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Abstract
Recent studies have shown perturbed gut microbiota associated with gouty
arthritis, a metabolic disease characterized by an imbalance between uric acid
production and excretion. To mechanistically investigate altered microbiota
metabolism associated with gout disease, 16S rRNA gene amplicon sequence
data from stool samples of gout patients and healthy controls were computation-
ally analyzed through bacterial community metabolic models. Patient-specific
community models constructed with the metagenomics modeling pipeline,
mgPipe, were used to perform k-means clustering of samples according to their
metabolic capabilities. The clustering analysis generated statistically significant
partitioning of samples into a Bacteroides-dominated, high gout cluster and a
Faecalibacterium-elevated, low gout cluster. The high gout cluster was predicted
to allow elevated synthesis of the amino acids D-alanine and L-alanine and
byproducts of branched-chain amino acid catabolism, while the low gout clus-
ter allowed higher production of butyrate, the sulfur-containing amino acids L-
cysteine andL-methionine, and the L-cysteine catabolic productH2S. By expand-
ing the capabilities of mgPipe to provide taxa-level resolution of metabolite
exchange rates, acetate, D-lactate and succinate exchanged from Bacteroides
to Faecalibacterium were predicted to enhance butyrate production in the low
gout cluster. Model predictions suggested that sulfur-containing amino acid
metabolism generally and H2S more specifically could be novel gout disease
markers.

KEYWORDS
bacterial communities, gout, gut microbiota, machine learning, metabolic modeling

Abbreviations: COBRA, constraint-based reconstruction and analysis;
EUD, average EU diet; FDR, false discovery rate; FVA, flux variability
analysis; HFD, high fiber diet; HPD, high protein diet; NMPC, net
maximal production capability; OTU, operational taxonomic unit;
VMH, virtual metabolic human

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2021 The Authors. Engineering in Life Sciences published by Wiley-VCH GmbH

1 INTRODUCTION

The human gut microbiota play essential roles in diges-
tion of plant polysaccharides [1, 2], synthesis of essen-
tial and health-promoting metabolites [3, 4], develop-
ment of host immune response [5], and maintenance of
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colonization resistance to pathogens [6]. Numerous dis-
ease processes have been correlated with disruptions of
the gut microbiota composition, often termed dysbiosis
[10–12]. Microbiota-associated diseases range from direct
ailments of the gut such as inflammatory bowel disease
[13] and Clostridioides difficile infection [14], to general
metabolic diseases such as diabetes [15] and obesity [16],
to systemic aliments such as cardiovascular disease [17],
and even to neurological disorders such as depression [18]
and Parkinson’s disease [19]. The relative abundances of
the diverse bacterial taxa that comprise the gut microbiota
can be determined from stool samples through the applica-
tion of 16S rRNA gene amplicon sequencing [7–9]. While
studies that correlate changes inmicrobiota abundances to
disease development have revolutionized our understand-
ing of human disease, such compositional-based analy-
ses often provide little information about the underlying
mechanisms by which the microbiota may drive and/or
respond to disease processes.
Gouty arthritis is a metabolic disease related to the

inability of the human host to properly regulate uric acid,
a primary metabolite of purine metabolism [20–22]. As
the uric acid concentration in the blood serum exceeds
∼400 μmol/L (termed hyperuricemia) [23, 24], suscepti-
ble individuals may begin to suffer gout symptoms includ-
ing painful inflammation due to the deposition of uric
acid crystals in joints [25, 26]. Therapeutic treatments
include drugs such as Allopurinol and Febuxostat that
reduce host uric acid synthesis, Krystexxa that increases
the breakdown of uric acid to urea, Probenecid and Lesin-
urad which increase uric acid excretion, and a broad array
of anti-inflammatory compounds [27, 28]. Several recent
studies in humans [29–31] and murine models [32–35, 52]
have correlated changes in gut microbiota composition
to the presence of gout disease, suggesting that micro-
biota properties could be used to monitor disease develop-
ment, progression and recovery. Several of these 16S-based
studies have been combined with gene catalog [36] and
metabolomic [29] analyses to better understand metabolic
changes that accompanied compositional dysbiosis. While
they provided new insights into the association between
gout disease and altered gut microbiota, these studies were
inherently limited in their ability to quantify the func-
tional metabolic differences between the gut communities
of gout patients versus healthy controls.
This in silico computational study was based on the

hypothesis that altered gut microbiota were the result
rather than the cause of gout disease, as a causative role has
not been demonstrated to date. Indeed, uric acid in mainly
produced in the liver by nucleic acid catabolism and only
about 20% of uric acid production occurs from digestion
of purine-rich foods [35]. Furthermore, only about 30%
of host generated uric acid is excreted through the intes-

