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Increasing evidence indicates lithium (Li+) efficacy in neuropsychiatry, pointing to overlapping mechanisms that occur within
distinct neuronal populations. In fact, the same pathway depending on which circuitry operates may fall in the psychiatric and/
or neurological domains. Li+ restores both neurotransmission and brain structure unveiling that psychiatric and neurological
disorders share common dysfunctional molecular and morphological mechanisms, which may involve distinct brain circuitries.
Here an overview is provided concerning the therapeutic/neuroprotective effects of Li+ in different neuropsychiatric disorders
to highlight common molecular mechanisms through which Li+ produces its mood-stabilizing effects and to what extent these
overlap with plasticity in distinct brain circuitries. Li+ mood-stabilizing effects are evident in typical bipolar disorder (BD)
characterized by a cyclic course of mania or hypomania followed by depressive episodes, while its efficacy is weaker in the
opposite pattern. We focus here on neural adaptations that may underlie psychostimulant-induced psychotic development and
to dissect, through the sensitization process, which features are shared in BD and other psychiatric disorders, including
schizophrenia. The multiple functions of Li+ highlighted here prove its exceptional pharmacology, which may help to elucidate
its mechanisms of action. These may serve as a guide toward a multi-drug strategy. We propose that the onset of sensitization
in a specific BD subtype may predict the therapeutic efficacy of Li+. This model may help to infer in BD which molecular
mechanisms are relevant to the therapeutic efficacy of Li+.
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INTRODUCTION
Lithium (Li+) remains the “gold standard” pharmacological agent
for treating and preventing relapses in both type I and type II
bipolar disorders (BDs). It is also effective in preventing suicidal
behavior during major depression. Despite its strong efficacy,
during the past years, Li+ was less and less administered due to
toxicity and the need of monitoring serum concentrations to
strictly maintain safe therapeutic doses [1–5]. However, alternative
methods to administer low but effective therapeutic Li+ doses
have been developed [6]. Besides its efficacy in treating and
preventing symptoms of psychiatric disorders, Li+ produces
neuroprotective effects on a wide range of neuronal populations
that are involved in both behavioral and motor-related circuitries.
In fact, increasing evidence is under debate, indicating Li+

efficacy in neurodegenerative disorders, pointing to common
intracellular mechanisms, which occur within distinct neuronal
populations. This is the case of Alzheimer’s disease (AD),
amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD),
and Parkinson’s disease (PD) [4, 7].
Knowledge of these mechanisms may shed light on the

pathogenesis and neuropathology of different psychiatric and
neurological disorders. The molecular mechanisms of action of Li+

involve classic pharmacologic targets, such as cell surface
receptors or modulation of neurotransmitters, second messenger
systems, enzyme cascades, and transcriptional factors [1, 8].

Here an overview is provided concerning the therapeuti
c/neuroprotective effects of Li+ in different neuropsychiatric
disorders to highlight common molecular mechanisms through
which Li+ produces its mood-stabilizing effects and to what extent
this overlaps with neuroprotection in various brain circuitries. In
fact, similar cell alterations depending on which circuits take place
may fall either in the psychiatric and/or neurological domains.

GENERAL OVERVIEW OF MOLECULAR MECHANISMS OF LI+

Some effects of Li+ are related to the physical–chemical reversible
competition with magnesium ion (Mg2+) within specific catalytic
protein domains involved in substrate phosphorylation. Evidence
shows Li+’s ability to inhibit Mg2+-dependent enzymes by
displacing Mg2+ from its binding sites, thereby reducing enzyme
stability and activity [9]. Thus, pharmacological actions of Li+

mostly depend on the reciprocal Li+/Mg2+ ratio [10]. These
mechanisms of action add on the multifaceted pharmacology of
Li+ [11], as well as its multiple targets.
The binding competition between Li+ and Mg2+ at substrate

enzyme sites modulates the activity of several enzymes within
intracellular pathways involved in biochemical effects, which are
relevant both for neuropsychiatric and neurodegenerative dis-
orders. These include inositol monophosphatase (IMPase), Akt/
β-arrestin-2, and glycogen synthase kinase-3β (GSK-3β). There are
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two closely related forms of GSK-3, termed alpha (GSK-3α) and
beta (GSK-3β), which are equivalently inhibited by Li+ [12]. Li+

inhibits GSK-3 by competing with Mg2+ for an essential binding
site [13]. In addition to Mg2+ competition, Li+ inhibits GSK-3β
activity by increasing its phosphorylation [14]. Li+ also decreases
GSK-3β levels by inhibiting its transcription [15]. It is worth noting
that, of all the kinases, GSK-3 influences the largest number of
substrates [16]. Thus, Li+ has been estimated to act at several
hundreds of GSK3-dependent substrates through the modulation
of a number of GSK-3-dependent pathways. Since Li+ affects other
Mg2+-dependent proteins, the occurrence of >3000 human
proteins has been estimated that can be affected by Li+ [17].
This ability to act on a plethora of molecules, each one owning a
functional relevance, makes Li+ a powerful pharmacological agent
and a valuable tool in clinical and preclinical research.
During the past decades, evidence is provided showing that Li+

