluSp) (GRIK2 (d), Table 2). In the other case, the inclu-
sion of a cassette exon (GRIK2 (e,f)) introduces an early stop 
codon, which should mark the transcript for NMD.

For GluK3, one alternative splicing isoform has been 
described, GluK3-b. It results from a prolonged penulti-
mate exon found in rat [112] and carries an alternative CTD 
that reduces surface trafficking [113]. However, in human 
RNA-Seq data, we found no reads covering this alternative 
junction and inspection of genomic sequences shows that 
the corresponding splice donor site is absent in primates 
(Fig. S15). The human nucleotide coverage remains slightly 
increased beyond the canonical splice site, which may indi-
cate a 369 nt elongation of canonical exon 15, which would 
then end with an alternative polyadenylation signal (GRIK3 
(a)). However, the resulting C-terminal sequences appear 
to be poorly conserved between primates (Fig. S15), which 
suggests that this event does not constitute a major alter-
native GluK3 isoform. We also did not identify any other 
GRIK3 junctions with relevant global or local abundance 
(for rare events see Table S4).

To our knowledge, no splicing isoforms have been 
described for the ‘high-affinity’ kainate receptor subunit 
GluK4 (formerly KA1; [114]). We detected GRIK4 reads 
somewhat less frequently than reads of the other kainate 
receptor subunits, which is consistent with its limited expres-
sion in adult murine and human brain [114, 115]. However, 
we identified splice junctions that indicate that some of 
the transcripts may carry two alternative exons upstream 
of canonical exon 2, which would result in an alternative 
5′-UTR (GRIK4 (a,b), Table 2). Another notable event is 
skipping of exon 9, which causes a 54 aa deletion in the 
GluK4 ATD (Table 2 and Fig. S16). The corresponding 
junction (GRIK4 (e)) occurs with moderate abundance of up 
to 20% in human datasets (6% global abundance), which was 
also confirmed by RT-PCR on human RNA samples (Fig. 
S16CD). Visual inspection shows that the structural integrity 
of the ATDs may be maintained by the sequence deletion 
in this potential GluK4-2 isoform (902 aa) (Fig. S16E). We 
detected the same exon skipping event also in other species, 
albeit at lower abundance (Fig. S16). Still, experimental 
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work seems warranted to confirm the expression of this 
potential isoform and its functional consequences.

For GluK5, the second ‘high-affinity’ kainate receptor 
subunit (formerly KA2), an alternative GluK5-b isoform 
(981 aa), has been mentioned [8]. However, no experimen-
tal data were reported for this isoform, which would result 
from splicing to an alternative last exon that encodes an 
alternative C-terminus and 3′-UTR (Fig. S17). Our analysis 
shows a very low coverage of the corresponding exon and 
splice junction (GRIK5 (c) junction abundance < 1%), with a 
slight enrichment in the ‘cerebellum’ dataset (junction abun-
dance 5%; Fig. S9). The physiological significance of this 
event remains questionable, also because the GluK5-b exon 
is poorly conserved and rarely detected in chimpanzee and 
macaque (Fig. S17). In rat and mouse, a homologous exon 
is absent. Besides, we identified two novel junctions with 
low-to-moderate abundance (GRIK5 (a) and (b), Table 2), 
which do not yield full-length GluK5 subunits but may result 
in NMD; for rare events, see Table S4.

Alternative splicing of delta receptor subunits

The delta receptors GluD1 (GluRδ1) and GluD2 (GluRδ2) 
were cloned based on sequence homology to other iGluRs 
[116, 117]. They are expressed throughout the brain, and, 
although they do not appear to function as glutamate-gated 
ion channels per se, they play important roles in synapse 
maturation and plasticity [16, 118]. No delta receptor iso-
forms have been reported, so far. However, we identified two 
GRID1 junctions (GRID1 (a,b)), which indicate the inser-
tion of a 91 nt cassette exon before the last canonical exon, 
exon 16 (Table 3 and Fig. 3A). Both, the single-nucleotide 
coverage and the relative junction abundances (Fig. 3B) sug-
gest that this cassette exon may be included in ~ 10% of the 
transcripts. More, the splice event appears to be conserved 
across species, as we detected both alternative junctions at 
similar abundance in chimpanzee, macaque, rat, and mouse 
datasets (Fig. S18).

Importantly, this alternative splice event may lead to a 
functional but hitherto undescribed GluD1 isoform, which 
we termed GluD1-b. The cassette exon provides an alterna-
tive CTD sequence, which starts ~ 15 aa after TM helix 4 
and ends with an early stop codon after 896 aa, in contrast 
to the canonical GluD1-a isoform with 1009 aa (Fig. 3C). 
The 3′-UTR and the polyadenylation signal are still provided 
by canonical exon 16.