PRACTICAL APPLICATION

Uric acid is produced in the human body from
purine compounds contained in dietary meat,
poultry and seafood. Gouty arthritic is a chronic
metabolic disease in which elevated levels of uric
acid in the blood result in crystal formation, depo-
sition in joints and chronic inflammation. Recent
experimental studies have shown that the gut
microbiota are perturbed in gout disease, sug-
gesting that altered microbiota metabolism may
result from gout development. Building on these
experimental results, this study used computa-
tional metabolic modeling to investigate altered
microbiota metabolism associated with gout dis-
ease. Patient-specific models of gut bacterial com-
munities were constructed and analyzed to predict
altered production of metabolites derived from the
microbiota in gout patient versus healthy controls.
Themethodology identified butyrate, a metabolite
known to promote gut health, sulfur-containing
amino acids and hydrogen sulfide, a metabo-
lite known to promote inflammation, as possible
metabolic markers of gout disease.

tine, with the remainder excreted from the kidneys [35].
Although altered uric acid metabolism in the gut micro-
biota of gout patients has been suggested [36], such pertur-
bations are unlikely to be the major cause of elevated uric
acid levels in the blood. Consequently, this study focused
on the possibility of using predicted gutmicrobiota proper-
ties as clinically-relevant signatures of gout disease rather
than as treatable disease drivers.
Consistent with this hypothesis, published 16S abun-

dance data derived from patient stool samples [36] were
used to build sample-specific computational models for
identifying microbiota-synthesized metabolites that may
be produced at differing levels in gout patients compared
to healthy controls. The 16S dataset, which included bac-
terial taxa abundances for 41 gout patients and 42 healthy
controls, was processed using a metagenomics modeling
pipeline (mgPipe; [37]) to construct community metabolic
models that spanned 50 taxa (48 genera and two families).
The computational models were simulated using three in
silico diets, and the resulting simulation data was sub-
jected tomachine learning and statistical analyses to corre-
late metabolic function and patient type, extract informa-
tion about metabolite synthesis capabilities at the commu-
nity and individual taxa levels, predict intra-taxa metabo-
lite crossfeeding relationships and explore the impact of
dietary nutrient levels on community metabolism.
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TABLE 1 Summary of patient metadata from [36]

Gouty Healthy Total
Patients 41 42 83
Age (years) 49.4 48.7 49.1
Female/Male 17/24 17/25 34/49
Body Mass Index (kg/m2) 23.1 23.2 23.2
Blood Uric Acid (μmol/L) 496 242 368
Urea Nitrogen (mmol/L) 7.78 4.48 6.11
Blood Glucose (mmol/L) 5.76 5.17 5.46

2 MATERIALS ANDMETHODS

2.1 Patient data

Gut microbiota composition data were obtained from a
published study [36] in which stool samples from 83
patients were subjected to 16S rRNA gene amplicon library
sequencing. The study included 41 gout patients as deter-
mined by clinical symptoms and elevated blood uric acid
levels and 42 healthy controls (Table 1). The patients
ranged in age from 27 to 75 years (average 49.1 years)
and contained 41% females. For each patient sample, 16S-
derived relative bacterial abundances were provided at dif-
ferent taxonomic levels that included 15 phyla, 28 classes,
38 orders, 71 families, and 129 genera. Extensive clinical
metadata, including the blood uric acid concentration, also
were provided for each sample (Table S1).

2.2 Community metabolic modeling

Community metabolic models were restricted to 50 taxo-
nomic groups to limit the computational effort associated
with model building, simulation and analysis while
achieving adequate coverage of the 16S operational taxo-
nomic unit (OTU) read data. The models accounted for
the 48 most abundant genera across the 83 samples subject
to the requirement that each genus could be modeled
using genome-scale metabolic reconstructions available
in the Virtual Metabolic Human (VMH) database ([61];
www.vmh.life). Combined reads for Escherichia/Shigella
were equally split between the two genera. Because
unidentified Lachnospiraceae and Ruminococcaceae
accounted for 4.9% and 1.1% of total reads, respectively,
these two families were included in the models and
combined with unmodelable genera (Lachnobacterium,
Anaerosporobacter, Parasporobacterium, Hespellia and
Robinsoniella for Lachnospiraceae; Oscillibacter, Anaero-
filum, Acetivibrio, Acetanaerobacterium, Sporobacter, and
Hydrogenoanaerobacterium for Ruminococcaceae). This
procedure resulted in 50 modeled taxa that accounted

for an average of 97.0% of total OTU reads across the 83
samples (Table S1).
For each sample, the reads associated with each taxon

