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Random forest classification 
for predicting lifespan‑extending 
chemical compounds
Sofia Kapsiani & Brendan J. Howlin*

Ageing is a major risk factor for many conditions including cancer, cardiovascular and 
neurodegenerative diseases. Pharmaceutical interventions that slow down ageing and delay the onset 
of age-related diseases are a growing research area. The aim of this study was to build a machine 
learning model based on the data of the DrugAge database to predict whether a chemical compound 
will extend the lifespan of Caenorhabditis elegans. Five predictive models were built using the random 
forest algorithm with molecular fingerprints and/or molecular descriptors as features. The best 
performing classifier, built using molecular descriptors, achieved an area under the curve score (AUC) 
of 0.815 for classifying the compounds in the test set. The features of the model were ranked using 
the Gini importance measure of the random forest algorithm. The top 30 features included descriptors 
related to atom and bond counts, topological and partial charge properties. The model was applied 
to predict the class of compounds in an external database, consisting of 1738 small-molecules. The 
chemical compounds of the screening database with a predictive probability of ≥ 0.80 for increasing 
the lifespan of Caenorhabditis elegans were broadly separated into (1) flavonoids, (2) fatty acids and 
conjugates, and (3) organooxygen compounds.

Pharmacological interventions for longevity extension.  Ageing is a major health, social and finan-
cial challenge, characterised by the deterioration of the physiological processes of an organism1,2. Ageing is a 
predominant risk factor for many conditions including various types of cancers, cardiovascular and neurode-
generative diseases3,4. Interventions targeting the cellular and molecular process of ageing have the potential to 
delay and protect against age-related conditions.

Several ageing studies have identified interventions that extend the lifespan of model organisms ranging from 
nematodes and fruit flies to rodents, using dietary restrictions, genetic modifications and pharmaceutical inter-
ventions. Lee et al. (2006) presented the first evidence that long-term dietary deprivation can improve longevity 
in a multicellular species, Caenorhabditis elegans (C. elegans)5. A few years later, Harrison et al. (2009) found that 
treating mice with rapamycin, an inhibitor of the mTOR pathway, extended the median and maxim lifespan of 
the mice6. Additionally, Selman et al. (2009) reported that genetic deletion of S6 protein kinase 1, a component 
of the mTOR signalling pathway, increased the lifespan of mice and protected against age-related conditions7.

Ye et al. (2014) developed a pharmacological network to identify pharmacological classes related to the ageing 
of C. elegans8. The network showed that resistance to oxidative stress and lifespan extension clustered in a few 
pharmacological classes, most of them related to intercellular signalling8. Moreover, Putin et al. (2016) developed 
a deep learning neural network that predicted human chronological age from a basic blood test9. The study identi-
fied the top five most critical blood markers for determining chronological age in humans, which were albumin, 
glucose, alkaline phosphatase, urea and erythrocytes9. Additionally, Mamoshina et al. (2018) developed a deep 
learning-based haematological ageing clock using blood samples from Canadian, South Korean, and Eastern 
European populations, with millions of subjects10. The findings showed that population-specific ageing clocks 
were more accurate in predicting chronological age and quantifying biological age than generic ageing clocks10.

Barardo et al. (2017) built a random forest model to predict whether a compound would increase the lifespan 
of C. elegans based on the data of the DrugAge database1,4. The features used to build the model were molecular 
descriptors and gene ontology terms. Feature selection was performed using random forest’s feature importance 
measure. The best performing model, with an AUC score of 0.80, was applied to predict the class of the com-
pounds in the DGIdb database.
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Purpose of the work.  This study builds on the work conducted by Barardo et al. (2017) to further explore 
the use of the DrugAge database for predicting compounds with anti-ageing properties4. Specifically, the ran-
dom forest algorithm was employed to predict whether a compound will increase the lifespan of C. elegans. This 
was achieved by building five predictive models, each using different descriptor types, based on the data of the 
DrugAge database published by Barardo et al. (2017)4. The features of the models were molecular fingerprints 
and/or molecular descriptors calculated from the structure of the compounds in the DrugAge database. Feature 
selection was performed using variance and mutual information-based methods. To the best of our knowledge, 
this is the first implementation of molecular fingerprints for building machine learning models based on the 
entries of the DrugAge database. The best performing model was applied to predict the class of the compounds 
in an external database, consisting of 1738 small-molecules extracted from the DrugBank database11.

Random forest models.  Random forest is a supervised machine learning technique, consisted of an 
ensemble of decision trees, where each tree is trained independently using a random subset of the data12. The 
random forest model is widely used in chemo- and bioinformatics related tasks as it is robust to overfitting on 
high dimensional databases with a small sample sizes4.

The choice of chemical descriptors can significantly impact the quality and predictions of quantitative struc-
ture–activity relationship (QSAR) models. Descriptors represent chemical information of molecules in a digital 
or numerical way that is suitable for model development and are computer-interpretable13,14. In this study, 2D 
and 3D molecular descriptors were calculated using the Molecular Operating Environment (MOE) software15. 2D 
descriptors are calculated from the 2D structure of a molecule and provide information related to its structural, 
topological and physicochemical properties16. On the other hand, 3D descriptors are generated from the 3D 
structure of a chemical compound and include electronic parameters (e.g. dipole momentum), quantum–chemi-
cal descriptors (e.g. HOMO and LUMO energies), and surface:volume descriptors14,17,18.