To further validate the presence of GluD1 transcript iso-
forms, we performed reverse transcriptase (RT)-PCRs on 
RNA samples from human brain (Fig. 3D). Amplification 
with primers that bind to the alternative exon ‘ae’ and exon 
16 (F2/R1) yielded a PCR product of the expected size, and 
sequencing confirmed the anticipated splice event (Fig. 
S18). A second primer pair, which binds to canonical exons 
15 and 16 (F1/R1), yielded two PCR products, as expected 
for partial inclusion of the alternative GluD1-b exon. Semi-
quantitative analysis showed inclusion in ~ 15% of the brain 
transcripts (Fig. 3E), which is in good agreement with our 
estimate based on RNA-Seq data. We also confirmed the 
presence of GluD1-b in RNA from human cerebral cortex, 
cerebellum, and testis (Fig. 3E and Fig. S18). We believe 
that this rather frequent and conserved isoform warrants fur-
ther investigation, also because a recent study highlighted 
the role of the GluD1 C-terminus for trafficking in neurons 
[119]. Apart from this, we detected one other GRID1 junc-
tion (GRID1 (c)), with low-to-moderate frequency, which 
reached from canonical exon 4 into the subsequent mega 
intron (222,579 bp). In this case, however, we were not able 
to identify exon-like features (Table 3).

For GRID2, we found lower transcript levels than for 
GRID1, apart from strong expression in the ‘cerebellum’ 
dataset (Fig. S3). This is in line with previous reports that 
showed some GluD2 expression throughout the mouse brain 
[118, 120] but prominent expression in cerebellar Purkinje 
cells [16, 117, 121]. We detected all canonical GRID2 junc-
tions but no alternative junctions at clearly relevant levels 
(for rare events, see Table S4).

Table 3   Alternative delta receptor splicing

alternative junction site1 state2 abundance3 
global / max isoform description 

GRID1  chr 10, reverse 

GluD1: 
16 exons, 5834 bp, 1009 aa  

a  85602701-85613056 D T 0.12 0.30 cassette exon inclusion (+91 nt): 
GluD-1b, alt. CTD (896 aa) (Fig. 3; Fig. S18) b  85613146-85613407 A N 0.08 0.14 

c  86134479-86138819 A N 0.06 0.25 alternative acceptor site in intron (no exon identified): 
truncation (242 aa) 

1 splice sites different from canonical transcript; 
2 state: T = part of annotated transcript; N = new junction; 
3 abundance rel. to canonical junction/s (global = across all datasets; max = maximal local abundance); 
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Fig. 3   De novo identified GluD1-b splicing isoform. A Our analysis 
revealed the existence of splice junctions, which indicate the incor-
poration of a 91 nt alternative exon (ae) between canonical exons 15 
and 16. The coverage track shows a clearly defined exon (stop codons 
indicated by asterisks). B 5′- and 3′-junction abundance relative to 
the canonical junction (median indicated as bars; number of datasets 
with sufficient coverage given in parenthesis). C Incorporation of the 
alternative exon results in a hitherto undescribed isoform, GluD1-b, 

(896 aa), which contains an alternative C-terminus. D RT-PCR detec-
tion in human brain RNA. Exon-specific primers (F1/R1) show the 
amount of transcripts with (376  bp) and without (285  bp) alterna-
tive exon. Primers F2/R1 confirm the identity of the alternative exon, 
which was further confirmed by sequencing. Bands are absent in neg-
ative controls without reverse transcriptase (-RT). E Relative amounts 
of alternative F1/R1 RT-PCR product in RNAs from different human 
tissues. For further information, see Fig. S18
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Alternative splicing of NMDA receptor subunits

Within the NMDA receptor subfamily [17, 122], alternative 
splicing has been foremost reported for the GluN1 subunit. 
GluN1 is abundantly and ubiquitously expressed in the CNS, 
and, being an obligatory subunit of all NMDA receptors, it 
is the only essential iGluR subunit.

Three different GluN1 splice events are known that com-
bine to eight isoforms (e.g., [123–125]). The first event is 
the inclusion of a cassette exon between canonical exons 3 
and 4 in humans (termed exon 5 in rodents), which encodes 
a 21 aa insertion in the ATD (denoted as GluN1-b isoforms; 
Table 4). Our analysis shows that this cassette exon is fre-
quently used, but in most datasets, the canonical GluN1-a 
junction was somewhat more abundant (Fig. S9). Insertion 
of the GluN1-b segment, which is located at the ATD–ATD 
and ATD–LBD dimer interface, modulates glutamate affin-
ity, Zn2+ and proton sensitivity, and deactivation kinetics 
depending on the partnering GluN2 subunit (e.g., [124, 
126–129]). In the mouse cortex, GluN1-b isoforms may 
be primarily present in interneurons [37]. Recent knockout 
studies directly show that this splice event is important for 
regulating synapse maturation as well as long-term poten-
tiation in mice [130, 131]. Moreover, the GluN1-a/GluN1-b 
splice ratio has been shown to be affected by psychiatric 
diseases [51, 54].