were normalized to unity by dividing by the sum of reads.
These normalized taxa abundances were used to construct
sample-specific community metabolic models. The func-
tion create Pan Models within the metagenomics pipeline
(mgPipe; [37]) of the MATLAB Constraint-Based Recon-
struction and Analysis (COBRA) Toolbox [62] was used
to construct genus- and family-level models from the 818
strain models available in the VMH database. According
to function documentation available on the COBRA web-
site, the function create PanModels combined all reactions
for strains belonging to the taxon of interest and attempted
to remove futile cycles that may result from the com-
bined reactions by making certain reactions irreversible.
Because the 16S data did not provide resolution at the
species and strain levels, the community metabolic mod-
els were unable to account for differences in community
composition and function below the genus level. Despite
this limitation, the simulation results showed that the pan-
genome metabolic models used for community modeling
allowed substantial differentiation of samples according to
their functional capabilities.
The function initMgPipe was used to construct a com-

munitymetabolicmodel for each of the 83 patient samples.
Model construction required specification of normalized
taxa abundances for each sample and maximum uptake
rates of dietary nutrients, which were specified according
to EU average, high protein and high fiber diets down-
loaded from the VMH databse (Table S2). The commu-
nity models contained an average of 38,570 reactions (min-
imum 22,099; maximum 57,820). All models contained the
same constraints for the maximum nutrient uptake rates
specified for the chosen diet, while each model had differ-
ent constraints imposed for the sample taxa abundances.
Following the model building process, mgPipe automat-

ically performed flux variability analysis (FVA) for each
model with respect to each of the 409metabolites assumed
to be exchanged between the microbiota and the lumen
and fecal compartments. FVA calculationswere performed
with the COBRA code fastFVA using the CPLEX linear
program solver to maximize/minimize the production of
the metabolite and to maximize/minimize the uptake of
the metabolite subject to the additional constraint that
the community biomass flux remained in the range 0.4–
1.0 mmol/day [63]. The FVA results were used within
mgPipe to compute the net maximal production capabil-
ity (NMPC; [63]) of each metabolite by each model. Each
NMPC value was calculated as the absolute value of the
sum of two computed FVA solutions, the first which maxi-
mizedmetabolite secretion into the fecal compartment and
the second which maximized metabolite uptake from the

http://www.vmh.life
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lumen compartment. Each NMPC value represented the
sample-specific potential for community production of a
single metabolite given the applied nutrient uptake and
biomass flux constraints. The mgPipe framework is based
on analysis of metabolite-specific NMPCs across samples
to assess the capabilities ofmodeled communities to differ-
entially producemetabolites. Due to the nature of FVA cal-
culations, the reported NMPCs do not imply that maximal
production ofmultiplemetabolitesmay be achieved simul-
taneously. In this study, each NMPC was calculated and
analyzed independently for each modeled sample. Fur-
thermore, NMPCs were calculated for three different diets
to assess the possible impact of nutrient levels on commu-
nity metabolism (Tables S3-S5).
Unfortunately,mgPipe currently does not offer the capa-

bility to directly extract the metabolite synthesis capabil-
ities of each modeled taxa within a sample. This infor-
mation was deemed important to understand which taxa
were contributing to metabolite synthesis and the intra-
taxa crossfeeding relationships which supported maximal
production of a particular metabolite. Therefore, special-
ized MATLAB scripts were written to utilize available
mgPipe functions (e.g., adaptVMHDietToAGORA, guid-
edSim, useDiet) to perform FVA with respect to selected
metabolites and to extract taxa-level secretion and uptake
fluxes. The complete metabolic modeling workflow can
be viewed as complementary to more established metage-
nomic analysis techniques such as Phylogenetic Investi-
gation of Communities by Reconstruction of Unobserved
States (PICRUSt; [64]) by quantifying community interac-
tions such as nutrient competition, metabolite crossfeed-
ing and product synthesis.

2.3 Data analysis

Patient data consisted of normalized taxa abundances and
model-predicted data consisted of diet-dependent NMPCs,
both of which could be connected to associated metadata
on a sample-by-sample basis (Table S1). Data analysis were
limited to samples in which the modeled taxa accounted
for at least 90% of the unnormalized abundances (39/41
gouty samples, 39/42 healthy samples) to achieve adequate
representation of the original 16S gene amplicon data. Both
normalized taxa abundances andmodel-predicted NMPCs
were subjected to unsupervised machine learning tech-
niques including clustering and principal component anal-
ysis (PCA) to extract putative relationships between parti-
tioned samples and patient gout status. Rather than apply
supervised learning to samples partitioned based on their
known clinical status (i.e., gouty, healthy), unsupervised
learning was performed to determine if samples clustered
by taxa abundances or NMPCs could be associated with

gout status. This approach was applied under the hypothe-
sis that clustering could partially unravel the complex gout
disease etiology and reveal at least one cluster with statis-
tically high levels of gouty or healthy samples.
Clustering was performed using the MATLAB function