Molecular fingerprints represent the molecule’s structure using binary vectors, where 1 corresponds to a par-
ticular feature or structural group being present and 0 that it is absent. Herein, extended-connectivity fingerprints 
(ECFP) of 1024- and 2048-bit lengths and RDKit topological fingerprints of 2048-bit length were generated 
in the RDKit Python environment19. Lastly, the combination of molecular descriptors with ECFPs was tested.

Results and discussion
Feature selection.  Variance and mutual information filter-based methods were employed to select a subset 
of relevant features for predicting the anti-ageing properties of the molecules in the dataset. This was performed 
only for the training set which contained 80% of compounds in the dataset. Feature selection reduced the num-
ber of variables used by each model, making computational calculations less expensive. The median AUC scores 
and standard deviation of tenfold cross-validation (on the training set) obtained by random forest classification 
for each feature subset can be found in Supplementary Fig. 1, Additional File 1. The feature subset with the 
highest AUC score in 10-fold cross-validation was selected for classifying the compounds in the test set. In cases 
where two feature subsets achieved the same AUC score, the subset with the lowest standard deviation was used.

Model selection.  The test set contained 20% of the data not used in training the models. The performances 
of the random forest classifiers on the test and train set as well as the optimal number of variables obtained by 
feature selection are shown in Table 1.

As illustrated in Fig. 1, the predictive performances of the random forest models built with ECFP and MD 
features did not significantly drop for classifying the compounds in the test set and were compatible with the 
spread of the AUC scores from cross-validation. This indicated that overfitting was minimised. On the other 
hand, the performance of the classifier using topological RDKit fingerprints on the test set dropped by approxi-
mately 6%. Therefore, the RDKit5 model was not selected for predicting the effect of the compounds in the 
screening database on the lifespan of C. elegans.

The receiver operating characteristic (ROC) curve is the plot of the True Positive Rate (TPR) against the 
False Positive Rate (FPR) at varying classification thresholds. The ROC curves, displayed in Fig. 2, compare the 
performances of the descriptor types for classifying the samples of the test set. The figure illustrates that the five 
random forest models performed better than a random prediction.

The best performing model, selected by its ability to correctly classify the compounds in the test set, was 
used for predicting the class of the compounds in the screening dataset. The classifier built solely with molecular 

Table 1.   Performances on tenfold cross-validation and the test set achieved by each descriptor type; ECFP 
(1024-bit length), ECFP (2048-bit length), RDKit fingerprints (2048-bit length), molecular descriptors and 
the combination of ECFP (1024-bit length) with molecular descriptors. The number of features selected by 
applying variance and mutual information-based methods is reported.

Model Number of selected features Cross-validation on training set (AUC ± SD) (%) Test set (AUC) (%)

ECFP_1024 55 79.4 ± 4.8 79.3

ECFP_2048 504 78.9 ± 4.2 77.6

RDKit5 654 83.6 ± 5.3 77.7

MD 69 82.3 ± 4.1 81.5

ECFP_1024_MD 33 82.8 ± 4.0 80.6
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descriptors (MD), achieved the highest AUC score for predicting the class of the compounds in the test set. 
Combining MD with ECFP_1024, the feature type used to obtain the model with the second-highest predictive 
ability, did not further improve the performance of the classifier. The ECFP_1024 features could have provided 
additional information that was not useful to the random forest classifier making the predictions more difficult. 
Therefore, the MD model, which had an AUC score of 0.815 for classifying the compounds in the test set, was 
selected for further analysis.

Figure 1.   Box-and-whisker plot displaying the distribution of the AUC for the tenfold cross-validation (CV) on 
the training set and the AUC score for the single measurement taken on the test set, obtained by random forest 
classification. Each box represents the cross-validation data for a different model, where ECFP of 1024-bit length 
is shown in green, ECFP of 2048-bit length in blue, RDKit fingerprints in pink, molecular descriptors in red and 
the combination of ECFP of 1024-bit length with molecular descriptors are represented in orange colour. The 
value reported within the boxes is the median AUC value of the tenfold cross-validation. The points outside the 
boxplots represent possible outliers.

Figure 2.   The ROC curves comparing the performances of the ECFP_1024 (in grey), ECFP_2048 (in green), 
RDKit5 (in orange), MD (in purple) and ECFP_1024_MD (in blue) for classifying the compounds in the test set. 
The AUC scores are reported for each descriptor type. The red dashed line corresponds to a random classifier, 
that gives random answers, with an AUC value of 0.520.
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Confusion matrix.  The confusion matrix of the MD model for predicting the class of the molecules in the 
test set is shown in Fig. 3. The classification accuracy of the model was 0.853 and the AUC score was 0.815.

