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Abstract. There is a consensus regarding the efficacy 
of physical exercise in maintaining or improving human 
health; however, there are few studies examining the effect 
of physical exercise on the expression levels of microRNAs 
(miRNA/miRs) in Parkinson's disease (PD). The aim of the 
present study was to investigate the effects of an interval 
training program on a cycle ergometer on the expression 
levels of miR‑106a‑5p, miR‑103a‑3p and miR‑29a‑3p in serum 
samples from men with PD. This was a quasi‑experimental 
study with pre‑ and post‑testing and with a non‑equivalent 
group design. The participants were selected based on the 
eligibility criteria and subsequently classified into two 
groups: Experimental group and control group. The evalua‑
tions were performed at the beginning of the study (week 0) 
and after 8 weeks of the intervention program (week 9). The 
interval training program was performed on a cycle ergom‑
eter for 30 min, three times a week during an 8‑week period. 
The expression levels of miR‑106a‑5p, miR‑103a‑3p and 
miR‑29a‑3p in the experimental group were increased after 
physical exercise and were associated with cognitive improve‑
ment in men with PD. However, further studies are required 
to clarify the potential use of these circulating miRNAs as 
markers of adaptation to physical exercise. Collectively, the 
present results indicated that these three miRNAs may be 

associated with the exercise response and cognitive improve‑
ment in men with PD.

Introduction

In recent years, there has been a consensus that physical exer‑
cise is effective in maintaining or improving cardiovascular 
and musculoskeletal health, both of which are fundamental 
for the preservation of physiological functioning and indepen‑
dence (1). Previous studies have reported that some physical 
exercise modalities are effective in reducing falls (2‑4), and in 
improving balance (2) and symptoms of anxiety and depres‑
sion (5,6) in healthy individuals.

There has been increasing evidence of the benefits of 
physical exercise in improving mobility  (7‑10), postural 
stability (7‑10), gait (11,12), quality of life (13,14), cognitive 
function (13‑15) and severity of symptoms in individuals with 
Parkinson's disease (PD) (10). PD has a lifetime risk of 2% and 
is considered the second most common neurodegenerative 
disorder (16). Functional disability caused by PD leads to an 
increased inability to perform activities of daily living, loss of 
independence, decreased quality of life, and socioeconomic 
and occupational losses (17). Motor deficiencies in individuals 
with PD, caused by bradykinesia, rigidity, tremor and postural 
instability, accelerate the declines in functional capacity, espe‑
cially when associated with decreasing physical activity and a 
sedentary lifestyle (18,19).

Recent advances in understanding the molecular mecha‑
nisms of PD have revealed the involvement of small non‑coding 
RNA molecules, known as microRNAs (miRNAs/miRs), in 
the derangements and perturbation of processes associated 
with the regulation of the expression levels of genes involved 
in PD development (20‑22). Moreover, a systematic review of 
the literature identified ~91 different miRNAs associated with 
PD, with the expression levels of 39 of these miRNAs differing 
significantly between individuals with PD and healthy controls 
and/or between treated and untreated patients with PD (23), such 

Expression levels of specific microRNAs are increased 
after exercise and are associated with cognitive 

improvement in Parkinson's disease
FRANCIELE CASCAES DA SILVA1,  MICHELE PATRÍCIA RODE2,  GIOVANNA GRUNEWALD VIETTA3,   

RODRIGO DA ROSA IOP1,  TÂNIA BEATRIZ CRECZYNSKI‑PASA2,   
ALESSANDRA SWAROWSKY MARTIN4  and  RUDNEY DA SILVA1

1Center for Health Sciences and Sports, Adapted Physical Activity Laboratory, Santa Catarina State University,  
Florianópolis, Santa Catarina 88080‑350; 2Pharmaceutical Sciences Department, Federal University of Santa Catarina,  

Florianópolis, Santa Catarina 88010‑970; 3Nucleus of Epidemiology, University of Southern Santa Catarina, 
Palhoça, Santa Catarina 88137‑270; 4Center for Health and Sport Sciences, Physical Therapy Department, 

Santa Catarina State University, Florianópolis, Santa Catarina 88080‑350, Brazil

Received February 21, 2020;  Accepted December 2, 2020

DOI: 10.3892/mmr.2021.12257

Correspondence to: Dr Franciele Cascaes Da Silva, Center for 
Health Sciences and Sports, Adapted Physical Activity Laboratory, 
Santa Catarina State University, 358  Pascoal Simone Street, 
Coqueiros, Florianopolis, Santa Catarina 88080‑350, Brazil
E‑mail: francascaes@yahoo.com.br