inhibits a number of phosphatases by acting as an uncompetitive
and non-competitive inhibitor. Although the mechanisms of
Li+-induced phosphatase inhibition are still not completely
unveiled [18, 19], uncompetitive inhibition of IMPase and inositol
polyphosphate 1-phosphatase (IPPase) has been recently pro-
posed [19, 20]. Inhibition of IMPase and IPPase markedly reduces
inositol triphosphate (IP3) levels, which in turn modulate many
intracellular pathways known to be relevant for both neuropsy-
chiatric and degenerative disorders, such as autophagy [1].
A number of neurotransmitters including dopamine (DA),

norepinephrine, and serotonin act through G protein coupled
receptors. Thus, the effects of Li+ on the inositol cycle may
translate into altered receptor activity following monoamine
stimulation, which in turn may dampen neurotransmitter efficacy,
thus inducing synaptic stabilization [10].
Remarkably, Li+ also stimulates gene expression including

brain-derived neurotrophic factor (BDNF) and vascular endothelial

growth factor (VEGF). Low levels of BDNF during depressive, and
manic phases in bipolar patients [21], have been reported to be
reversed by Li+ treatment. In line with this, Li+ and BDNF plasma
levels are inter-related [22]. Li+ also regulates inflammatory
processes blunting the pro-inflammatory response. In detail, it
decreases lipopolysaccharide-induced inflammation in glial cells
[23] and reduces the production of interleukin-1 beta and tumor
necrosis factor-alpha. The ability of Li+ to modulate inflammation
is relevant to its pharmacological effects since the inflammatory
processes play a crucial role both in neurodegeneration and mood
disorders [24, 25].
Li+ targets unfolded protein response (UPR)-related events,

such as endoplasmic reticulum (ER) stress, excitotoxicity, and
autophagy dysfunction either at the synapses or within cell
bodies. This is expected to induce neuroplasticity, which affects
behavior and motor activity, through overlapping mechanisms in
different brain areas (Fig. 1).
UPR activation induces autophagy [26, 27], which counteracts

ER stress via degradation of protein aggregates and organelles,
including damaged mitochondria, nuclear membrane, and ER.
Moreover, Li+ rescues autophagy failure, which is often reported
in neurodegenerative disorders, including PD, AD, tauopathies,
ALS, and Huntington disease [7, 12, 25, 28–42]. Similarly,
autophagy is often reported to be dysregulated in a number of
psychiatric disorders.
Autophagy is a phylogenetically conserved eukaryotic cell-

clearing system that plays a seminal role in cell homeostasis [36].
It is distinguished into macro-autophagy, micro-autophagy, and
chaperone-mediated autophagy, which all promote lysosome-
dependent substrate degradation [37]. Autophagy can be
induced by a number of cascades, among which the one
controlled by the mammalian target of rapamycin complex1
(mTORC1) plays a relevant role. The mTOR complex represents a

Fig. 1 Detailed drawing of the fine molecular mechanisms of lithium on specific cell targets. Lithium inhibits the PI cycle, which is activated
following stimulation of G-coupled neurotransmitter receptors (GPCRs). PLC mediates the hydrolysis of phosphotidylinositol 4,5-bisphosphate
(PIP2) to the secondary messengers diacylglycerol (DAG) and inositol trisphosphate (IP3), which in turn activate downstream signaling
pathways, including protein kinase C (PKC), and IP3 receptor (IP3R)/ER stress/unfolded protein response (UPR). In detail, lithium inhibits (a) the
reuptake of inositol (I), as well as IMPase and IPPase (b), which results in overall depletion of IP3 (c). In this way, lithium prevents autophagy
impairment and apoptosis that are bound to IP3R-related ER stress, massive Ca2+ release from the ER, abnormal UPR, as well as the
accumulation of misfolded/unfolded proteins and damaged mitochondria (d). Abnormal UPR consists, for instance, of upregulation of TRAF/
JNK and XBP1, which fosters apoptotic events while impairing autophagy. At the same time, through inhibition of PKC and GSK3β (e), lithium
inhibits potentially deleterious effects triggered downstream of these pathways. These include (f ) oxidative stress due to accumulation of
reactive oxygen species (ROS) leaked from damaged mitochondria and downregulation of the nuclear factor erythroid 2 (NFE2)-related factor
2 (NRF2), which, besides its antioxidant effects, is also related to mitophagy and mitochondriogenesis; (g) impaired transcription of
neurotrophic, neuroprotective, and antioxidant genes, such as BDNF, VEFG, Bcl-2, and NRF2, which is instead reinstated by lithium via both
GSK3β inhibition and activation of the CREB transcription factor placed downstream of GPCRs; (h) production of pro-inflammatory cytokines
underlying activation of the STAT/interferon gamma (INFγ)/nuclear factor kappa-light-chain enhancer of activated B cells (NF-kβ) pathway; and
(i) accumulation of hyperphosphorylated tau, which is bound to cytoskeletal alterations and autophagy impairment.
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downstream substrate of the phosphoinositide-3 kinase/phos-
phatase and tensin homolog/Akt pathway.
Activation of 5′ AMP-activated protein kinase and inhibition of