The calculation of the Positive Predictive Value (PPV), Equation, and Negative Predictive Value (NPV), 
Equation, is shown below:

In binary classification, the PPV and NPV are the percentage of correctly classified compounds among all 
compounds predicted as positives or negatives, respectively. Herein, the PPV and NPV indicate that the random 
forest model performed better on correctly classifying inactive compounds than active ones. The data used in 
this study was imbalanced as approximately 79% of the samples were negative entries. Thus, a random predic-
tion that a compound is inactive had a much higher initial probability of being correct. To handle the imbal-
anced data, the “class_weight” argument of the random forest algorithm was set to “balanced”, which penalises 
misclassification of the minority class (i.e. the positive samples)21. The remaining parameters of the random 
forest model were left to the default settings of the scikit-learn Python library (please refer to the “Random forest 
settings” section in the Methods)22. This increased the PPV for classifying the compounds in the test set from 
61.1% (value without balancing the class weights) to 65.6% (score achieved after balancing the class weights), 
while the NPV was reduced by 0.2%.

Feature importance.  Investigating which features are considered “more important” by black-box models 
such as random forest can aid understanding of how these models make predictions. In this experiment, the 
feature relevance was measured using the “Gini importance” of the random forest algorithm. The selected model, 
MD, was composed of 69 molecular descriptors calculated by the MOE software23. The table containing the full 
feature ranking can be found in Additional File 2. The analysis was focused on the top 30 features with the high-
est Gini importance (Table 2), which contained both 2D and 3D molecular descriptors.

The highest-ranking features were broadly separated into the following categories (1) atom and bond counts 
(2) topological and (3) partial charge descriptors.

Atom and bond counts are simple descriptors that do not provide any information on molecular geometry 
or atom connectivity. The highest-ranking atom and bond count descriptors were a_nN, b_single, a_count, 
opr_brigid, and a_nH. While very simplistic, the atom and bond counts outperformed more complex 2D and 
3D molecular descriptors. This is because atom and bond counts can partially capture the overall properties of a 
compound such as size, hydrogen bonding and polarity, which often impact the activity of a drug24. The number 
of nitrogen atoms, a_nN, was the top-ranking feature of the MD random forest model with a Gini importance 
score of 0.062. This is consistent with the results of Barardo et al. (2017) where a_nN was also ranked highest for 
predicting the class of the compounds in the DrugAge database4. Nitrogen atoms could have affected the phys-
icochemical properties of the drugs as well as the interactions and binding of the molecules with target residues.

(1)
PPV =

True Positives

True Positives+ False Positives

PPV =
21

21+ 11
= 65.6 %

(2)
NPV =

True Negatives

True Negatives+ False Negatives

NPV =
223

223+ 31
= 87.8 %

Figure 3.   The confusion matrix was obtained from the performance of the MD model on the test set. The test 
set had a total of 286 compounds, of which 52 were active and 234 were inactive.
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The highest-ranking topological descriptors included chi0_C, chi0v_C, zagreb, weinerPol, Kier3, chi0 and 
Kier2. Topological descriptors take into account atom connectivity. The descriptors are computed from molecular 
graphs, where atoms are represented by vertices and the bonds by edges25. These descriptors can provide infor-
mation on the degree branching of the structure as well as molecular size and shape25. Although topological 
descriptors are extensively used in predictive modelling, they are usually hard to interpret26. Topological descrip-
tors may have provided information on how well a molecule fits in the binding site and along with atom counts 
the interactions with the binding residues.

Top ranking partial charge descriptors were PEOE_VSA + 2, PEOE_VSA-4, PEOE_VSA + 4, PEOE_VSA-6, 
PEOE_VSA_PPOS, Q_VSA_PNEG, PEOE_VSA_POL, Q_VSA_PPOS and PEOE_VSA_PNEG. The “PEOE_” 
prefix denotes descriptors calculated using the partial equalization of orbital electronegativity (PEOE) algorithm 
for quantification of partial charges in the σ-system27,28. On the other hand, descriptors prefixed with “Q_” were 
calculated using the Amber10:EHT force field23. In a ligand-receptor system, partial charges can play a key role 
in the binding properties of the molecule as well as molecular recognition.

Predicting potential lifespan‑extending compounds.  The MD random forest model was applied to 
predict the class compounds in an external database, consisting of 1738 small-molecules obtained from the 
DrugBank database11. The top-ranking compounds with a predictive probability of ≥ 0.80 for increasing the 
lifespan of C. elegans are shown in Table 3. The full ranking of the molecules in the screening database can be 
found in Additional File 2. The compounds were broadly separated into the following categories; (1) flavonoids, 
(2) fatty acids and conjugates, and (3) organooxygen compounds. The compounds were classified based on 

Table 2.   Top 30 features ranked by Gini importance for the MD random forest model. The description of the 
features was taken from the MOE software documentation23.

