TABLE 3.
Predictive performance of different models using the testing (i.e., 20%) set.
Outcome variables | Model types | AUC | Accuracy | PPV | NPV |
DN | XF | 0.902 ± 0.040 | 0.862 ± 0.054 | 0.699 ± 0.149 | 0.917 ± 0.050 |
CHAID | 0.699 ± 0.074 | 0.699 ± 0.067 | 0.331 ± 0.158 | 0.780 ± 0.068 | |
BN | 0.744 ± 0.078 | 0.916 ± 0.057 | 0.930 ± 0.091 | 0.914 ± 0.066 | |
D | 0.823 ± 0.055 | 0.720 ± 0.063 | 0.459 ± 0.132 | 0.895 ± 0.064 | |
DPN | XF | 0.847 ± 0.081 | 0.783 ± 0.080 | 0.642 ± 0.123 | 0.882 ± 0.073 |
CHAID | 0.787 ± 0.081 | 0.757 ± 0.054 | 0.680 ± 0.143 | 0.807 ± 0.070 | |
QUEST | 0.720 ± 0.060 | 0.766 ± 0.056 | 0.716 ± 0.186 | 0.805 ± 0.057 | |
D | 0.859 ± 0.050 | 0.843 ± 0.038 | 0.775 ± 0.092 | 0.885 ± 0.055 | |
DA | XF | 0.889 ± 0.059 | 0.851 ± 0.051 | 0.684 ± 0.129 | 0.899 ± 0.045 |
CHAID | 0.764 ± 0.087 | 0.769 ± 0.049 | 0.481 ± 0.229 | 0.842 ± 0.066 | |
CRT | 0.797 ± 0.068 | 0.802 ± 0.058 | 0.671 ± 0.207 | 0.836 ± 0.064 | |
D | 0.825 ± 0.070 | 0.808 ± 0.065 | 0.568 ± 0.150 | 0.907 ± 0.056 | |
DED | ANN | 0.725 ± 0.142 | 0.812 ± 0.091 | 0.083 ± 0.180 | 0.864 ± 0.080 |
CHAID | 0.818 ± 0.161 | 0.875 ± 0.053 | 0.523 ± 0.346 | 0.916 ± 0.050 | |
BN | 0.749 ± 0.179 | 0.978 ± 0.031 | 0.867 ± 0.322 | 0.984 ± 0.028 | |
D | 0.832 ± 0.086 | 0.799 ± 0.055 | 0.328 ± 0.156 | 0.989 ± 0.025 | |
HbA1c | ANN | 0.604 ± 0.103 | 0.760 ± 0.094 | 0.375 ± 0.460 | 0.825 ± 0.089 |
BN | 0.825 ± 0.092 | 0.728 ± 0.083 | 0.417 ± 0.180 | 0.840 ± 0.120 |
Data are mean ± SD.
XF, ensemble model; ANN, artificial neural network; CRT, classification and regression tree; QUEST, quick unbiased efficient statistical tree; D, discriminate; BN, Bayesian network; DN, diabetic nephropathy; DPN, diabetic peripheral neuropathy; DA, diabetic angiopathy; DED, diabetic eye disease; HbA1c, glycosylated hemoglobin A; AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value.