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In a recent article, Elliott and colleagues (2020) evalu-
ated the reliability of individual differences in task-
based functional MRI (fMRI) activity and found reliability 
to be poor. They concluded that “commonly used task-
fMRI measures generally do not have the test-retest 
reliability necessary for biomarker discovery or brain–
behavior mapping” (p. 801). This is an important and 
timely effort, and we applaud it for spotlighting the 
need to evaluate the measurement properties of fMRI. 
Large samples combined with pattern-recognition tech-
niques have made translational applications finally 
seem within reach. As the field gets serious about using 
the brain to predict behavior and health outcomes, 
reliability will become increasingly important.

However, along with their findings and constructive 
criticism comes the potential for overgeneralization. 
Though Elliott et al. focused on arguably the most lim-
ited fMRI measure for biomarker development—the 
average response within individual brain regions—the 
article has garnered media attention that mischaracter-
izes its conclusions. One headline reads, “every brain 
activity study you’ve ever read is wrong” (Cohen, 2020). 
The causes of anti-fMRI sentiments are not our concern 
here, but it is important to specify the boundary condi-
tions of Elliott et al.’s critique. As they suggest and we 
show below, fMRI can exhibit high test-retest reliability 
when multivariate measures are used. These measures, 
however, were not evaluated by Elliot et  al., despite 
being commonly used for biomarker discovery (Woo, 
Chang, et  al., 2017). Thus, their conclusions do not 
apply to all “common task-fMRI measures” but to a 
particular subset that does not represent the state of 
the art. Moreover, there are multiple use cases for fMRI 
biomarkers (FDA-NIH Biomarker Working Group, 
2016)—many of which do not require high test-retest 
reliability (cf. Elliott et al.; Fig. 1a).

Test-retest reliability estimates summarized by Elliott 
et al. reflect several limitations of the studies in their 
sample. These studies had (a) small sample sizes; (b) 
little data per participant (as little as 5 min); (c) single-
task rather than composite-task measures, which can 
be more reliable (Gianaros et al., 2017; Kragel, Kano, 
et al., 2018); and (d) variable test-retest intervals, up to 
140 days in the Human Connectome Project (HCP) data; 
in addition, they were limited to activity in individual 
brain regions.

Multivariate measures optimized using machine 
learning can have high test-retest reliability (Woo & 
Wager, 2016). Elliott et al. acknowledged this possibility, 
but did not provide quantitative examples. Examining 
some benchmarks from recent studies reveals that the 
situation is not nearly so dire for task-fMRI as Elliott 
et al. concluded. For example, Gianaros et al. (2020) 
identified patterns predictive of risk for cardiovascular 
disease using an emotional picture-viewing task and the 
HCP Emotion task. The same-day test-retest reliability 
of these measures was good to excellent (Spearman-
Brown rs = .82 and .73, Ns = 338 and 427, respectively; 
Fig. 1b). In contrast, test-retest reliabilities of individual 
regions (e.g., amygdala) were much lower (rs = .11–
.27). In a second example, we assessed the same-day 
test-retest reliability of the neurologic pain signature—a 
neuromarker for evoked pain—in eight fMRI studies  
(N = 228; data from Geuter et al., 2020; Jepma et al., 
2018). Reliability was good to excellent in all studies 
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Fig. 1.  Use cases for functional MRI (fMRI) biomarkers and an example of test-retest reliability. Among the seven major categories of 
biomarkers defined by the U.S. Food and Drug Administration (a), some (i.e., predictive, risk, and prognostic biomarkers) are designed 
to measure variation between individuals (e.g., to measure traitlike variables such as risk for depression, trait anxiety, or vulnerability to 
drug overdose). These biomarkers depend on measuring stable interindividual differences and thus require long-term test-retest reliabil-
ity, which is typically estimated by calculating the intraclass correlation coefficient (ICC) for continuous variables or Cohen’s κ for binary 
variables. Other biomarkers (i.e., safety, pharmacodynamic, monitoring, and response biomarkers) rely on the ability to measure variation 
within an individual across time, mental or physiological states, or treatment doses. Detecting within-person states relies less on stable 
individual differences than stable mappings between measure and state (in fMRI, between the brain and mental states and outcomes) with 
large and consistent effect sizes, referred to as task reliability (Hedge et al., 2018). This depends on low within-person measurement error 
(e.g., MSE) and can be measured with ICC or κ. For biomarkers related to dynamic states, other characteristics that increase test-retest 
reliability, including between-person heterogeneity and long-term stability across time, can be irrelevant or even undesirable. Reliability 
(b) is shown for a multivariate signature of risk for cardiovascular disease (figure adapted from Gianaros et al., 2020). The brain images 
depict significant pattern weights fitted on brain responses to affective images that positively (warm colors) and negatively (cool colors) 
contribute to the prediction of a marker of preclinical atherosclerosis. The scatterplot (with best-fitting regression line) depicts data used 
to estimate split-half reliability (N = 338).
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(Fig. S1a in the Supplemental Material available online). 
Other multivariate measures show strong evidence for 
test-retest reliability across longer time intervals (Zuo 
& Xing, 2014). For example, Drysdale et al. identified 
four distinct fMRI biotypes for depression (total N > 
1,000).1 Test-retest analyses across 4 weeks showed 90% 
agreement of biotype classifications (Fig. S1b in the 
Supplemental Material).