Gini importance Feature Description

0.062 a_nN Number of nitrogen atoms

0.029 PEOE_VSA + 2 Total positive van der Waals surface area of atoms with a partial charge in the range of 0.10 to 
0.15

0.026 vsurf_D8 Hydrophobic volume

0.024 h_pKa The pKa of the reaction that removes a proton

0.023 SMR_VSA6 Sum of van der Waals surface areas such that the molar refractivity contribution is in the range 
of 0.485 to 0.560

0.023 rsynth A value in [0,1] indicating the synthetic reasonableness, or feasibility, of the chemical structure

0.022 PEOE_VSA-4 Total positive van der Waals surface area of atoms with a partial charge in the range of − 0.25 
to − 0.20

0.021 PEOE_VSA + 4 Total positive van der Waals surface area of atoms with a partial charge in the range of 0.20 to 
0.25

0.021 PEOE_VSA-6 Total positive van der Waals surface area of atoms with a partial charge that is less than − 0.30

0.021 PEOE_VSA_PPOS Total positive van der Waals surface area of atoms with a partial charge that is greater than 0.20

0.020 chi0_C Carbon connectivity index (order 0)

0.020 Q_VSA_PNEG Total negative polar van der Waals surface area of atoms of with a partial charge that is less than 
− 0.20

0.020 PEOE_VSA_POL Total polar van der Waals surface area of atoms of which the absolute value of their partial 
charge is greater than 0.20

0.020 chi0v_C Carbon valence connectivity index (order 0)

0.019 SMR_VSA3 Sum of van der Waals surface areas such that the molar refractivity contribution is in the range 
of 0.35 to 0.39

0.019 Q_VSA_PPOS Total positive van der Waals surface area of atoms with a partial charge that is greater than 0.20

0.018 b_single Number of single bonds

0.018 a_count Number of atoms

0.018 SlogP_VSA3 Sum of van der Waals surface areas such that the logP(o/w) is in the range of 0.0 to 0.1

0.018 PEOE_VSA_PNEG Total negative polar van der Waals surface area of atoms of with a partial charge that is less than 
− 0.20

0.017 TPSA Topological polar surface area

0.017 zagreb Zagreb index

0.017 weinerPol Wiener polarity number

0.017 opr_brigid The number of rigid bonds

0.017 Kier3 Third kappa shape index

0.016 PEOE_VSA-1 Total positive van der Waals surface area of atoms with a partial charge in the range of − 0.10 
to − 0.05

0.016 chi0 Atomic connectivity index (order 0)

0.016 Kier2 Second kappa shape index

0.016 SlogP_VSA2 Sum of van der Waals surface areas such that the logP(o/w) is in the range of − 0.2 to 0.0

0.015 a_nH Number of hydrogen atoms
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categories “Class” and “Sub Class” of the chemical taxonomy section of the DrugBank database (provided by 
Classyfire) or assigned manually if not present29.

Flavonoids.  Flavonoids are a group of secondary metabolites in plants that are common polyphenols in 
the human diet30. Major nutritional sources include tea, soy, fruits, vegetables, wine and nuts30,31. Flavonoids 
are separated into subclasses based on their chemical structure, including flavones, flavonols, flavanones, and 
isoflavones30.

Flavonoids have been associated with health benefits for age-related conditions such as metabolic diseases, 
cancer, inflammation and cognitive decline30,31. Possible mechanisms of action include antioxidant activity, 
scavenging of radicals, central nervous system effects, alteration of the intestinal transport, sequestration and 
processing of fatty acids, PPAR activation and increase of insulin sensitivity30.

Diosmin was the top-hit molecule in the screening database, with a predictive probability of 0.96. Diosmin 
is a flavonol glycoside that is either extracted from plants such as Rutaceae or obtained synthetically32. It has 
anti-inflammatory, free radical scavenging, and anti-mutagenic properties and has been used medically to treat 
pain and bleeding of haemorrhoids, chronic venous disease and lymphedema33. Nevertheless, diosmin has poor 
aqueous solubility, which is a challenge for oral administration34. Kamel et al. (2017) found that a combination 
of diosmin with essential oils showed skin antioxidant, anti-ageing and sun-blocking effects on mice34. The 
underlying mechanisms for diosmin’s anti-ageing and photo-protective effects include enhancing lymphatic 
drainage, ameliorating capillary microcirculation inflammation and preventing leukocyte activation, trapping, 
and migration34,35.

Other flavonoids that ranked high for increasing the lifespan of C. elegans were rutin and hesperidin with a 
predictive probability of 0.95 and 0.94, respectively. Rutin (or quercetin-3-rutinoside), is a flavonol glycoside that 
is abundant in many plants such as passionflower, apple, tea, buckwheat seeds and citrus fruits36,37. It possesses 
a range of biological properties including antioxidant, anticancer, neuroprotective, cardio-protective and skin-
regenerative activities36,37. Rutin had a high structural similarity to other flavonoids in the DrugAge database 
and particularly with quercetin 3-O-β-d-glucopyranoside-(4 → 1)-β-d-glucopyranoside (Q3M). The Tanimoto 
coefficient between the RDKit fingerprints of Q3M and rutin was 0.99. The similarity map between the two 
compounds is shown in Fig. 4.

Q3M is a flavonoid abundant in onion peel that was found to extend the lifespan of C. elegans39. In the same 
study, even although rutin was found to improve the tolerance of C. elegans to oxidative stress, which is desir-
able for longevity, rutin (20 μg/mL) did not significantly affect the worm’s lifespan39. On the other hand, a more 
recent study by Cordeiro et al. (2020) found that treatment of C. elegans with 15, 30 and 120 μM rutin increased 
the lifespan of the nematodes from 28 (control) to 30 days40.