The second event is the inclusion of a cassette exon 
between canonical exons 18 and 19, which adds a 37 aa seg-
ment in the CTD (GluN1-1 and GluN1-3 isoforms; Fig. 4A). 
The third event is splicing to an alternative acceptor site, 
which causes a 5′ extension of exon 19. This shifts the read-
ing frame and results in different C-termini of GluN1-1 and 
GluN1-2 compared to GluN1-3 and GluN1-4, respectively. 
We detected junction-spanning reads for all four C-terminal 
splice combinations (GluN1-1 to GluN1-4) to significant 
extent (Table 4 and Fig. 4A). Notably, in some datasets, the 
GluN1-1 isoform (combination of cassette exon inclusion 
and splicing to the alternative acceptor site) is highly favored 
compared to the canonical GluN1-4 isoform (up to 31-fold; 
Fig. S9). The GluN1-2 isoform was the least abundant iso-
form and junction-specific queries showed that this isoform 
is also underrepresented in chimpanzee and macaque data-
sets (Fig. S19). In rat and mouse, GluN1-3 appears to be the 
least abundant isoform (Fig. S19; [125, 132]).

Given that the GluN1 CTD composition controls traf-
ficking and protein interactions, for instance with PSD-95 
and calmodulin (e.g., [8, 17, 28, 133–136]), we further ana-
lyzed the occurrence of different splice combinations within 
individual datasets. The C-terminal splice events are clearly 
correlated: Datasets with high levels of cassette exon inclu-
sion (A+) also show high levels of alternative acceptor usage 
(B+) (Fig. 4B).

Since individual reads can provide direct information on 
how the two splice events are combined, we performed a 
more detailed correlation analysis by asking, whether the 
presence or absence of the cassette exon (A+ or A−) can be 
used to predict how much splicing to either acceptor site (B+ 
or B−) occurs, or, vice versa, whether the presence of either 
acceptor site may be predictive for cassette exon inclusion 
(Fig. 4C). We find that in the absence of the cassette exon 
(A−), the canonical acceptor site (B−) is strongly favored 
(86:14) over the alternative acceptor site. In the presence 
of the cassette exon (A+), the alternative acceptor (B+) is 
somewhat favored over the canonical site (63:37). Quite to 
the contrary, the type of acceptor site (B+ or B−) cannot be 
used to predict the inclusion of the alternative exon. Mecha-
nistically, this could indicate that the absence or presence 
of the cassette exon controls the choice between the two 
splice acceptor sites. A strong correlation between cassette 
exon inclusion (A+) and alternative acceptor usage (B+) is 
also seen in other primate and rodent species (Fig. S19B). 
Further research seems warranted, also to address potential 
activity-dependent [28] and cell type-specific effects. Apart 
from these well-described isoforms, we only detected three 
other GluN1 splice events at low levels (Table 4). An early 
truncation (GRIN1 (g)) and a 3’-UTR exitron (intra-exonic 
splice junction GRIN1 (i); −448 nt) appear to encode for 
NMD transcripts, whereas the third junction (GRIN1 (h)) 
originates from an intronic region.

GluN2A was cloned from rat and mouse [137, 138], 
where no splicing isoforms are known. However, we 
detected an abundant exitron (GRIN2A (a)), which removes 
343 nt from the last human canonical exon. The resulting 
frameshift alters and shortens the CTD to yield a GluN2A 
isoform with 1281 aa (Table 4 and Fig. S20). The same 
isoform, named GluN2A-short, was recently reported by 
Warming et al. to be expressed in human brain and to form 
functional receptors upon coexpression with GluN1 [139]. 
Our junction analysis shows that the GluN2A-short isoform 
is abundantly expressed in human brain (global abundance 
25%), in some datasets even on par with the canonical iso-
form (Fig. S9). We detected the GluN2A-short splice junc-
tion with similar frequencies in chimpanzee and macaque 
datasets (Fig. S20B), but the corresponding splice sites 
are absent in rat and mouse, which supports the suggestion 
that this is a primate-specific isoform [139]. Shortening of 
the GluN2A CTD should have important functional conse-
quences, as it results in a loss of several interaction motifs, 
including CaMKII and PSD-95 binding sites [27, 122]. We 
did not identify any other relevant splice junctions belong-
ing to GRIN2A.