Key words: physical exercise, microRNA, serum, Parkinson's 
disease



DA SILVA et al:  MicroRNAs, COGNITION AND EXERCISE IN PARKINSON'S DISEASE2

as miR‑30b, miR‑30c, miR‑26a, miR‑450b‑3p, miR‑148b, miR‑1, 
miR‑22*, miR‑29a, miR‑103a‑3p, miR‑30b‑5p, miR‑29a‑3p, 
miR‑1249, miR‑20a, miR‑18b, miR‑378c, miR‑4293, miR‑652, 
miR‑15a*, miR‑29c, miR‑376c, miR‑143, and miR‑19b 
(downregulated miRNAs) and miR‑1826, miR‑626, miR‑505, 
miR‑16‑2a*, miR‑26a2*, miR‑30a, miR‑7, miR‑9‑3‑p, miR‑9‑5p, 
miR‑129, miR‑132, miR‑423, miR‑365, miR‑486, miR‑1260, 
miR‑218 and miR‑331‑5p (upregulated miRNAs).

A systematic review of experimental and quasi‑experi‑
mental studies published between 2007 and 2017 (24) revealed 
the acute and/or chronic effects of physical exercise (aerobic 
and resistance) on the expression of several miRNAs in 
healthy individuals (25‑36), athletes (37‑40), young and older 
adults (41‑50), as well as in patients with chronic heart failure 
(CHF)  (51,52), chronic kidney disease (CKD)  (53), type 2 
diabetes mellitus (DM2) associated with morbid obesity (54), 
prediabetes  (55) and intermittent claudication  (56,57). 
However, to the best of our knowledge, there have been no 
studies investigating the effects of physical exercise on the 
expression levels of miRNAs in individuals with PD. Therefore, 
additional studies should be performed to examine the effect 
of physical exercise on circulating miRNAs in individuals 
with pathological conditions, such as neurological diseases, 
as physical exercise serves an important role in mitigating or 
delaying the emergence of symptoms, which ultimately results 
in a certain degree of independence and improved quality of 
life, indicating its consideration as an auxiliary method in 
traditional therapies (24).

Based on these premises, the present study aimed to inves‑
tigate the effects of an interval training program using a cycle 
ergometer on the expression levels of miRs associated with 
PD, including miR‑106a‑5p, miR‑103a‑3p and miR‑29a‑3p, in 
serum samples from men with PD.

Materials and methods

Ethics approval and consent. This quasi‑experimental study 
with pre‑ and post‑tests, and with a non‑equivalent group 
design was approved by the Ethics Committee for Research 
involving Human Beings of the State University of Santa 
Catarina in 2015 (certificate of presentation for ethical appre‑
ciation no.  50032415.1.0000.0118). The objectives of this 
study and the procedures adopted throughout the research 
were explained to all participants, who voluntarily agreed 
to continue participation by signing an informed consent 
document.

Study design. The evaluations were performed at the begin‑
ning of the study (week 0) and after 8 weeks of the intervention 
program (week 9) at the Center for Health and Sports Sciences 
(CEFID; Florianópolis, Brazil) from March to June 2018.

Identification, selection and allocation of participants. A 
total of eight men with PD participated in this study. The 
participants fulfilled the following inclusion criteria: i) Age 
≥50 years old and ≤80 years old; ii) classification in stages I, 
II and III of the Hoehn & Yahr scale; iii) a score ≥24 in the 
Mini‑Mental State Examination (MMSE); iv) use of stable 
medication during the last 3 months; and v) physical ability to 
walk 300 m or more during the 6‑min walk test (6MWT). The 

decision to include only men in this study was made given the 
need to minimize possible sex‑specific confounding effects, 
such as those arising from typical hormonal implications of 
the menstrual cycle in women, which may cause changes in 
circulating miRNA expression levels (58,59).

During the recruitment phase, some individuals indicated 
that they would meet the inclusion criteria. After the initial 
assessments, these potential participants were excluded as 
they may i) have a deep brain stimulator implant; ii) present 
with other neurological disorders, musculoskeletal diseases 
and uncontrolled hypertension; iii) show changes in cognitive 
functions that would impair cooperation and comprehension 
of the proposed activities; and iv) have visual deficits.