Hesperidin has shown reactive oxygen species (ROS) inhibition and anti-ageing effects in the yeast species 
Saccharomyces cerevisiae41. Fernández-Bedmar et al. (2011) found that hesperidin extracted from orange juice 
had a positive influence on the lifespan of D. melanogaster42. Wang et al. (2020) showed that orange extracts, 
where hesperidin was the predominant phenolic compound, increased the mean lifespan of C. elegans43. In 
the same study, orange extracts were also found to promote longevity by enhancing motility and reducing the 
accumulation of age pigment and ROS levels43.

Soy isoflavones include genistein, glycitein, and daidzein. Genistein, a compound of the DrugAge, has been 
found to prolong the lifespan of C. elegans and increase its tolerance to oxidative stress44. Gutierrez-Zepeda 
et al. (2005) found that C. elegans fed with soy isoflavone glycitein had an improved resistance towards oxida-
tive stress45. However, in comparison to control worms, the lifespan of C. elegans fed with glycitein (100 μg/ml) 

Table 3.   Chemical compounds from the screening database with a predictive probability of 0.80 or above for 
increasing the of C. elegans. 

Compound name Predictive probability Compound category

Diosmin 0.96 Flavonoids

Gamolenic acid 0.95 Fatty acids and conjugates

Rutin 0.95 Flavonoids

Hesperidin 0.94 Flavonoids

Lactose 0.89 Organooxygen compounds

6’’-O-Malonyldaidzin 0.84 Flavonoids

Fidaxomicin 0.84 Other/Macrolide

Sucrose 0.83 Organooxygen compounds

Lactulose 0.83 Organooxygen compounds

Sodium aurothiomalate 0.82 Fatty acids and conjugates

Alloin 0.81 Other

Rifapentine 0.81 Other/Macrolactams

Plecanatide 0.80 Other/Polypeptides

Calcifediol 0.80 Other/Steroids and steroid derivatives

Chlortetracycline 0.80 Other/Tetracyclines
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was not significantly affected45. The effect of daidzein (100 μM) on the lifespan of C. elegans in the presence of 
pathogenic bacteria was investigated by Fischer et al. (2012)46. The study found that daidzein had an estrogenic 
effect that extended the lifespan of the nematode in presence of pathogenic bacteria and heat46. Herein, we 
applied the MD random forest model to predict the effect of 6’’-O-malonyldaidzin on the lifespan of C. elegans. 
6’’-O-Malonyldaidzin is an o-glycoside derivative of daidzein found in food products such as soybean, miso, soy 
milk and soy yoghurt47. Its predicted probability for extending the lifespan of the worm was 0.84.

Fatty acids and conjugates.  Lipid metabolism has an essential role in many biological processes of an 
organism. Lipids are used as energy storage in the form of triglycerides and can therefore aid survival under 
severe conditions48. Additionally, lipids have a key role in intercellular and intracellular signalling as well as 
organelle homeostasis49. Research on both invertebrates and mammals indicates that alterations in lipid levels 
and composition are associated with ageing and longevity48,49.

A recent review by Johnson and Stolzing (2019), on lipid metabolism and its role in ageing, summarised key 
lipid-related interventions that promote longevity in C. elegans50. Some of the studies presented in the review are 
reported here. O’Rourke et al. (2013), showed that supplementing C. elegans with the ω -6 polyunsaturated fatty 
acids (PUFAs) arachidonic acid and di‐homo‐γ‐linoleic acid (DGLA) increased the worm’s starvation resistance 
and prolonged its lifespan by stimulating autophagy51. Similarly, Shemesh et al. (2017) found that DGLA extended 
the lifespan of C. elegans and maintained protein homeostasis in adulthood52. Additionally, Qi et al. (2017), found 
that treating C. elegans with ω -3 PUFA α-linolenic acid extended the nematodes lifespan53. The study indicated 
that the ω -3 fatty acid underwent oxidation to generate a group of molecules known as oxylipins. The findings 
suggested that the increase of the worm’s lifespan could be a result of the combined effects of the α-linolenic 
acid and oxylipin metabolites53. Sugawara et al. (2013) found that a low dose of fish oils, which contained PUFAs 
eicosapentaenoic acid and docosahexaenoic acid, significantly increased the lifespan of C. elegans54. The authors 
proposed that a low dose of fish oils induces moderate oxidative stress that extended the lifespan of the organism. 
In contrast, large amounts of fish oils had a diminishing effect on the worm’s lifespan54.

Gamolenic acid or γ-linolenic acid (GLA) was the second top-hit molecule of the screening database with a 
predictive probability of 0.95. GLA is an ω -6 PUFA, composed of an 18-carbon chain with three double bonds 
in the 6th, 9th and 12th position55. Rich sources of GLA include evening primrose oil (EPO), black currant oil, 
and borage oil56. In mammals, GLA is synthesized from linoleic acid (dietary) via the action of the enzyme δ -6 
desaturase55,56. GLA is a precursor for other essential fatty acids such as arachidonic acid55,56. Conditions such 
as hypertension and diabetes as well as stress and various aspects of ageing, reduce the capacity of δ -6 desaturase 
to convert linoleic acid to GLA57. This may lead to a deficiency of long-chain fatty acid derivatives and metabo-
lites of GLA. GLA has been used as a constituent of anti-ageing supplements and has shown to possess various 
therapeutic effects in humans including improvement of age-related anomalies55.