k means with the squared Euclidean distance metric, the
k-means++ algorithm for cluster center initialization [65]
and 1000 replicates.When clusteringwas applied toNMPC
data generated from the average EU diet, an optimal num-
ber of three clusters was determined using the MATLAB
function evalclusters with the k means clustering method,
the silhouette evaluation criterion [66], the sum of abso-
lute difference as the distance measure and 100 replicates.
To facilitate subsequent comparisons, three clusters also
were used for the high protein and high fiber diets and for
clustering of abundance data. For each in silico diet tested,
the clustering method proved robust in that the same clus-
tered samples were consistently returned despite the ran-
domness of cluster initialization and the existence of local
minima [67].
PCA was performed directly on normalized taxa abun-

dances and model-predicted NMPC data rather than on
data preprocessed with sample dissimilarity measures
such as the Bray–Curtis [68] or UniFrac [69] metrics. This
approach was deemed appropriate since PCA was used for
preliminary data visualization and not quantitative data
analysis. Statistical significance of associations between
categorial variables (e.g., gouty/healthy) across sample
groups were assessed using Fisher’s exact test [70]. Cor-
relations between taxa based on their abundances across
samples were calculated using the proportionality coeffi-
cient [71], which accounts for the effects of data normaliza-
tion. Statistically significant differences between NMPCs
across samples were assessed using the Wilcoxon rank-
sum test [72]. The resulting p-values were used to calculate
the false discovery rate (FDR) for eachmetabolite using the
MATLAB function mafdr with the Benjamini-Hochberg
method [73].

3 RESULTS

3.1 Samples clustered by metabolic
capability were associated with patient
type

Prior to metabolic modeling, the 16S-derived abundance
data were analyzed directly to identify community com-
positional features associated with gouty and healthy sam-
ple. Data analysis were limited to samples in which the
modeled taxa accounted for at least 90% of the unnor-
malized abundances (39/41 gouty samples, 39/42 healthy
samples; see Materials and Methods). Among the 25 most
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F IGURE 1 Clustering of model-predicted NMPCs obtained with an average EU diet. (A) Average abundances of taxa which averaged at
least 5% across at least one cluster. (B) Number of gouty, healthy and total samples in each cluster. Cluster 1 contained a disproportionate large
number of gouty samples compared to cluster 2 (p < 10–5) and the entire dataset (p = 0.002). Cluster 2 contained a disproportionate large
number of healthy samples compared to cluster 3 (p = 0.01) and the entire dataset (p = 0.008). (C) Principal component plot of the
model-predicted NMPCs with gouty and healthy patient samples labeled by their associated clusters

abundant taxa across the 78 samples, the abundances of
six taxa were significantly different (Wilcoxon rank-sum
test, FDR <0.05) between the 39 gouty and 39 healthy
samples. Notably, Faecalibacterium was significantly ele-
vated (FDR = 3 × 10−4) in the healthy samples (average
abundance 0.144) compared to the gouty samples (average
abundance 0.063; Figure S1A). Five taxa including three
butyrate producers (Faecalibacterium, Coprococcus, Rose-
buria) were most negatively correlated with the blood uric
acid concentration across the 78 samples, while three other
taxa (Parabacteroides, Clostridium, Veillonella) were most
positively correlated with blood uric acid (Figure S1B).
Faecalibacterium was most positively correlated to three
butyrate producers (Coprococcus, Roseburia, Subdoligran-
ulum) and Akkermansia as measured by the proportional-
ity coefficient (Figure S1C). A principal component plot of
the taxa abundances showed no clear delineation of gouty
versus healthy samples (Figure S1D). Taken together, these
results support the conclusion in the original experimen-
tal study [36] that depletion of Faecalibacterium and other
butyrate producers was associated with gout development.
Using an in silico European diet (Table S2), the net

maximal production rates (NMPCs) predicted for 409
exchanged metabolites across the 78 samples were clus-
tered to investigate if model-predicted metabolic capabil-
ities were associated with sample type. Three clusters pro-
duced a group of 26 samples dominated by Bacteroides
(average abundance 0.75; Figure 1A), a group of 44 samples

with elevated Faecalibacterium (average abundance 0.15),
and a small group of eight samples with elevated Prevotella
(average abundance 0.45). The Bacteroides-dominated
cluster contained a disproportionately large number of
gouty samples (22/26) compared to the Faecalibacterium-
elevated cluster (11/44, p < 10−5; Figure 1B) and to
the entire sample set (39/78, p = 0.002). Similarly, the
Faecalibacterium-elevated cluster contained a dispropor-
tionately large number of healthy samples (33/44) com-
pared to Prevotella-elevated cluster (2/8, p = 0.011) and the
entire sample set (39/78, p= 0.008). A principal component
plot of the model-predicted NMPCs showed the Prevotella-
elevated cluster samples as outliers and clearly identi-
fied the Bacteroides-dominated cluster samples as dispro-
portionally gouty. Interestingly, gout patients have been
reported to have elevated abundances ofPrevotella interme-
dia in the oralmicrobiota [38]. Taken together, these results
suggested that elevated Bacteroides abundance may result
from the gout disease process.