GSK3-β [8, 41] are other well-known pathways controlling
autophagy initiation.
Besides degrading oxidized/misfolded proteins and damaged

organelles, autophagy modulates key cell functions ranging from
neural tube and synapse development to neurotransmitter release
and synaptic plasticity, as well as neuroinflammation and
immunity [4, 43].
Although Li+ inhibits GSK-3β, which reduces autophagy via

mTOR activation, the prevalent effect of Li+ consists in mTOR-
independent autophagy activation since Li+ strongly inhibits
IMPase [7, 44]. In line with this, inositol depletion has mood-
stabilizing effects [1, 42], while in tauopathies Li+ may play a dual
protective role by inhibiting GSK-3β [45], producing strong
autophagy-independent neuroprotective effects and counteract-
ing tau accumulation through autophagy activation ([46], Fig. 1).
Autophagy activation is expected to clear damaged mitochon-

dria (mitophagy), and by a concomitant increase in mitochon-
driogenesis, this speeds up mitochondrial turnover, which
improves mitochondrial function. Li+-induced mitochondriogen-
esis and mitophagy occur both in endothelial cells [47] and
specifically within various neuronal types [27, 34].
Such an effect, which is overtly crucial in neurodegeneration,

also applies to mood disorders since mitochondrial dysfunction is
reported in bipolar patients [48, 49].
Thus, even considering Li+ strong therapeutic effects on mood

disorders, it is likely that autophagy takes a center stage in its
antimanic and antidepressant action. This is not surprising when
considering that a number of autophagy-inducing drugs, which
are on-label with other therapeutic indications, possess mood-
stabilizing effects (i.e., valproate, rapamycin, [46]). Similarly, the
specific efficacy on mood disorders of a variety of psychotropic
drugs may partly relate to autophagy-inducing effects [50–52].

LITHIUM IN NEURODEGENERATIVE AND PSYCHIATRIC
DISORDERS
Neurodegenerative disorders: AD and PD and ALS/FTD
A growing body of evidence points to the neuroprotective effects
of Li+. Subjects with BD administered with long-term Li+ have a
lower risk to develop dementia including AD [53, 54]. A meta-
analysis study [55] shows that Li+ treatment significantly
decreases cognitive decline as compared with placebo, thus
indicating that Li+ may be beneficial in promoting cognitive
performance in subjects with mild cognitive impairment (MCI)
and AD.
Li+ may act at multiple steps within the biochemical cascades

involved in the onset and progression of AD (Fig. 1). For instance,
GSK-3β inhibition may counteract the pathological increased
enzyme activity occurring in patients affected by MCI and AD [56].
GSK-3β is involved in amyloidogenesis and tau phosphorylation,
which at the preclinical level are inhibited by Li+ administration
[57]. Again, Li+-induced autophagy may counteract autophagy
suppression, which is expected in AD patients due to a
progressive increase in mTOR activity during the disease course
[35, 58]. Moreover, Li+ promotes the synthesis and release of
neurotrophic factors, in particular BDNF and VEGF whose
increased availability protects neurons against neurotoxic insults,
stimulates hippocampal neurogenesis, and increases synaptic
plasticity [2]. Indeed, BDNF polymorphisms were reported to
moderate Aβ-related cognitive decline in preclinical AD [59], and
BDNF reduces Aβ in the brain [60]. However, a short half-life and
inability to cross the blood–brain barrier impair the therapeutic
potential of BDNF [61].
Such a limitation is overcome by small molecules like BDNF

mimetic compounds that are able to protect primary neurons

from Aβ-induced toxicity and to promote synaptogenesis [62].
Moreover, Li+ is able to effectively activate the molecular pathway
increasing BDNF synthesis [10] It is worth noting that animal
models play a key role in AD research also fostering clinical studies
in patients to assess Li+ efficacy in contrasting Aβ and tau
pathology [63].
ALS is a motor neuron disease, belonging to a group of

neurological disorders that selectively affect motor neurons
controlling voluntary muscles of the body. ALS can be classified
as familial or sporadic, depending on whether or not there is a
family history of the disease. Although there is no consensus on the
familial definition, a number of genes are considered to cause the
disease.
Motor symptoms improvement by Li+ was reported during the

past two decades. Thus, in a clinical trial, Li+ treatment for
15 months was shown to be safe and significantly associated with
a slower rate of disease progression and death [28]. Substantial
neuroprotection accompanied by delayed disease onset and
increased life span was shown in G93A murine model [28]. It
should be pointed out that several ALS genetic murine models
have been developed [64]. Although of huge utility in preclinical
research, they are partially representative of the pathology and
the efficacy of lithium in these models deserves to be further
investigated [65].
Daily doses of Li+, leading to plasma levels ranging from 0.4 to