Sodium aurothiomalate, with a lifespan increase probability of 0.82, is a thia short-chain fatty acid used for 
the treatment of rheumatoid arthritis and has potential antineoplastic activities29,58. In preclinical models, sodium 
aurothiomalate inhibited protein kinase C iota (PKCι) signalling, which is overexpressed in non-small cell lung, 
ovarian and pancreatic cancers58.

Organooxygen compounds.  Lactose, with a lifespan increase probability of 0.89, is a disaccharide found 
in milk and other dairy product. In the human intestine, lactose is hydrolysed to glucose and galactose by the 
enzyme lactase. Out of the compounds in the DrugAge database, lactose had the highest structural similarity 
with trehalose. Trehalose has been found to increase the mean lifespan of C. elegans by over 30%, without show-
ing any side effects59. The Tanimoto coefficient between the RDKit fingerprint representations of trehalose and 
lactose was 0.85. Even though lactose has a high (Tanimoto) similarity to trehalose, Xing et al. (2019) found that 
lactose treatment at 10, 25, 50 and 100 mM concentrations shortened the lifespan of C. elegans60.

Figure 4.   Similarity map for ECFP fingerprint with a default radius of 2 (a) structure of reference molecule 
Q3M from the DrugAge database (b) similarity map of rutin. In green colour are bits that if removed will 
decrease the similarity, whereas removing bits represented in pink colour will increase the similarity between the 
two compounds38. The figure was created in the RDKit Python environment19.
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Sucrose, with a lifespan increase probability of 0.83, is a disaccharide composed of glucose and fructose61. It 
is used as the main form of transporting carbohydrates in fruits and vegetables61. Other sugars such as trehalose, 
galactose and fructose have been found to extend the lifespan of C. elegans59,62,63. Zheng et al. (2017) found the 
treating C. elegans with sucrose (55 μM, 111 μM, or 555 μM) had no significant effect on the organism’s mean 
lifespan63. On the other hand, a more recent study by Wang et al. (2020) found that treatment with 50 μM sucrose 
significantly increased the lifespan of the nematodes, while a concentration of 400 μM significantly shortened 
their lifespan64.

Lactulose, with a lifespan increase probability of 0.83, is a synthetic disaccharide composed of monosaccha-
rides lactose and galactose65. Lactulose has shown to be an effective treatment for chronic constipation in elderly 
patients as well as improve the cognitive function in patients with hepatic encephalopathy65,66.

Other classes of compounds.  Other compounds with a predictive probability of ≥ 0.80 for increasing the 
lifespan of C. elegans included alloin, a constituent of aloe vera with a predictive probability of 0.81, as well as the 
antibiotics fidaxomicin (predictive probability = 0.84), rifapentine (predictive probability = 0.81) and chlortetra-
cycline (predictive probability = 0.80).

Rifapentine is a macrolactam antibiotic approved for the treatment of tuberculosis67. Macrolactams are a 
small class of compounds that consist of cyclic amides having unsaturation or heteroatoms replacing one or more 
carbon atoms in the ring29. Other macrolactams such as rifampicin and rifamycin have been found to increase 
the lifespan of C. elegans68.

Golegaonkar et al. (2015) showed that rifampicin reduced AGE products and extended the mean lifespan of 
C. elegans by 60%68. Advanced glycation end (AGE) products are formed from the non-enzymatic reaction of 
sugars, such as glucose, with proteins, lipids or nucleic acids68. AGE products have been implicated in ageing and 
age-related diseases such as diabetes, atherosclerosis, and neurodegenerative diseases68. The effect of two other 
macrolactams, rifamycin SV and rifaximin, on the lifespan of the nematode was also investigated. Rifamycin 
SV was found to exhibit similar activity to rifampicin, while rifaximin lacked anti-glycating activity and did 
not extend the lifespan of C. elegans. The authors suggested that the anti-glycation properties of rifampicin and 
rifamycin could be attributed to the presence of a para-dihydroxyl moiety, which was not present in rifaximin68. 
As shown in Fig. 5, this functional group is also present in rifapentine. Experimental testing would be required 
to investigate whether rifapentine possesses similar properties to rifampicin and rifamycin.

Conclusions
Pharmaceutical interventions that modulate ageing-related genes and pathways are considered the most effective 
approach for combating human ageing and age-related diseases. Widely used strategies for identifying active 
compounds include screening existing drugs with potential anti-ageing properties.

In this study, the random forest algorithm was built to predict whether a compound would increase the 
lifespan of C. elegans using the entries of the DrugAge database, which contains molecules with known anti-
ageing properties such as metformin, spermidine, bacitracin, and taxifolin. Our results provide an update on the 
findings of Barardo et al. (2017), by employing the latest version of the DrugAge database, which includes many 
more entries. Specifically, five random forest models were built using molecular fingerprints and/or molecular 
descriptors as features. Feature selection and dimensionality reduction were performed using variation and 
mutual information-based pre-selection methods. The best performing classifier, the MD model, was built using 
molecular descriptors and achieved an AUC score of 0.815 for classifying the compounds in the test set. Combin-
ing molecular descriptors with ECFPs did not further improve the model’s performance. The features of the MD 
model were ranked using random forest’s Gini importance measure. Among the 30 highest important features 
were molecular descriptors related to atom and bond counts, topological and partial charge properties.