3.2 Metabolic modeling predicted
differential synthesis of amino acids and
fermentation products

Due to the small number of samples contained in the
Prevotella-elevated cluster (also called the medium gout
cluster with 6/8 = 0.75 fraction of gouty samples), further
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F IGURE 2 Maximal amino acid and fermentation byproduct synthesis capabilities in the high and low gout clusters from an average EU
diet. (A) Classes of amino acids sharing common metabolic pathways and containing at least one amino acid differentially produced between
the high and low gout clusters. (B) Common metabolic byproducts of carbohydrate fermentation and amino acid catabolism. Metabolite
abbreviations are taken from the VMH database (www.vmh.life)

statistical analyses were focused on the Bacteroides-
dominated cluster (also called the high gout cluster
with 22/26 = 0.85 fraction of gouty samples) and the
Faecalibacterium-elevated cluster (also called the low gout
cluster with 11/44 = 0.25 fraction of gouty samples). A
rank sum test (FDR <0.05), which assessed differences in
median values, was performed to identify metabolites with
the potential to be differentially produced in the high and
low gout clusters. To reduce the 106 metabolites identified
to a more manageable number, each metabolite also was
required to have an average production rate of>10mmol/d
in at least one cluster and to exhibit at least 10% differ-
ence between the mean production rates in the two clus-
ters. The resulting set of 42 differentially producedmetabo-
lites covered a wide range of metabolic pathways and
included the amino acids D-alanine, L-alanine, L-cysteine,
L-histidine, L-isoleucine, L-methionine and L-tyrosine as
well as common products of gut microbiota fermentation
such as butyrate, H2, H2S, isobutyrate, isocaproate, iso-
valerate and L-lactate (Figure S2, Table S6). Interestingly,
hypoxanthine was the only metabolite directly involved
in purine metabolism that was predicted to be differen-
tially produced between the two clusters, supporting the
hypothesis that gut microbiota were not the main drivers
of gout disease. Similar predictions were obtained when
the samples were partitioned directly according to their

clinical status (Table S6), suggesting that sample clustering
according to metabolite production capabilities captured
the dominant metabolic features differentiating gouty and
healthy samples.
Further computational analyses were performed on the

seven differentially produced amino acids along with six
additional amino acids that shared metabolic pathways
with these seven amino acids and the eight differen-
tially expressed fermentation products along with seven
additional byproducts commonly produced by gut micro-
biota. The high gout cluster was predicted to have sig-
nificantly elevated capabilities for production of alanine,
H2 and three products of branched-chain amino acid
catabolism (isobutyrate from valine, isocaproate, and iso-
valerate from leucine; Figure 2). By contrast, the low gout
cluster was characterized by the potential for significantly
elevated production of butyrate, L-lactate, the sulfur-
containing amino acids L-cysteine and L-methionine, the
L-cysteine catabolic product H2S, L-isoleucine and its
catabolic product 3-methyl-2-oxovaleric acid, L-histidine,
and L-tyrosine. Model predictions of elevated alanine and
reduced butyrate metabolism in gout patients compared
to healthy controls were consistent with gene catalog and
metabolomic studies [29, 31, 36]
To further investigate metabolite production capabili-

ties of the gout- and health-associated gut communities,

http://www.vmh.life
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F IGURE 3 Individual taxa contributions to maximal synthesis of amino acids differentially produced between the high and low gout
clusters from an average EU diet. The amino acids shown from top left to bottom right are L-alanine, L-cysteine, L-histidine, L-isoleucine,
L-methionine, and L-tyrosine. D-alanine has been omitted for brevity. For each amino acid, the top five taxa are shown in the order of their
total production across the two clusters

the contributions of individual taxa to maximal synthe-
sis of differentially produced amino acids and fermenta-
tion byproducts were computed. Bacteroides was respon-
sible for enhanced D-alanine, L-alanine and L-histidine
production in the high gout cluster samples (Figure 3),
whichwere characterized by high Bacteroides abundances.
The production of L-isoleucine and L-tyrosine, two amino
acids not secreted by the Bacteroides metabolic model,
were elevated in the low gout cluster due to increased
synthesis bymore abundant butyrate-producing taxa (Fae-
calibacterium, Lachnospiraceae, Roseburia, Coprococcus)
as well as by Megamonas. Interestingly, Bacteroides was
predicted to have similar L-cysteine and reduced L-
methionine synthesis capabilities in the high gout clus-
ter despite these samples having relatively high Bac-
teroides abundances. This behavior resulted in signifi-
cantly reduced total production of L-methionine and L-
cysteine, which were also synthesized by Faecalibacterium
and other butyrate producers, in the high gout cluster.
These predictions suggested a possible role for sulfur-
containing amino acids in the perturbed microbiota of
gout patients. Synthesis of the six non-differentially pro-
duced amino acids was similar between the two clus-
ters because elevated synthesis by Bacteroides in the high
gout cluster was balanced with increased synthesis by
butyrate producers andMegamonas in the low gout cluster
(Figure S3).