The participants were selected based on the eligibility 
criteria and classified into two groups (both n=8): Experimental 
group (EG, interval training program) and control group (CG). 
The medications prescribed [levodopa (L‑dopa) or Prolopa] 
for the participants were not changed by the researchers during 
the present study. All evaluations and training sessions were 
performed at the same time of day to minimize the effects of 
scheduled medication on motor function.

Demographic, economic and clinical assessments. 
Demographic and economic information was collected using 
a clinical report form specifically developed for this study in 
March 2018. Clinical characteristics, namely time of diagnosis, 
disease severity and motor function were respectively assessed 
using a clinical report form, the modified Hoehn & Yahr 
Scale (60), with scores ranging from 0 (no signs of disease) 
to 5 (wheelchair bound or bedridden unless aided), and the 
Unified Parkinson's Rating Scale‑section III (UPDRS) (61), 
where the score of each of the 14 items ranges from 0‑4 and 
higher values indicate greater impairment.

Overall cognition was assessed through the MMSE (62), 
with a score ranging from 0‑30 points and lower scores indi‑
cating a possible cognitive deficit, and the Montreal Cognitive 
Assessment (MoCA) (63), with a total score of 30 points and 
scores ≥26 indicating absence of cognitive impairment.

Cardiorespiratory performance was assessed in field tests, 
and all participants were submitted to the 6MWT following 
the Brazilian guidelines for the application of the test (64). The 
6MWT is useful to evaluate clinical data and to help design 
rehabilitation therapies for individuals with PD (65).

Blood samples. Blood was collected following the recommenda‑
tions of the Brazilian Society of Clinical Pathology/Laboratory 
Medicine for venous blood collection (66). All participants 
had their blood samples collected in the afternoon (week 0 
and 9). Peripheral blood samples (5 ml) were collected in 
Vacutainer tubes without anticoagulant (BD Biosciences). 
The samples were processed for serum isolation within 2 h of 
collection. Serum samples were centrifuged at 3,000 x g for 
10 min at 4˚C (Omega® centrifuge). The serum was divided 
into aliquots and stored in a freezer at ‑80˚C for subsequent 
analyses, which were performed by the Group of Studies on 
Micro‑Macromolecule Interactions of the Federal University 
of Santa Catarina. The aliquots were transported by land on 
dry ice following the Brazilian Health Regulatory Agency 
guidelines for blood transport and components (67). Serum 
samples with hemolysis were not included in the study.
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Extraction of total RNA and reverse transcription‑quantitative 
PCR. Total RNA was extracted using the mirVana™ PARIS™ 
RNA kit (Thermo Fisher Scientific, Inc.) according to the 
manufacturer's instructions. During RNA extraction, 25 fmol 
spike‑in cel‑miR‑238‑3p from Caenorhabditis elegans was 
added to each serum sample after denaturation. To evaluate 
the amount and quality of total RNA, the NanoVue Plus 
spectrophotometer (GE Healthcare Life Sciences) was used. 
Finally, the total RNA obtained was stored in a freezer at 
‑80˚C.

For qPCR, polyadenylation, RT and qPCR were performed 
using the miRNA RT‑qPCR Master Mix Detection kit (Agilent 
Technologies, Inc.) according to the manufacturer's instruc‑
tions. For the qPCR experiment, the specific primers of each 
miRNA were designed following the recommendations of the 
miRNA RT‑qPCR Master Mix Detection kit protocol (Agilent 
Technologies, Inc.). Primers were designed for evaluation of the 
expression levels of the following miRNAs: Cel‑miR‑238‑3p, 
hsa‑miR‑106a‑5p, hsa‑miR‑103a‑3p and hsa‑miR‑29a‑5p. 
The sequences of the primers are presented in Table SI. The 
efficiency of the primers was determined using LinRegPCR 
version 2018.0 (68).