To our knowledge, no alternative splicing events have 
been reported for GluN2B other than variations in the mouse 
5′-UTR [140]. Similarly, we did not identify any significant 
junctions that would cause changes to the coding sequence 
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Table 4   Alternative NMDA receptor splicing

alternative junction site1 state2 abundance3

global / max isoform description

GRIN1 chr 9, forward

GluN1-4a:
19 exons, 3577 bp, 885 aa

a  137163904-137165186 A C 1.07 30.75 cassette exon inclusion (+111 nt) and alternative acceptor site in e19 (+363 nt):
GluN1-1, 938 aa, alt. CTD [125] (Fig. 4)b  137165296-137167411 DA C 0.69 9.41

c  137148214-137149009 D C 0.72 1.32 cassette exon inclusion (+63 nt):
GluN1-b, 906 aa, 21 aa insertion in ATD [125]d  137145902-137148152 A C 0.54 1.21

a  137163904-137165186 A C 1.07 30.75 cassette exon inclusion (+111 nt):
GluN1-3, 922 aa, alt. CTD [125] (Fig. 4)e  137165296-137167774 D C 0.24 1.89

f  137163904-137167411 A C 0.16 0.30 alternative acceptor site in e19 (+363 nt):
GluN1-2, 901 aa, alt. CTD [125] (Fig. 4)

g  137139744-137142086 A N 0.05 0.09 alternative acceptor site in e2 (-73 nt):
frameshift and truncation (96 aa), NMD expected4

h  137164987-137165186 DA N 0.01 0.30 alternative donor site in intron (no exon identified):
connection to ORF unclear

i  137168014-137168463 DA T 0.01 0.18 intra-exon junction in e19 (-448 nt):
shortened -UTR, NMD expected4

GRIN2A chr 16, reverse

GluN2A:
14 exons, 14450 bp, 1464 aa

a  9763428-9763772 DA C 0.25 1.50 intra-exon junction in e14 (-343 nt):
GluN2A-short, 1281 aa, alt. CTD [139] (Fig. S20)

GRIN2B chr 12, reverse

GluN2B:
13 exons, 30355 bp, 1484 aa

a  13980356-13981342 DA T 0.27 0.67 235 nt) and alternative acceptor site in e1 (-7 nt):
alternative (extended) 5'-UTRb  13981576-13981916 DA T 0.11 0.23

GRIN2C chr 17, reverse

GluN2C:
13 exons, 4261 bp, 1233 aa

a  74855107-74861428 D N 3.22 5.15 alternative 1st exon (77 nt):
alternative 5'-UTR (Fig. S21)

b  74855107-74860449 D T 0.55 0.53 alternative 1st exon (87 nt):
alternative 5'-UTR (Fig. S21)

c  74852611-74861428 D T 0.16 0.50 alternative 1st exon (77 nt) and exon 2 skipping (-414 nt):
N-terminal truncation (first 357 aa or more missing)

d  74846203-74846760 A N 0.10 0.14 alternative acceptor site in exon 11 (-50 nt):
frameshift and truncation (783 aa), NMD expected4

e  74850767-74851566 D N 0.08 0.12 alternative donor site of e4 (+11 nt):
frameshift and truncation (385 aa), NMD expected4 

f  74846920-74847021 D N 0.07 0.21 cassette exon inclusion (+63 nt):
GluN2C-b, 1254 aa (21 aa insertion in LBD after TM3) (Fig. S22)g  74847083-74847308 A N 0.05 0.18

h  74852611-74859744 C N 0.05 0.17 exon 2 skipping (-414 nt):
N-terminal truncation (first 357 aa or more missing)

i  74850767-74852013 C N 0.05 0.07 exon 4 skipping (-115 nt):
frameshift and truncation (343 aa), NMD expected4 

1 splice sites that differ from canonical transcript (C = novel combination); 
2 state: C = characterized; T = part of annotated transcript; N = new junction;
3 abundance rel. to canonical junction/s (global = across all datasets; max = maximal local abundance);
4 potential NMD transcript (exon junction complex (EJC) more than 50 nt downstream of termination codon);
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of human GluN2B, but we detected two moderately abun-
dant junctions, which define a chain of two additional 
5′-UTR exons (GRIN2B (a,b), Table 4). Despite high cover-
age, we did not detect any new junctions in the long 3′-UTR 
(GRIN2B > 22 kb; GRIN2A 9.8 kb).

GluN2C is known for its high expression in the cerebel-
lum (see [138, 141, 142]) and we observed the highest tran-
script levels in the ‘cerebellum’ dataset (Fig. S3). The most 
frequent splice events in our analysis point to the existence 
of alternative 5′-UTR exons, which can replace canonical 

exon 1 (GRIN2C (a) and (b), Table 4 and Fig. S21). The 
newly identified junction GRIN2C (a) was 3.22-times more 
abundant than the canonical 5′-exon junction and prevailed 
in all datasets with sufficient coverage (Fig. S9). This tran-
script may thus be considered the primary UTR isoform, 
which is also supported by the coverage track (Fig. S21A). 
The second alternative 5′-exon junction was somewhat less 
abundant than the canonical junction (GRIN2C (b), Table 4), 
and a 5′ elongation of exon 2 has been reported, as well (Fig. 
S21B). In contrast, the GRIN2C 5′-UTR variations described 
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Fig. 4   Alternative splicing in the C-terminal region of GluN1. A We 
detected all four C-terminal isoforms, which originate from incorpo-
ration of an alternative exon (ae) and the presence of two different 
acceptor sites in exon 19 [124]. B A comparison of splicing in dif-
ferent datasets (n = 33) shows a positive correlation between incor-
poration of the alternative exon (A+) and usage of the alternative 

acceptor site (B+). For other species, see Fig. S19. C A correlation 
analysis indicates that the absence or presence of the alternative exon 
(A−/A+) predicts the choice of the acceptor site (B−/B+; left), but not 
vice versa (right). D Resulting probability diagram for splicing to the 
alternative acceptor site
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in mouse [143], and the two alternative translation starts 
reported in rat [141], have no correspondence in humans.