The highest performing model was applied to predict the class of the compounds in the screening database 
which consisted of 1738 small-molecules from DrugBank. The compounds with a predictive probability of ≥ 0.80 
for increasing the lifespan of C. elegans were broadly separated into (1) flavonoids, (2) fatty acids and conjugates, 
and (3) organooxygen compounds.

This study elucidated several molecules such as orange extracts, rutin, lactose and sucrose, that have been 
experimentally evaluated on C. elegans but were not entries of the predictive database. A limitation of our algo-
rithm is that it does not consider the substance’s dose. For example, at certain concentrations sugars such as 
sucrose can promote longevity in C. elegans, whereas at higher concentrations such sugars have a detrimental 
effect on the lifespan of the nematodes64. Moreover, lactose, which received a predictive probability of 0.89 for 
increasing the lifespan of C. elegans by our model, was found to reduce the lifespan of C. elegans at 10–100 mM 
concentrations by Xing et al. (2019)60. Nevertheless, the compound could have a beneficial health effect at a 
different concentration.

Future work would involve in vivo testing of promising compounds such as γ–linolenic acid, rutin, lactulose 
and rifapentine to investigate their effect on the lifespan of C. elegans, as well as, reevaluate the effect of lactose at 
lower concentrations. Finally, further work would also explore how the predicted probability of lifespan increase 
is affected when testing two structurally similar compounds that promote longevity at different concentrations.

Methods
Dataset for predicting lifespan‑extending compounds.  The dataset published in the study by Bara-
rdo et al. (2017) contains positive entries, which are compounds that “increase the lifespan of C. elegans” and 
negative entries, compounds that “do not increase the lifespan of C. elegans”4. In particular, the dataset contains 
1392 compounds of which 229 are positive and 1163 are negative entries4. The positive entries of this dataset 
were obtained from the DrugAge database of ageing-related drugs, (Build 2, release date: 01/09/2016), available 
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on the Human Ageing Genomic Resources website1,69. DrugAge provides information on drugs, compounds 
and supplements with anti-ageing properties that have been found to extend the lifespan of model organisms1. 
The species include worms, mice and flies, with the majority of data representing C. elegans4. Data has been 
obtained from studies performed under standard conditions and contain information relevant to ageing, such as 
average/median lifespan, maximum lifespan, strain, dosage and gender where available1. The negative entries of 
the database used in the study of Barardo et al. (2017) were obtained from the literature.

At the time of writing, the latest version of the DrugAge database, Build 3 (release date: 19/07/2019), corrects 
for small errors and adds hundreds of new entries. Herein, the positive entries in the database used in Barardo 
et al. (2017) were replaced with the data from the newest version of DrugAge, Build 3. The same negative entries 
as Barardo et al. (2017) were used4. The modified database contained a total of 1558 compounds with 395 posi-
tive entries and 1163 negative ones. In this study, the term “DrugAge database” refers to the modified dataset 
with a total of 1558 compounds.

Representation of chemical compounds.  The chemical structures of the DrugAge dataset were con-
verted into canonical SMILES strings using the Python package PubChemPy70. The SMILES strings were stand-
ardised by the Standardiser tool developed by Francis Atkinson in 201471. Standardisation removed inorganic 
compounds, salt/solvent components and metal species as well as neutralised the compounds by adding or 
removing hydrogen atoms71. Stereoisomers, even if biologically may have different activities, were treated as 
duplicates as they had identical SMILES strings. For two or more stereoisomers in the same class, only one was 
kept. For duplicates in different classes, both were removed72. After standardisation and duplicate removal, the 
number of molecules in the DrugAge database was reduced to a total of 1430 compounds with 304 positive and 
1126 negative entries. The predictive database used in this study can be found in Additional File 2.

Molecular descriptor generation.  The standardised SMILES strings were converted into mol files in the 
RDKit environment and opened in the MOE software19,23. The chemical structures were energy minimised in 
the Energy Minimize General mode of MOE using Amber10:EHT force field23. A total of 354 descriptors were 
calculated including all 2D, internal i3D and external x3D coordinate depended on 3D descriptors. Due to soft-
ware limitation, few 3D descriptors (’AM1_E’, ’AM1_Eele’, ’AM1_HF’, ’AM1_HOMO’, ’AM1_IP’, ’AM1_LUMO’, 

Figure 5.   Chemical structure of (a) rifamycin SV (b) rifampicin (c) rifaximin and (d) rifapentine. The 
para-dihydroxynaphthyl moiety possessed by rifamycin SV, rifampicin and rifapentine is highlighted in blue. 
Rifaximin possesses a para-aminophenyl moiety incorporated in a ring system, highlighted in red68. The figure 
was designed in ChemDraw and redrawn from Golegaonkar et al. (2015)68.
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’MNDO_E’, ’MNDO_Eele’, ’MNDO_HF’, ’MNDO_HOMO’, ’MNDO_IP’, ’MNDO_LUMO’, ’PM3_E’, ’PM3_
Eele’, ’PM3_HF’, ’PM3_HOMO’, ’PM3_IP’, ’PM3_LUMO’) could not be calculated for ten chemical structures. 
The missing values were replaced with the average value of the remaining chemical structures for the given 
descriptor.