0.8 mM, delay disease progression in a small group of ALS patients
[28]. This was further validated in a stratified study on ALS patients
carrying the UNC13A variant where Li+ doubles survival time [29],
while in a heterogeneous ALS population these protective effects
of Li+ are debatable. Thus, it is clear how Li+ affects multiple
targets, all of which are likely to contribute to the improvement of
ALS, such as autophagy that involves Li+ inhibitory action on GSK-
3 and IP3 turnover or suppression of glial cell activation in the
spinal cord [4].
Li+ induces autophagy to counteract ER stress and altered UPR

and rescues autophagy failure occurring in both ALS/FTD and BD
[7, 28, 34, 35, 49, 66–72]. Noteworthy, UPR markers (p-eIF2a,
GRP78, GRP94, XBP1, and CHOP) have been shown to predict Li+

responsiveness in bipolar patients [70].
Li+-responsive psychiatric disorders, such as BD, depression,

and anxiety, may often precede ALS/FTD, and patients with
psychiatric disorders receiving regular Li+ treatment have a
reduced prevalence of ALS and dementia [73].
This evidence shows once more that neurodegenerative

diseases and affective disorders may share common neural
mechanisms into which Li+ acts as therapeutic, strongly suggest-
ing that these mechanisms are crucial in etiology.
Li+ efficacy in PD has been poorly studied and results indicate

that it deserves substantial clinical trials to ascertain promising
neuroprotection as suggested by experimental models.
In a parkin mutant transgenic mouse, low doses of Li+ prevent

motor impairment as well as dopaminergic striatal degeneration,
parkin-induced striatal astrogliosis, and microglial activation.
These results further validate Li+ as a potential therapy for PD
[74]. At first glance, this may sound odd since Li+ by impeding
sensitization produced by DA [75] is expected to attenuate the
efficacy of the long-term L-DOPA response, which represents an
important part of L-DOPA symptomatic effect. Thus, a sympto-
matic interference of Li+ with PD may hide the disease-modifying
effect produced by Li+ acting on autophagy-dependent ongoing
degenerative steps [7, 69].
Alpha-synuclein, a major substrate of autophagy, accumulates

in Lewy bodies, which are mostly found within spared dopami-
nergic neurons of the substantia nigra pars compacta [76], as well
as within extra-nigral neuronal populations [77].
Moreover, genetic ablation of Atg7 specifically within DA

neurons fully reproduces PD pathology, including the formation
of alpha-synuclein-stained Lewy bodies. Evidence that points to a
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key role of autophagy in DA-related disorders [78] and Li+ as a
potential therapy for PD has been provided [4].

Psychiatric disorders: BD, and major depressive disorder
(MDD), and schizophrenia
Li+ mood-stabilizing effects are evident in typical BDs character-
ized by a cyclic course of mania or hypomania followed by
depressive episodes, while efficacy is weaker in the opposite
pattern [5]. In fact, Li+ is less effective in bipolar depression, in
rapid cycling, in psychotic syndromes, in drug abuse, and in
depression-prone cases [5]. Moreover, the effects produced by Li+

in major depression are not as significant as those produced in
cycling BD, as we report briefly below.
Li+ has been proposed for treating MDD since the last decades

of the past century [79, 80] as an alternative pharmacotherapy for
those patients who were refractory to antidepressants. At present,
no clear evidence is available on the efficacy of Li+ monotherapy
compared either with placebo or antidepressants in acute,
unipolar, major depressive episodes [78]. However, a number of
studies have reported the beneficial effects of Li+, even when it is
administered as an adjunct to antidepressant treatment [81, 82].
Li+ has been consistently reported to be effective in reducing

the suicide risk both in unipolar and bipolar patients [83], possibly
acting on GABA [67] to modulate aggression and impulsivity
[84–86] via autophagy [87].
Li+ is not effective in schizophrenia, as documented by

literature from the past decades (see [86] for a review). Albeit
Li+ is co-administered with specific antipsychotics to relieve some
side effects, this does not imply any efficacy of Li+ to treat
schizophrenia [88, 89]. This may sound unexpected since
schizophrenia and BD share some functional and symptomatic
features. Indeed, this discrepancy in therapeutics confirms what
was originally indicated by Emil Kraepelin who in 1899
distinguished “dementia praecox” (further called schizophrenia)
from “manisch-depressive irreisen,” “manic-depressive insanity,”
and manic-depressive disorder, nowadays named BD. Such a
distinction is currently maintained despite some conflicting
hypotheses [90].
We do not wish to deal with such a nosographic issue; we rather