Similar analyses for differentially produced fermenta-
tion byproducts revealed that the potential for signifi-
cantly elevated synthesis of H2, isobutyrate, isocaproate,
and isovalerate in the high gout cluster was attributable
to Bacteroides.(Figure 4) Byproducts not secreted by Bac-
teroides such as 3-methyl-2-oxovaleric acid, butyrate and
L-lactate were predicted to have the potential for signif-
icantly elevated production in the low gout cluster due
to increased synthesis by more abundant taxa. For exam-
ple, butyrate was synthesized at higher rates by Faecal-
ibacterium, Roseburia, Coprococcus and Subdoligranulum
in the lowgout cluster. In addition to the recognized impor-
tance of microbiota-derived butyrate for gut health [39, 40,
60] and its previous implication as gout protective [36],
thesemodel predictions suggested that butyrate-producing
taxa may contribute to the synthesis of other metabo-
lites possibly involved in gout-associated microbiota dys-
biosis. For example, L-cysteine was predicted to have the
potential for significantly elevated production in the low
gout cluster due to enhanced synthesis by Faecalibac-
terium and other butyrate producers (Figure 3). Since H2S
is a common byproduct of cysteine degradation [41, 42],
the ability of butyrate producers to synthesize L-cysteine
could be related to the potential for elevated H2S produc-
tion in the low gout cluster. In addition to H2S being a
possible inducer of inflammation [43, 44], these predic-
tions suggested a possible role for H2S specifically and
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F IGURE 4 Individual taxa contributions to maximal synthesis of fermentation byproducts differentially produced between the high and
low gout clusters from an average EU diet. The byproducts shown from top left to bottom right are 3-methyl-2-oxovaleric acid, butyrate,
hydrogen, hydrogen sulfide, isobutyrate, isocaproate, isovalerate and L-lactate. For each byproduct, the top five taxa are shown in the order of
their total production across the two clusters

sulfur-containing amino acids more generally in the per-
turbed microbiota of gout patients. Maximal production of
the seven non-differentially produced byproducts was sim-
ilar between the two clusters with elevated synthesis by
Bacteroides in the high gout cluster being balanced with
increased synthesis by butyrate producers andMegamonas
in the low gout cluster (Figure S4).

3.3 Metabolite crossfeeding supports
differential amino acid and fermentation
byproduct synthesis

The previous model-based analyses identified butyrate
and hydrogen sulfide as putative metabolic markers of
gout disease. To investigate interactions between taxa that
supported maximal production of these two metabolites,
crossfeeding relationships were identified by finding
metabolites which were both secreted by at least one taxa
and uptaken by at least one other taxa above a defined
threshold (5 mmol/d to focus on the largest contributors).
Consistent with being more abundant in the low gout
cluster, the five taxa mainly responsible for butyrate
production were predicted to synthesize more butyrate in
these sample communities (Figure 4). However, butyrate
production was higher than would be expected based
on abundance differences between the two clusters. For

example, Faecalibacterium was 230% more abundant in
the low gout cluster (Figure S1) yet synthesized 550%more
butyrate. Faecalibacterium was predicted to achieve such
elevated butyrate production by exploiting the availability
of metabolites secreted from other taxa, most notably
acetate, CO2, D-lactate and succinate from Bacteroides
(Figure 5). Similarly, Roseburia utilized acetate and D-
lactate from Bacteroides and Subdoligranulum utilized
D-alanine from Lachnospiraceae. Different crossfeeding
relationships were predicted to support maximal pro-
duction of other fermentation byproducts. For example,
Bacteroides exploited the availability of secreted L-alanine
and formate to achieve elevated D-lactate synthesis in the
high gout cluster (Figure S5). These results demonstrated
the inherent metabolic flexibility of gut bacterial commu-
nities and suggested that taxa crossfeeding relationships
could be highly context dependent.
Unlike butyrate, H2S was predicted to be synthesized

almost exclusively by a single taxa, Bacteroides. Although
Bacteroides was 60% more abundant in the high gout clus-
ter than the low gout cluster (Figure 1), the maximal H2S
production rate was 120% higher in the low gout cluster
(Figure 2). Because H2S is a product of cysteine degrada-
tion [45, 46] and maximal production of L-cysteine was
elevated in the low gout cluster (Figure 2), we hypothe-
sized that L-cysteine crossfeeding was mainly responsible
for differential H2S production between the two clusters.
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F IGURE 5 Individual taxa synthesis and uptake of crossfed metabolites for maximal butyrate production from an average EU diet. The
metabolites shown from top left to bottom right are butyrate, acetate, D-alanine, carbon dioxide, D-lactate and succinate. Each metabolite
shown had at least one taxa which satisfied a minimal bound on the metabolite secretion rate and the metabolite uptake rate. For each
metabolite, the top five taxa were ordered by the sum of the absolute values of their uptake and secretion rates across the two clusters