Another notable, newly identified GRIN2C event is the 
insertion of a 63 nt cassette exon between canonical exons 9 
and 10, which would result in a 21 aa insertion in the LBD 
S2 segment (GRIN2C (f,g), Table 4 and Fig. S22). The junc-
tions defining this potential GluN2C-b isoform (1254 aa) 
were present in several human datasets at low-to-moderate 
levels (up to 21% abundance). However, in chimpanzee and 
macaque, we found the corresponding junctions to minor 
extent (Fig. S22B), and in rat and mouse, no homolo-
gous sequences exist. Apart from these isoforms, several 
other junctions appear to result in non-functional variants 
(GRIN2C (c), (d), (e), (h), and (i)) which are mostly sub-
ject to NMD (Table 4). We did not detect reads pointing 
to an alternative donor site reported for rat GluN2C [144]; 
also previously reported splice events for human cerebel-
lar GluN2C [145] were absent or not detected at significant 
levels (GluN2C-3 had a global abundance of 4%; Table S4). 
However, a large number of rare events were detected for 
GluN2C (Table S4).

The GluN2D subunit is known to be expressed at lower 
levels than the other GluN2 subunits [39, 141, 146]. The 
read numbers for GRIN2D were rather low (Fig. 1 and Fig. 
S7) and we did not detect any clearly relevant alternative 
splice events (for rare events, see Table S4). An exitron (−82 
nt) has been reported in the last exon of rat [141], but no 
splice site consensus sequences are present in rodents or 
primates (Fig. S23A).

GluN3A and GluN3B subunits confer special signaling 
properties to NMDA receptors [17, 18]. For GRIN3A, we 
identified all canonical junctions at reasonable levels (Fig. 
S7; [147, 148]). However, we did not identify any reads that 
would correspond to the GluN3A-long isoform that has 
been found in rat and mouse but not in humans [149–151]. 
This isoform is characterized by 20 aa insertion in the CTD, 
which results from an alternative splice acceptor site that 
causes a 5′ extension of the last exon. A more detailed anal-
ysis showed that the corresponding splice acceptor site is 
missing in humans and that the corresponding region is not 
conserved between primates and rodents (Fig. S23B).

Despite very low expression in the CNS (Fig.  1B), 
we detected all canonical GRIN3B junctions (Fig. S7; 
[152–155]). However, given the low transcript coverage, 
we cannot comment on alternative splicing (cf. Table S4). 
Several alternative isoforms have been isolated from rat 
developing white matter [156] and a polymorphic poly(Q) 
stretch appears to be present in human exon 9 [155].

De novo identification of RNA editing events 
in iGluR transcripts

RNA-Seq data also contain direct information on single-
nucleotide variations (Fig. 1A). Taking advantage of the 
high sequencing depth of the analyzed data and its ori-
gin from different human donors, we set up a strategy to 
identify potentially unknown editing sites (see Supple-
mentary Methods; Figs. S1 and S24). For this, we con-
sidered frequent nucleotide mismatches that were present 
with ≥ 5% abundance in ≥ 30% of the datasets; still, 1220 
mismatch positions were detected in exonic iGluR regions 
alone. We excluded poorly covered sites (see Supplemen-
tary Methods and Fig. S24) and obtained 67 mismatches, 
which could result from A-to-I or C-to-U editing in exonic 
regions (Fig. 5A and Table S7). Subsequent comparison to 
DNA-based data (dbSNP; NIH) revealed that 42 of these 
mismatches probably originate from widespread single-
nucleotide polymorphisms (SNPs; Fig. S25). Some of the 
other mismatches showed different substitutions and/or were 
localized in non-coding regions (see Supplementary Meth-
ods). Eventually, our de novo identification resulted in ten 
mismatches in iGluR coding regions that could be unequivo-
cally attributed to RNA editing (Fig. 5B), all of which had 
been described before.