want to emphasize how the discrepant effects of Li+ in these
disorders may rely on distinct molecular mechanisms operating in
schizophrenia compared with BDs, owing to distinct molecular targets.
This is a crucial point since schizophrenia and BD share some

behavioral alterations and neurotransmitter changes (e.g., DA and
glutamate). Moreover, genetic correlations and common genes
between these disorders have been shown [91–93].
These similarities suggest that these disorders do possess

some overlapping steps in their molecular mechanisms. How-
ever, the simple fact that Li+ is poorly or no effective in
schizophrenia urges to investigate which Li+-dependent or
Li+-independent molecular pathways exist in BDs compared
with schizophrenia, respectively [94, 95].
Why then Li+ is effective in BD and possesses a poor efficacy if

any, in schizophrenia? We will discuss such a difference by
pointing out the cycling nature of BD in contrast with a
progressive course of schizophrenia.
It is important to note that the molecular pathways that are

implicated in the sensitization phenomenon are crucial in
schizophrenia, in BD, as well as in psychotogenic effects of
abused psychostimulants. In fact, the cycling nature of BD may be
key in the specific pattern of sensitization, which develops in such
a disorder, contrasting with a progressive course, which otherwise
takes place in schizophrenia.
Li+ is effective in suppressing or delaying psychostimulant-

induced sensitization [96] by acting on some common mechan-
isms also shared by schizophrenia and BD.
Although both disorders share sensitization mechanisms, only

BD is sensitive to Li+, which remains in search of an explanation.

We suggest that a sensitization process exists in both disorders
although the time course of such a sensitization diverges, which
explains the different outcome of a similar pharmacological
manipulation.
Sensitization is a process through which repeated intermittent

exposure to a given stimulus, such as stress, trauma, or
psychostimulants, leads to enhanced behavioral responses to
subsequent exposure [97–99].
The presence of behavioral sensitization in patients with BD has

been proposed to explain relapses and the progression of
behavioral dysfunction [97, 100].
The effects of psychostimulants are relevant to study the

molecular mechanisms that operate in the sensitization process,
which takes place in psychiatric disorders and is shared by
schizophrenia and BD. In fact, when psychostimulants are
chronically abused, psychotic or manic symptoms may occur,
which further provides witness for a promiscuous overlap
between molecular mechanisms operating in these disorders.
Therefore, we focus here on the effects of psychostimulants on

neural adaptations underlying drug abuse and psychotic devel-
opment, to highlight, through the sensitization process, which
features are shared or not between schizophrenia and BD.

Li+, dopamine-related sensitization, and cell-clearing systems
Amphetamine (AMPH) repeated administration induces beha-
vioral sensitization revealing a suited manic-like preclinical model
[101–103]. Translational validity of sensitization to psychostimu-
lant psychological stress [97, 104–106] is also supported by the
overlapping of their neural effects, especially on dopaminergic
transmission. This may also explain why AMPH induces manic
symptoms in both healthy volunteers and BD subjects [107].
Chronic cocaine in preclinical model produces behavioral

sensitization and decreases β-catenin levels in the prefrontal
cortex, amygdala, and dorsal striatum. Accordingly, GSK-3β activity
levels in these areas are increased [108]. Li+ treatment rescues
β-catenin levels and blocks cocaine-induced sensitization [108].
These results are consistent with Li+-induced GSK-3β inhibition
and the following increase in β-catenin levels. However, contrast-
ing results show increased β-catenin levels within nucleus
accumbens that parallels the expression of cocaine sensitization,
both phenomena being rescued by Li+ administration [109, 110],
thus casting a scenario in which Li+ effects appear contradictory.
Possible involvement of neurotransmitters has been advocated to
explain these differences and a role of neural networks, in which
reciprocal influences between brain areas may affect them
differently [109].
Methamphetamine (METH), as well as other psychostimulants,

commonly produces psychoses with positive symptoms similar to
those of schizophrenia. Such an effect makes METH use/abuse to
be commonly considered as an experimental model of schizo-
phrenia. High pre-synaptic DA synthesis and release are peculiar of
schizophrenia [111–113]; likewise, the psychostimulant effects of
METH rely on increased DA synthesis and massive DA release
within limbic and dorsal striatal areas, as well as abnormal
stimulation of postsynaptic DA receptors (DARs), mainly the
D1 subtype (D1Rs) [114, 115]. On the other hand, schizophrenic
patients are oversensitive and overresponsive to AMPHs [98, 111].
METH dysregulates a number of susceptibility genes for

schizophrenia, such as DISC1, NRG1/ErbB4, and CRMP2, which
are known to be involved in the regulation of presynaptic DA
release or post synaptic D1R-related cascades. Noteworthy, they
all converge on mTOR signaling, thus abnormal stimulation of
D1Rs activates significantly mTOR, which inhibits the autophagy
machinery [116]. This suggests that altered mTOR and impaired
autophagy pathway represent a common hub between
psychostimulant-induced neuroplasticity and schizophrenia.
METH impairs the ubiquitin proteasome system (UPS) activity,