When H2S production was maximized, L-cysteine synthe-
sis by Faecalibacterium was predicted to be 525% higher in
the low gout cluster (Figure 6), which matched the higher
Faecalibacterium abundance in this cluster (Figure 1). Ele-
vated L-cysteine synthesis resulted in a 50% increase inH2S
production by Bacteroides, which also preferentially uti-
lized available D-lactate and L-lactate in the low gout clus-
ter. Interestingly, D-alanine crossfeeding supporting max-
imal H2S production was predicted to differ dramatically
between the clustered samples with Bacteroides consum-
ing the metabolite in the high gout cluster and secret-
ing the metabolite in the low gout cluster. Faecalibac-
terium was predicted to achieve maximal L-cysteine syn-
thesis through acetate and D-lactate crossfeeding (Figure
S6). Collectively, these results demonstrated that complex
relationships may exist between taxa and their metabolic
products due to crossfeeding interactions that can be quan-
tified with the type of metabolic modeling approach used
in this study.

3.4 Different in silico diets generated
subtle changes in community metabolism

Previous simulations were performed by constraining
community nutrient uptake rates according to an aver-
age EU diet (EUD). Diet is known to be strongly associ-

ated with gout disease, with high consumption of purine-
rich foods such as meat, poultry and seafoods more likely
to result in hyperuricemia and gout development [47–49].
To investigate the possible effects of dietary nutrients on
microbiota metabolism, a high protein diet (HPD) and a
high fiber diet (HFD) alsowere simulated (Table S2).When
model-predicted NMPCs generated with the HPD were
clustered, three clusters contained the same samples as
when clustering was performed with the EU diet (Figure
S7A,B). With a few exceptions (Figure S7C), the two diets
generated very similar clustered production of metabolic
byproducts (Figure S8).
When partitionedwith three clusters, the EUDandHFD

generated different sample clustering with the high gout
cluster increased from 26 to 31 samples and the low gout
cluster decreased from 44 samples to 41 samples (Figure
S9A). The number of gouty samples in the two clusters
also changed (Figure S9B), but the Bacteroides-dominated
cluster remained disproportionally gouty. A rank sum test
performed to find metabolites with the potential to be dif-
ferentially produced between the high gout clusters or the
low gout clusters of the two diets identified 10 metabolites,
including three metabolites associated with plant polysac-
charide degradation (D-galactose, D-glucose, D-maltose)
(Figure S9C). Interestingly, H2S was no longer differen-
tially produced (Figure S10) even though the HFD con-
tained 84% more L-cysteine than the EUD.
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F IGURE 6 Individual taxa synthesis and uptake of crossfed metabolites for maximal H2S production from an average EU diet. The
metabolites shown from top left to bottom right are hydrogen sulfide, D-alanine, L-alanine, L-cysteine, D-lactate and L-lactate. Each crossfed
metabolite shown had at least one taxa which satisfied minimal bounds on the metabolite secretion and uptake rates. For each metabolite, the
top five taxa were ordered by the sum of the absolute values of their uptake and secretion rates across the two clusters

To further explore how dietary nutrients affected
maximal H2S production, crossfeeding relationships were
identified for the three high gout clusters and for the three
low gout clusters generated from the different diets. When
the low gout clusters were compared, the HPD was pre-
dicted to generate the most H2S due to elevated synthesis
byBacteroides (Figure S11). By contrast, theHPD generated
only slightly higher H2S production than the HFD in the
high gout clusters (Figure S12). Interestingly, crossfeeding
of L-cysteine from Faecalibacterium to Bacteroideswas ele-
vated for the HFD. These predictions suggested that H2S
production was partially attributable to reactions associ-
ated with sulfur metabolism [50] other than L-cysteine
degradation. The models predicted substantially reduced
L-cysteine crossfeeding and H2S production in the high
gout clusters compared to the low gout clusters across all
three diets, reinforcing cysteine catabolism and H2S pro-
duction as possible markers of gout-perturbed microbiota.