Functional MRI has promise for measuring individual 
differences, yet it may be best suited to develop bio-
markers that detect dynamic states. Functional MRI pat-
terns can reveal specific brain states—for example, 
whether a person is viewing a face (Haxby et al., 2001), 
replaying a memory (Momennejad et al., 2018), paying 
attention (Rosenberg et  al., 2016), engaging in self-
regulation (Cosme et al., 2020), or experiencing pain 
(Wager et al., 2013). This can be done reliably across 
long timescales. For example, Kamitani and Tong (2005) 
developed multivariate patterns that predict the orienta-
tion of a line viewed by participants. These patterns 
predicted line orientation 31 to 40 days after the initial 
prediction with similar performance (0.7 to 1 degree of 
error). As a second example, we reanalyzed HCP data 
presented by Elliott et al. and found that a multivariate 
model designed to identify the engagement of face (vs. 
shape) processing had excellent reliability across 4 
weeks (Fig. S1c in the Supplemental Material). These 
examples and many others (Zuo & Xing, 2014, Finn 
et  al., 2015) show that fMRI can yield measures that 
reliably detect the emergence of brain states across 
time.

A common belief is that all biomarkers measure traits 
and thus require high test-retest reliability, but we argue 
that this is a misconception. The U.S. Food and Drug 
Administration identifies seven major categories of bio-
markers (Fig. 1a). Some, such as prognostic biomarkers 
for future disease and predictive biomarkers for treat-
ment response, rely on individual differences in stable 
traits and require long-term test-retest reliability. Others 
measure states and require low within-person measure-
ment error but not necessarily high test-retest reliability 
(Bland & Altman, 1996). For example, diagnostic bio-
markers for disease states—such as COVID-19—need 
not be stable across weeks to months as the disease 
state changes. The same is true for safety, monitoring, 
and pharmacodynamic biomarkers that track changes 
in pathophysiological states. Measures of fMRI show 
promise in detecting and monitoring disorder-related 
brain processes (Duff et  al., 2020; Rosenberg et  al., 
2016; Woo, Schmidt, et al., 2017). Although a full dis-
cussion of use cases is beyond the scope of this Com-
mentary (but see Davis et al., 2020), fMRI measures can 
be sufficiently sensitive, specific, and reliable for many 
uses.

Ultimately, reliability is not a fixed property of an 
assay, let  alone a whole measurement technology. It 
depends on the tasks, samples, and measures extracted 
from them (Streiner, 2003). Other criticisms of fMRI 
(Eklund et al., 2016; Vul et al., 2009) have been used to 
issue blanket condemnations. We caution against such 
overgeneralization and propose that the findings of Elliott 
et al. be considered a lower bound on the reliability of 
fMRI. The upper bound is high and remains to be fully 
explored. We agree with the summary recommendations 
for future fMRI research made by Elliott et al. and are 
optimistic that new methods designed to optimize reli-
ability (Dubois & Adolphs, 2016) while keeping construct 
validity in mind (Kragel, Koban, et al., 2018) will continue 
to fuel fMRI research on biomarker development.
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