which is largely dependent on DA [117–122]. Proteasome
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regulates DA presynaptic release and receptors and postsynaptic
DARs. Activation of DAD2 receptor subtype (D2Rs) contributes to
the expression of DA-dependent METH-induced behavioral
alterations also via a signaling complex composed of β-arrestin
2 (β-arr2), AKT, and protein phosphatase-2A (PP2A), which
activates GSK-3β [123–126].
Li+ is a direct inhibitor of GSK-3 and also inhibits GSK-3 activity

in the cell through an indirect mechanism that involves Akt
activation. Li+’s ability to disrupt β-arr2-mediated Akt/GSK-
3 signaling contributes to suppressing the behavioral effects of
enhanced DA transmission (Fig. 2, [123–127]).
D2Rs activate a signaling complex composed of β-arr2, Akt, and

PP2A, which activates GSK-3β [123–126, 128, 129] and fosters DA-
dependent behavioral changes induced by METH. Li+ antagonizes
DA-related behavioral sensitization through inhibition of GSK-3β
(Fig. 2, [123–127]). All components of the complex that activates
GSK3β, including β-arr2, AKT, and PP2A, are UPS substrates, whose
inhibition, similarly to METH and DA, activates GSK-3β, while,

conversely, GSK-3β inhibition protects from UPS inhibition-
induced toxicity (see [122] for a review).
Furthermore, Li+ can blunt DA transmission through IP3 and

protein kinase C (PKC) placed downstream of DA1Rs or D1/D2
heterodimers [130, 131].
Based on this body of evidence we suggest that the occurrence

of sensitization in a subtype of BD may be relevant to the
therapeutic outcome of Li+ in the very same BD phenotype. This
may allow inferring on which molecular mechanisms are relevant
to the therapeutic effects of lithium in BD.
Li+ is notoriously highly effective in BD1 compared to the

hypomanic phase that characterizes the type 2 disorder (BD2).
Although the usefulness of such a distinction between BD1 and
BD2 is not unanimously shared [132], it represents an important
element for understanding the action of Li+, together with
blunted Li+ efficacy on BD depression compared with mania.
Evidence for Li+ therapeutic efficacy in BD1 clearly indicates

that its action is intimately linked to the peculiar feature of the
disorder, namely cyclicity. In fact, it is legitimate to infer that
during the phase in which mania progressively rises (“mania
rising”), as expressed by behavioral phenotype, Li+ has a sort of
higher “affinity” [133] for neural events spurring the “manic rise.”
The factors implicated in this affinity should be sought in the

“dynamic” status of systems where a number of molecular
machineries would be “on fire” up to the peak. In fact, the
syndrome “evolves” progressively towards the full expression of
the manic phase (Fig. 3). The molecular factors of this “dynamic”
condition are a serious candidate to unveil which mechanisms
allow lithium to be most effective in this phase of BD1.
As reported above, sensitization is driven by molecular

pathways linked to DA transmission, which owns a crucial role
in BD [134]. Brain DA during the “mania rising” phase is
dramatic and produces sensitization, as clearly indicated by
behavioral, neural, and pharmacological evidence ([134], for
review).
Importantly, sensitization progresses differently in different

disorders. Thus, as evident also from behavioral changes, in BD1
the peak of mania is reached in the temporal order of weeks.
Psychostimulant-induced sensitization falls into a similar (even
shorter) temporal window. In schizophrenia, the process, also

Fig. 2 Lithium, amphetamine-related sensitization, and cell-clearing systems. Lithium inhibits IMPase and IPPase, as well as PKC and GSK3β,
which are triggered downstream of dopamine GPCRs. This results in reduced production and phospho-tau/misfolded proteins and the rescue
of cell-clearing systems, which are impaired by mTOR hyperactivation placed downstream of D1 DA receptors and/or by abnormal amounts of
phospho-tau. At the same time, lithium disassembles the GSK3-β-activating proteins β-ARR and PP2A from the complex they form with
GPCRs/AKT meanwhile targeting them for degradation by the cell-clearing systems. In this way, lithium adjusts dopamine imbalances that
occur following psychostimulant intake/administration and abnormal activation of GPCRs and related downstream signaling pathways.