4 DISCUSSION

Recent findings that the gut microbiota are perturbed by
gout disease [30, 32–36] motivated this in silico model-
ing study aimed at identifying putative metabolic features
associated with gout development. To this end, bacterial

communitymetabolicmodels were constructed for 39 gout
patients and 39 healthy controls using taxa abundance data
generated from stool samples via 16S rRNA gene amplicon
sequencing [36].Model simulations predicted themaximal
possible production rates of 409 secreted metabolites for
each of the 78 samples. By performing clustering analysis
on these model-predicted metabolic capabilities, the sam-
ples were partitioned into a Bacteroides-dominated cluster
with a disproportionately large number of gouty samples,
a Faecalibacterium-elevated cluster with a disproportion-
ately large number of healthy samples, and a Prevotella-
dominated cluster with only six samples. Consistent with
the original experimental study [36], these predictions sug-
gested that elevated Bacteroides and reduced Faecalibac-
terium abundances weremicrobiota signatures of gout dis-
ease.
To gain mechanistic insights into gut metabolic

features associated with gout, secreted metabolites
with significantly different maximal synthesis rates in
the Bacteroides-dominated, high gout cluster and the
Faecalibacterium-elevated, low gout cluster were iden-
tified for a simulated EU diet. The low gout cluster was
predicted to have elevated synthesis of many metabolites,
most notably gut health promoting butyrate and several
metabolites associated with sulfur-containing amino acid
metabolism including the L-cysteine degradation product
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H2S. Detailed analyses of individual taxa contributions to
the maximal synthesis of differentially produced amino
acids predicted a tradeoff betweenBacteroides and butyrate
producers such as Faecalibacterium, Roseburia, Sub-
doligranulum and Coprococcus. D-Alanine and L-alanine
elevated in the high gout cluster were synthesized primar-
ily by Bacteroides, while amino acids elevated in the low
gout cluster were not secreted byBacteroides (L-isoleucine,
L-tyrosine) or synthesis was more dependent on butyrate
producers (L-cysteine, L-histidine, L-methionine). Model
predictions associated with the sulfur-containing amino
acids L-cysteine and L-methionine were particularly
interesting since Bacteroides was more abundant in the
high gout cluster yet was predicted to have lower maximal
synthesis rates of these two sulfur-containing amino acids.
Similar analyses performed for maximal synthesis of

common fermentation byproducts predicted elevated syn-
thesis of isobutyrate, isocarpoate and isovalerate in the
high gout cluster resulting from branched-chain amino
acid catabolism. The low gout clusterwas predicted to have
elevated production of butyrate, L-lactate and H2S, a com-
mon end product of L-cysteine catabolism. The ability of
bacterial communities contained in the low gout cluster to
generate higher butyrate levels was related to higher abun-
dances of butyrate producers in these samples as well as
increased crossfeeding of metabolites such as acetate, D-
alanine, D-lactate and succinate to the butyrate produc-
ers. Butyrate has been widely identified as a gut health
promoting metabolite [39, 40], and its reduced production
by the gut microbiota has been associated with gout dis-
ease in several other studies [31, 36, 51]. Therefore, the
computational predictions support the hypothesis that loss
of butyrate producers may an important feature of gout-
altered gut microbiota.
Reduced H2S production by Bacteroides in the high gout

cluster was consistent with the prediction of lower total
L-cysteine synthesis in this cluster. By contrast, the low
gout cluster was predicted to have elevated H2S produc-
tion due to substantially increased L-cysteine crossfeeding
from Faecalibacterium to Bacteroides. While Bacteroides
is not typically viewed as a common genus for H2S pro-
duction [45], several Bacteroides strains process the neces-
sary enzymes for cysteine-to-H2S conversion [57, 58]. H2S
has been proposed to have both anti-inflammatory and
proinflammatory effects on the human host depending
on a number of factors [52–55], including whether H2S is
synthesized endogenously by mucosal epithelial cells or
derived from the gut microbiota [42, 56]. These in silico
predictions revealed an interesting community behavior
where synthesis of a potentially inflammatory metabolite
(e.g., H2S) may be supported by a health-promoting taxa
(e.g., Faecalibacterium) crossfeeding a metabolite (e.g., L-
cysteine) to a disease-promoting taxa (e.g., Bacteroides).

Collectively, these results suggested that cysteine-to-H2S
conversion by the gut microbiota may represent a novel
metabolic signature of gout disease.
Because consumption of high-purine containing foods

such as meat, poultry and fish is a known correlative to
gout disease [47–49], high protein and high fiber diets were
simulated and compared to the average EU diet. Unexpect-
edly, model simulations predicted similar metabolite pro-
duction profiles for the three in silico diets. These results
may have been attributable to limitations of the in silico
approach in which sample community compositions were
fixed while dietary nutrients were varied, while in reality
different diets would be expected to alter microbiota com-
position. Amore consistent analysis could be performed by
having 16S-derived abundance data for both gout patients
and healthy controls over a range of known diets.
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