Molecular fingerprint generation.  Molecular fingerprints were generated in the Python RDKit environ-
ment from the standardised SMILES strings19. ECFP of 1024-bits and 2048-bits length were calculated with an 
atomic radius of 2. These were represented as “ECFP_1024” and “ECFP_2048”, respectively. In addition to the 
ECFPs, RDKit topological fingerprints of 2048-bits length were generated with a maximum path length of 5 
bonds and denoted as “RDKit5”.

Five random forest models were built using five different feature types and trained with the data of the 
DrugAge database. The feature types explored in this study, ECFP_1024, ECFP_2048, RDKit5, MD and 
ECFP_1024_MD, are summarised in Supplementary Table 1, Additional File 1. The ECFP_1024_MD feature 
was a combined descriptor type consisting of ECFPs of 1024 bit-length and molecular descriptors.

Feature selection.  Feature selection was implemented in the scikit-learn Python library22. Features with 
low variance were removed first, creating three feature subsets var_100, var_95 and var_90. The filters removed 
features with the same value in all entries (var_100), features that had greater than 95% of constant values 
(var_95) and features with more than 90% constant values, respectively (var_90)73.

Mutual Information (MI) is a filter-based feature selection method used to measure the dependency between 
two variables. The MI between variables X and Y  is given by (Eq. 3):

where p
(

x, y
)

 is the joint probability mass function and p(x) and p
(

y
)

 are the marginal probability mass functions 
for X and Y  , respectively74. Herein, Adjusted Mutual Information (AMI) was calculated between each feature 
and the class labels. AMI was used as it is a variation of MI that adjusts for chance75.

For each of the feature subset, AMI was applied using the “adjusted_mutual_info_score” function of scikit-
learn to order the features based on their AMI score22. The following settings were tested: using 5%, 10%, 25%, 
50%, 75% and 100% of the features with the highest AMI score73. For example, if var_100 for MD contained 349 
features, the database with 5% of the features would consist only of the 17 highest-ranking features. This process 
is outlined in Supplementary Fig. 2, Additional File 1.

Tenfold cross‑validation.  Cross-validation was performed in the scikit-learn Python library using the 
“cross_val_score” function22. The predictive database was randomly split into 80% training and 20% test set. 
The tenfold cross-validation was performed only on the training set. The performance of the models was evalu-
ated using the AUC measure. Cross-validation was repeated 10 times, yielding 10 AUC scores. The predictive 
accuracy reported was the median AUC value of the 10 measurements obtained by cross-validation. The median, 
rather than average, AUC score was calculated as the former is more robust to outliers4.

Random forest settings.  The random forest classifiers were built in the scikit-learn Python module22. 
To handle the unbalanced data used in this study, the random forest parameter “class_weight” was set to “bal-
anced”. The remaining parameters of the random forest classifier were set to their default settings. The models 
were run with 100 estimators (number of trees in the forest) and the maximum number of features considered 
in each tree node was the square root of the total number of features. The AUC scores were calculated with the 
“roc_auc_score” matrix of scikit-learn using the “predict_proba” method22.

Screening database.  The best performing model on the test set was applied to predict the class of the 
compounds in an external database, where the effect of the compounds on the lifespan of C. elegans was mostly 
unknown. The external database consisted of small-molecules obtained from the External Drug Links database of 
DrugBank (version 5.1.5, released on 2020-01-03)11. The External Drug Links database contained a list of drugs 
and links to other databases, such as PubChem and UniProt, providing information on these compounds11,76,77.

Generation of SMILES strings, standardisation and descriptor calculation was performed in the same method 
used for the training (DrugAge) database, described in the above sections. Some of the entries of the DrugBank 
database were substances composed of more than one molecule, such as vegetable oils. These entries were either 
removed from the database or replaced by one of their main active ingredients. For example, “borage oil” was 
replaced with “gamolenic acid”. In the case of “soy isoflavones”, the major soy isoflavones (genistein, glycitein, 
and daidzein) had already been experimentally evaluated on the lifespan of C. elegans. Therefore, the entry was 
replaced with “6’’-O-malonyldaidzin”, a derivative of daidzein with unknown activity. Stereoisomers were treated 
as duplicates and only one of them was kept. Substances and stereoisomers present in both the DrugBank and 
DrugAge databases were removed from the screening database. The resulting database consisted of a total of 
1738 small-molecules.

Tanimoto coefficient and similarity maps.  The Tanimoto coefficients and similarity maps were com-
puted in the Python RDKit environment19. The Tanimoto similarity is calculated between a reference molecule, 
which is known to be active, and a compound of interest with unknown activity.
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Herein, the reference molecules were the positive entries of the DrugAge database. The compound with 
unknown activity was a selected entry from the screening database. The Tanimoto coefficient between the com-
pound of interest with each of the reference molecules was calculated. The highest score achieved and the 
reference molecule used to obtain that score was reported. The Tanimoto coefficients were computed using the 
RDKit fingerprint representations of the compounds. Similarity maps were generated using ECFP fingerprint 
representations.
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