We identified all eight major A-to-I iGluR editing events 
that are known to cause amino acid exchanges (Fig. 5B; 
Table S7; [8, 47]). Their editing frequencies are in good 
agreement with PCR-based quantifications (Fig. S26; [157, 
158]). We found GluA2 Q/R editing to be the most abun-
dant event (mean abundance 92.7%) followed by editing of 
the GluA3 R/G site (mean 86.3%). The least abundant, but 
still substantial editing events, result in silent amino acid 
exchanges: In GluA2, we found Q608Q editing, which is 
located + 4 nt of the Q607R site (mean 8.7%), and in GluK2, 
we found G615G editing −17 nt of the Q621R site (mean 
23.5%). Due to their proximity to highly edited sites, these 
events may be considered secondary A-to-I editing events, 
which are controlled by the same editing site complemen-
tary sequence (ECS) [159, 160]. Other secondary events 
have been reported [158], but were detected with frequen-
cies < 5%, such as GluA2-4 L/L editing −1 nt of the R/G 
site, as well as GluK1 G630G and GluK2 M620V editing 
(Table S7C). We also detected substantial editing of the 
intronic GluA2 editing hotspots + 60 and + 262 nt of the Q/R 
site [46], but, unlike in rodents no editing of adenosines at 
position + 263 and + 264.

In addition, we identified one exonic iGluR mismatch that 
could be caused by C-to-U editing, GluK1-d A870V (Fig. 
S25BC). However, this position is located in an alternative 
exon with poor coverage, the same substitution is encoded 
by a rare SNP, and the extent of C-to-U editing in the brain 
remains unclear [161, 162].
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Correlations between RNA editing events 
and editing and splicing

We continued by investigating co-editing of sites that 
occur within read length. Using specific sequence queries 
(Table S8), we found that in GluA2, where Q608Q edit-
ing occurs less frequently (overall 15.4% frequency) than 

Q607R editing (overall 95.9%), the four combinations still 
show relative abundances, as they would be expected for 
independent editing of the two sites (Pearson’s chi-squared 
test of independence, p > 0.05; Fig. 5C). For GluK2 Y571C/
I567V, a different behavior is seen, since reads only edited 
to I567V are strongly underrepresented (overall 1.2%) com-
pared to the other three combinations, which occur with 
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editing-specific queries (see Table S8). Statistical testing shows inde-
pendence for GluA2 Q607R/Q608Q editing, but interdependence 
for GluK2 Y571C/I567V and Q621R/G615G editing. D Relation 
between RNA editing and adjacent splice site usage. Statistical test-
ing was performed with Pearson’s chi-squared test of independence 
(***p ≤ 0.0005; (n) number of total reads)
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similar frequencies (25–44%), i.e., editing at these sites 
does not occur independently (p ≤ 0.0005). The same is 
true for GluK2 Q621R/G615G, where reads only edited at 
the G615G site are strongly underrepresented (overall < 1%) 
and reads edited at only the Q621R site are the largest class 
(67%).

Different mechanistic interpretations could explain this 
behavior. Apparently independent editing, like in GluA2, 
would be observed, if adenosine deaminase binding is not 
rate limiting, or, if different ADAR activities (ADAR1/
ADAR2) are involved. In contrast, a clear correlation, as 
seen for GluK2, where G615G editing increases with Q621R 
editing, would be expected, if the presence or recruitment of 
deaminase is limiting, but deamination of the two sites pro-
ceeds with different efficiency. However, also more complex 
regulatory mechanisms may be at play, since also editing 
of more distant sites [158] and within single cells [38] has 
been reported.

We also analyzed the relation between editing and close-
by splicing sites, such as editing of the R/G sites in GluA2, 
GluA3, and GluA4, which are located −2 nt of the splice 
donor sites that mediate splicing to either the flop or flip 
exon [43]. Using sequence-specific queries, we investigated 
the interdependency of R/G editing and flip/flop splicing or 
intron retention (Fig. 5D; Table S8). Different patterns are 
seen for the three AMPAR subtypes: In GluA2, all R/G-
flop/flip combinations are present at similar levels (over-
all 16.8–33.6%; |r|≤ 2.4). In GluA3, transcripts are mostly 
edited to G, but the R-flop combination remains particu-
larly underrepresented (|r|≤ 4.7). In GluA4, which shows the 
strongest interdependence of editing and splicing, R-flop is 
again underrepresented, and G-flop is clearly overrepre-
sented (|r|≤ 6.2). Similar observations have been reported in 
other human studies [157, 158]. However, it remains unclear, 
whether there is a mechanistic link between R/G editing 
and flip/flop splicing [50, 158, 163, 164], or whether these 
effects arise from cell type-specific effects, e.g., enrichment 
of certain splicing factors and deaminases [43]. From a func-
tional perspective, it is interesting to note that in the case 
of GluA2, the effects of R/G editing on the desensitization 
kinetics are more pronounced in the flop isoform than in the 
flip isoform [43, 80, 165].