Fig. 3 Neural molecular substrates of lithium determining its
differential affinity and efficacy for BD1 vs BD2. Circles represent
neural molecular substrates of Li+. Red circles represent the most
abundant neural targets of Li+ underlying its therapeutic efficacy in
mania (BD1); blue and yellow circles indicate a progressively
decreasing number of neural molecular substrates of Li+ in minor
and major depressive disorders (cyclothymia and BD2).
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referred to as endogenous sensitization [135], develops over a
longer period.
In each disease, two stages can be distinguished during the

progression: one leads to a change in neural activity up to “peak,”
while the other stabilizes a steady state of modified activity once
the peak is over. In fact, in BD, the mania phase recovers toward
an adjustment that leads to a subsequent phase (euthymia or
depression). Molecular mechanisms are mostly overlapping in
these three disease conditions; however, since they do occur
according to a different time course, they are likely to engage
diverse and specific molecular pathways. Such a different
progression may explain the contingent efficacy of Li+ based on
the time window when it is administered.
On the sidelines, let us consider briefly that once the manic

phase is over some of the molecular pathways involved in “mania
rising” are also involved in the phase of depression [126], possibly
to counterbalance the sensitization adjustments through reverse
mechanisms. This may exceed the adjustment which is needed,
thus producing an outcome, which is “opposite” to mania. It can
be hypothesized that Li+’s action on these pathways antagonizes
depressive mood; nonetheless, the biological substrate to which
Li+ binds is not abundant enough to allow stochastic Li+ binding
to be adequate in a short time interval. This would not allow Li+ to
fully express its pharmacological activity. This view is supported by
preclinical evidence showing that AMPH withdrawal after a
repeated administration induces depressive-like behaviors
[99, 136]. However, Li+ could maintain a blunted depressive
mood by balancing neural mechanisms underlying motivational
systems, which are regulated by DA transmission [106, 134, 137].
This progression brings to mind a sentence of an esteemed

scholar of BD, Athanasios Koukopoulos, “Mania is the fire and
depression its ash” [138, 139]. This leads to consider a crucial effect
of Li+ action, namely the ability, once mania phase is over
(corrected), to maintain a functional balance that leads to
“stabilization.”
It is important to consider that the therapeutic efficacy

(although in a significant percentage of patients) is relevant in
BD1, in many cases of psychostimulant sensitization, although it is
practically absent in the case of schizophrenia, when its efficacy is
minimal in rapid cycling and in BD2.
Major differences in sensitization between these disorders

ground on time course and intensity (severity) of altered
biochemistry, drug sensitivity, and disturbed behavior. The
clearest differences in the time course occur between BD1 and
schizophrenia as well as between slowly vs rapid-cycling BD1,
while the most relevant difference in symptom intensity of the
manic phenotype is between BD1 and BD2 or “mixed” states [140].
Importantly, a substantial increase in DA transmission following

acute AMPH challenge was observed in patients with schizo-
phrenia compared with healthy control subjects. These effects
were evident in patients being at the onset of the disease and
who were never previously exposed to neuroleptics or in patients
experiencing an episode of illness exacerbation, but not during a
remission phase [111]. This evidence indicates that DA hyper-
activity is present in the schizophrenic patient at the onset of
symptoms, in the relapse phases, and, possibly, during the
prodromal period.
This suggests that marked Li+ efficacy in BD1 is due to a

massive DA activation, subsequent sensitization, and molecular
mechanisms that are activated far in excess compared with other
disorders. The molecular substrates activated by the DA overload
could offer Li+ a privileged “hooking” that would result in effective
regulatory action and, in turn, effective therapy.

DISCUSSION, LIMITATIONS, AND CONCLUSIONS
In the present manuscript, we focused on the therapeutic effects
of Li+ to highlight common mechanisms of action in different

neuropsychiatric disorders. These mechanisms provide valuable
information to help to understand the etiology of disorders on
which they are involved and point to possible therapeutic
developments. Li+ modulates a number of biochemical pathways
in the brain involved in neuroplasticity and neuroprotection.
Li+ neuroprotective action relies on the modulation of several

intracellular pathways involved in ER stress, mitochondrial
function, Ca2+ toxicity, UPR, and autophagy. The effects on the
autophagy machinery remain the key molecular mechanisms to
explain the protective effects of Li+ for neurodegenerative
diseases, which indicates how Li+ exploits similar molecular
machinery to modify the course of different disorders belonging
to different domains.
Such molecular machinery may have a neuroprotective and

neurotrophic action on AD and other degenerative dementias. In
fact, upregulation of GSK-3β activity, which is inhibited by Li+,
occurs in AD.
A failure of autophagy-dependent handling of misfolded

proteins impedes the clearance of these substrates that accumu-
late within the cell. Therefore, a common pathogenesis underlying
neurodegenerative disorders has been linked to autophagy
inhibition due to mTOR activation. Common mechanisms are
involved in Li+ protective effects in neurodegenerative ALS/FTD
disease as shown by significant improvement of motor function
by treatment with Li+ during the past two decades in clinical and
preclinical studies.
Li+ property to modulate autophagy offers potential therapeu-

tic strategies for the treatment of neuropsychiatric disorders and
emphasizes a crossroad linking autophagy, neurodegenerative
disorders, and mood stabilization (antimanic activity). Remarkably,
the molecular events in the progression of mania concern
neuroplastic mechanisms implicated in neurotransmission as well
as mechanisms of neurodegeneration.
Sensitization being a neuroplastic process that is crucial in the

pathogenesis of main affective disorders, even slight differences in
the sensitization process between these disorders may help to
identify why some of them are sensitive to Li+, which is the case of
BD1. Sensitization by psychostimulants is driven by molecular
pathways linked to DA transmission and points to a number of
mechanisms involved in psychopathology, most also crucial in
neurodegenerative disorders.
Li+, as it is commonly acknowledged, has multifunctional

power, in the sense that it impinges on different molecular
pathways. In the case of the manic phase of BD1, the many
pathways and the different mechanisms on which Li+ acts can
constitute a multifunctional complex fostering its activity (Fig. 1).
During “mania rising”, sensitization at intracellular level recruits

a number of molecular pathways that are matched by the same
number of substrates binding Li+.
Sensitization process develops through dysregulation of various