In GluK1 and GluK2, the Q/R editing sites are close 
to the 3′ exon boundary (−6 nt), which allowed us to test, 
whether editing is coupled to splicing or intron retention 
(Fig. 5D; Table S8). In GluK1, Q/R editing (overall 64.6%) 
and intron retention (overall 12.4%) appear to be rather 
independent, as confirmed by Pearson’s chi-squared test 
(p ≥ 0.05). In GluK2, Q/R editing (overall 90.2%) and intron 
retention (overall 37.8%) are more frequent, but unedited 
reads in combination with intron retention are clearly under-
represented (1.0%; |r|≤ 2.7) compared to the other combina-
tions (8.7–53.5%). The higher fraction of edited transcripts 

still containing the subsequent intron could be explained by 
the extended presence of the intronic ECS, which may result 
in more complete editing. This effect has recently been also 
found in a systematic analysis of mouse brain pre-mRNAs, 
including GRIA2, GRIA3, GRIK1, and GRIK2 [166]. In 
the case of GluA2 Q/R editing, an even stronger control 
mechanism seems to exist. There, splicing can only proceed 
after editing, which may be controlled by the involvement 
of intronic editing hotspots [46, 164, 167, 168]. This ensures 
the low Ca2+ permeability of most adult AMPA receptors, 
which is critical for proper nervous system function [45, 47, 
48, 169].

Discussion

iGluR splicing and editing are important mechanisms for 
fine-tuning synaptic function. In the case of iGluRs, most 
isoforms were identified by transcript cloning and most work 
has focused on rodents, although primate-specific splicing is 
well documented. In the last decade, RNA-Seq emerged as 
a powerful approach to analyze posttranscriptional modifi-
cations, such as alternative splicing and RNA editing, in a 
more global manner.

Here, we generated a first inventory of iGluR splicing 
in human brain by analyzing the vast amount of informa-
tion provided by two large-scale RNA-Seq projects. We 
opted for a de novo identification approach and focused 
our analysis on junction-spanning reads (Fig. 1A), which 
provide the most direct experimental evidence for splice 
events. We then analyzed this information in the context of 
canonical iGluR transcripts and used abundance criteria to 
identify potentially relevant isoforms (Tables 1–4). Given 
the excellent coverage of the canonical transcripts (with the 
exception of GRIN3B; Fig. 1B and Fig. S7), we are able 
to provide relative abundance estimates for all individual 
splice events without having to rely on statistical most-
likelihood approaches [65], which also enabled us to assess 
less frequent events. Compared to database information 
that is derived by automated pipelines, we provide manual 
evaluation, consistent annotations, and consistent abundance 
information that is based on a defined set of data. For the 
analysis of individual events, we integrated coverage track 
information, cross-species comparisons, and other available 
experimental data.

Besides the canonical iGluR junctions, we detected 865 
alternative iGluR junctions (Table S4A), most of them 
occurring at low abundance (Fig. 2 and Fig. S5). The major-
ity of these low-abundance events may result from erroneous 
splicing. Whole-genome RNA-Seq studies suggest an aver-
age error rate of ~ 1% per splice event and a huge number 
of potential splice sites as well as transcriptional noise [73, 
170]. We thus only considered splice events as potentially 
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relevant, if they were covered with ≥ 35 reads, and, if they 
had either an overall (global) abundance of ≥ 0.05 or were 
clearly enriched in individual datasets (maximum local 
abundance ≥ 0.15) compared to the canonical splice event. 
Still, not all events meeting these criteria may play a physi-
ological role in human brain; vice versa, we cannot exclude 
that rare junctions may play a role in specific cell types, 
developmental stages, or disease states.

Based on the high coverage of the canonical junctions and 
saturation criteria (Fig. S8), we assume that we have identi-
fied all major splicing events within the adult human brain 
datasets. Our approach was not adapted for the detection of 
microexons and intron retention, which requires more spe-
cialized analysis techniques and datasets, respectively [166, 
171–173].

Besides confirming existing data on most described splic-
ing isoforms, our study provides relevant new insight: First, 
we obtained consistent abundance estimates for all splice 
events. We found that some previously reported isoforms 
occur at overall negligible amounts in human brain (e.g., 
GluK1-a and GluK5-b), whereas some other isoforms that 
have received little attention so far may occur at rather high 
abundance (e.g., GluA4-short/long and GluK1-1). For 
GluN1 C-terminal splicing, which has been well character-
ized and which plays important physiological roles (e.g., 
[11, 28, 125, 132]), we found a correlation between the 
two C-terminal splice events, which results in lower abun-
dances of the GluN1-2 and GluN1-3 isoforms compared to 
the GluN1-4 and GluN1-1 isoforms, respectively (Fig. 4).

Second, we found a number of examples, where splicing 
is not conserved across species. For instance, the GluK3-b or  
GluN3A-long isoforms [112, 149, 150] are present in 
rodents but not primates (Figs. S15 and S23B). In contrast, 
the identified GluN2A-short (see also [139]) and GluN2C-b 
isoforms appear to be primate-specific (Figs. S20 and S22).

Third, we identified 19 new splice junctions, which we 
classified as relevant, in addition to 46 known alternative 
splice junctions reported in Ensembl fulfilling the same 
criteria. The relevant alternative junctions encode 52 tran-
script variations (Tables 1–4), 19 of which cannot be found 
in Ensembl.

Around half of the alternative transcripts (25/52) that 
fulfilled our abundance criteria encompass truncated open 
reading frames; 14 of these transcripts satisfy the criteria 
for NMD [56]. Abundant but non-coding transcripts may 
originate from cryptic splice sites and/or may have regula-
tory functions [1]. NMD plays an important role in elimi-
nating these transcripts and may for instance ensure proper 
splicing of mutually exclusive exons [174–176]. This could 
also be the case for AMPA receptor flip/flop splicing, where 
we detected some erroneous exon combinations at levels up 
to 12% (Table 1 and Table S4), although these transcripts 

should be removed by NMD. Notably, no other regulatory 
mechanisms, such as branch point positioning [177], have 
been described to ensure mutually exclusive AMPA receptor 
flip/flop splicing.

Importantly, we discuss a number of events that appear to 
encode hitherto undescribed iGluR isoforms. This includes a 
highly expressed transcript that apparently encodes a GluA4-
ATD, which may be secreted due to the presence of a signal 
peptide. We further confirmed this transcript by RT-PCR 
and, by searching available human proteome data, found 
evidence for expression of this unusual protein in human 
brain (Fig. S12). Furthermore, based on our de novo identi-
fication, we identified the first isoform of the delta receptor 
GluD1, GluD1-b, which carries an alternative CTD (Fig. 3). 
Verification by RT-PCR shows that the corresponding exon 
is present in ~ 15% of the transcripts (Fig. S18). Both, the 
GluA4-ATD and the GluD1-b isoform, are conserved across 
species. Novel, but less frequent, isoforms may also exist 
for GluK4 (GluK4-2, Fig. S16) and GluN2C (GluN2C-b, 
Fig. S22). Further studies are required to characterize these 
new potential isoforms, in particular on the protein level and 
with respect to physiological function. In other cases, we 
identified alternative UTRs (Tables 1–4; GluK2 Fig. S14A), 
most notably in GluN2C, where one newly identified 5′-exon 
(GRIN2C (a)) prevails over the previously described 5′-exon 
(Fig. S21).

We also investigated iGluR editing using human RNA-seq 
data (Fig. 5A,B). Our de novo identification approach captured 
all known major iGluR editing events, but we did not identify 
any novel, abundant A-to-I or C-to-U editing sites in exonic 
iGluR regions. The identification of novel low-frequency edit-
ing events was hampered by the widespread occurrence of 
SNPs, which in future studies might be circumvented by using 
matched genomic sequences from the same individuals. Simi-
larly, the Investigation of editing in intronic regions and hype-
rediting (for instance in Alu elements) requires more special-
ized datasets and methods, but seems valuable as these events 
account for the vast majority of editing in humans [60, 178] 
and may have regulatory functions [179]. Interestingly, Pinto 
et al. found that only 59 editing sites are conserved across 
mammals, 20 of which belong to iGluR genes [60]. Another 
recent study suggests that the only physiologically essential 
editing event in mouse is GluA2 Q/R editing [180]. The role 
of C-to-U editing in the human brain remains elusive despite 
moderate editing of glycine receptor GlyRα3 [161, 162].

Finally, we used single-read information to analyze 
the co-occurrence of close-by editing and editing/splicing 
events, and in many cases, these events do not appear to 
occur independently (Fig. 5C,D). However, the interpreta-
tion of these results remains difficult and even for similar 
events, such as the relation between R/G editing and flip/
flop-splicing, different results were obtained for GluA2, 
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GluA3, and GluA4, which is in line with earlier reports 
[157, 158]. Besides mechanistic explanations (e.g., [50, 
158, 164]), cell type-specific variations may account for this 
effect [38, 43]. Sequencing of long reads from single cells 
may provide the means to better understand the complex 
interplay between splicing and editing.

Conclusions

Our study gives a first comprehensive overview of iGluR 
splicing and editing in the human brain and provides the 
impetus for further research. Future studies may focus on 
the iGluR splicing landscape in different brain regions, 
changes during development and disease, or its modulation 
by neuronal activity. Particularly large differences in iGluR 
expression and splicing are expected to be seen between dif-
ferent cell types, as for instance indicated by recent work on 
different neuronal populations from mouse brain (e.g., [37, 
181]). In humans, similar information may become accessi-
ble by single-cell transcriptome analysis in combination with 
marker genes [182, 183]. Much further work will be nec-
essary to address the functional consequences of splicing, 
not only on the level of the proteins, but also with respect 
to CNS function. Our study, which summarizes known and 
newly identified splice events, provides a framework for 
these investigations.
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