DAR subtypes, mainly D1, D2, and D3, at the presynaptic and/or
postsynaptic level [126], including the involvement of the DA
transporter. It should be borne in mind that, although the meso-
accumbens and meso-striatal pathways are markedly affected,
cortical structures that regulate subcortical areas in integrated
systems have a fundamental role. Thus, due to sensitization,
monoaminergic systems in the medial prefrontal cortex undergo
receptor or metabolic adaptations that are not paralleled by those
taking place within subcortical areas [105, 106, 132, 141–143].
Therefore, molecular pathways implicated in network alterations
are likely to provide further substrates for Li+ efficacy.
Noteworthy, some apparent contradictory actions of Li+ on

molecular and/or system levels may witness a simultaneous
activity on those different systems or subsystems [14, 144].
The unique therapeutic efficacy of Li+ in mania may also be

grounded on the ability of the ion to act on a wide number of
molecular pathways and factors regulating neurotransmission
[145], neuroplasticity, and neuroprotection. It can be assumed that
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functional alterations in “mania rising” bring into play molecular
events on which Li+ engages to counteract the move away from
steady state (homeostasis). Noteworthy, Li+ has been shown to be
“attracted” from brain neurons of BD patients and not from those
of healthy subjects [133], demonstrating an “affinity” of the ion for
dysfunctional neural molecular substrates. This affinity can also be
modulated by genetic factors that are obviously implicated in
individual differences in therapeutic efficacy. In rapid-cycling
disorders, the symptoms of the two states in short times rules out
a cyclicity such that characterizing the progress of BD1. It is
tempting to hypothesize that a lower efficacy of Li+ in these
disorders is due to a lack of cyclicity and a longer time course and
more intense biochemical alterations. This sharply contrasts with
what occurs in BD1, and it is supposed to prevent a substantial
substrate being hooked by Li+ for its effective therapeutic action.
The multiple functions of Li+ prove its exceptional pharmacol-

ogy, which may help to elucidate its mechanisms of action. Li+

actions may serve as a guide toward a multi-drug strategy and an
improved development of a more effective therapeutic approach.
Our view is not devoid of limitations. We considered molecular

mechanisms common to a number of disorders highlighting their
role in neurodegeneration and neuroprotection, addressing
autophagy machinery as a relevant mechanism for neural
regulation and dysregulation in both neurodegenerative and
psychiatric disorders. A potential limitation consists in the lack of a
deep analysis on how all these mechanisms lead to neurodegen-
eration, in different neuronal populations within different brain
areas. In fact, a sharp brain tissue alteration occurs in neurode-
generative disorders as well as in schizophrenia and BD [146].
Another limitation, inherently analyzed in the previous text, is

the lack of an extensive analysis on diverse cell populations
including various interactions between neural networks as well as
neurons and glia [147, 148] These include a specific analysis of
neurons hosted within specific brain areas being part of complex
networks whose connections can favor or dampen neurodegen-
erative processes [131] Such a lack of diversified analysis may be
crucial when referring to the sensitization process that takes a
center stage in the scenario provided here. In fact, purposefully
and maybe in a biased way, we focused on DA transmission
dysregulation, which led to emphasize different types of DARs
whose alteration can produce different effects depending on
whether they are presynaptic or postsynaptic. Moreover, dopami-
nergic neurons receive connections from a number of neurons in
reciprocal DA cortical–subcortical networks, with different neuro-
transmitters and neuromodulators, which in turn may modulate
neurodegenerative processes. These are just examples that show
how to understand the processes addressed here; a wider system
perspective is required in humans and preclinical models to reach
relevant translational results.
Indeed, imaging and molecular analysis methods may facilitate

the discovery of molecular and neurobehavioral biomarkers. In this
perspective, Li+ proves an extraordinary tool for understanding
pathogenic mechanisms and for developing effective therapies.
At the risk of appearing too much “conservative,” we do reaffirm

the uniqueness of Li+ both as a therapeutic agent and as an
extraordinary tool in neuroscience research. This is grounded right
on its ability to foster, at the same time, neurotransmission and
neuroprotection. These properties also unveil that psychiatric and
neurological disorders share common dysfunctional molecular
mechanisms that can be equally relieved both concerning
symptomatic cure and disease-modifying events.
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