The qPCR data were analyzed on 96‑well plates using the 
StepOnePlus™ Real‑Time PCR System (Applied Biosystems; 
Thermo Fisher Scientific, Inc.). The qPCR reactions were 
performed in a final volume of 25 µl according to the manu‑
facturer's instructions. The qPCR experimental conditions 
were as follows: Initial denaturation at  95˚C for 10  min, 
followed by 40 cycles at 95˚C for 10 sec, 53˚C for 15 sec and 
72˚C for 20 sec. Finally, the specificity of the reactions was 
evaluated via analysis of dissociation curves (95˚C for 1 min, 
53˚C for 30 sec, annealing temperature up to 95˚C with ramp 
of 0.3˚C per second and 95˚C for 1 min). The miRNA with 
Cq value >35 was considered undetected. The reactions were 
performed in triplicate, assuming the geometric mean between 
the Cq values found for each sample to calculate relative gene 
expression. For the calculation of relative gene expression, 
the 2‑ΔΔCq method described by Livak and Schmittgen was 
used (69).

Prediction of target genes. Prediction analyses of target 
genes of miR‑106a‑5p, ‑103a‑3p and ‑29a‑3p were performed 
using two databases (TargetScan version 7.2: http://www.
targetscan.org/vert_72/ and miRDB January 2019 version: 
http://www.mirdb.org/) (70,71). The final list of target genes 
was obtained through the intersection of the results from the 
two databases. The analysis of the main biological processes 
(P<0.05) involved in the target genes list was performed using 
the Gene Ontology  (GO) database (Released 2018‑12‑01; 
http://geneontology.org/) (72). The most relevant biological 
processes were visualized using REViGO (version 2017; 
revigo.irb.hr/) (73).

Interval training program. The interval training program 
was performed on a cycle ergometer (Embreex® stationary 
bicycle; Embreex) for 30 min, three times a week during an 
8‑week period. The program was supervised by a physio‑
therapist specialized in Exercise Physiology and Customized 
Training for Special Groups. All activities were performed 
at the CEFID. The exercise sessions were standardized and 

divided into five parts: i) Initial part (prior to training): Blood 
pressure  (BP), heart rate (HR) and rate of perceived exer‑
tion (RPE) were measured; ii) Preparation/warm‑up (5 min): 
Participants were instructed to pedal at a comfortable rate; 
iii) Training (20 min): Participants were asked to pedal for 
15 sec at an intensity corresponding to 80% HR6MWT (74). Due 
to cardiovascular adjustments in the first sec of the training, 
perceived exertion was controlled during the stimulus phase 
according to the RPE scale 6‑7 (74). In the recovery phase, 
the participants were recommended to pedal for 45 sec at 
an intensity of 55‑60% HR6MWT, which corresponds to the 
RPE scale 2‑3. Thus, the participants performed the interval 
training composed of 20 stimuli of 15 sec and recovery of 
45 sec (74). The HR was monitored throughout the training 
using an FT1 Polar® heart rate monitor (74). Sound signals 
indicated the moment when the participant should change the 
pedaling intensity.

iv)  Cooling‑off/calm down (5  min): Participants were 
instructed to pedal at a comfortable rate; and v) Final part 
(similar to the initial part): BP, HR and RPE were measured.

Each participant was monitored on a daily basis using a 
control chart including the participant's name, date of activity, 
BP, HR, initial and final perceived exertion rates. In addition, 
HR and perceived exertion were recorded at 15 and 45 sec of 
each min for 20 min.

Statistical analysis. The data were initially entered into a 
Microsoft Excel® spreadsheet (2010; Microsoft Corporation) 
and were subsequently exported to the IBM® SPSS program 
(version  20.0; IBM Corp.) and to the GraphPad Prism 6 
statistics software (GraphPad Software, Inc.). Data are 
presented as the mean ± SD of two independent experimental 
repeats. The normality of the data was analyzed using the 
Shapiro‑Wilk test. The t‑test for independent samples was 
used to compare the groups  (EG and CG). Comparisons 
among the participants before (week 0) and after (week 9) the 
intervention were conducted using the t‑test for paired samples 
with GraphPad Prism 6 statistics software. The correlation 
between the variables UPDRS, MMSE, MoCA, 6MWT and 
the relative expression levels of the miRNAs (before and after 
training) were evaluated using the Spearman's rank correlation 
coefficient. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Participant characteristics. After the research was adver‑
tised on social media, nine assessed individuals met the 
eligibility criteria to participate in the study. However, 
between the assessment phase and the beginning of the 
exercise program, one individual decided to withdraw 
participation due to personal reasons. Demographic and 
economic data, clinical characteristics, global cognition and 
cardiorespiratory performance at baseline are summarized 
in Table I.

Relative expression of miRNAs before and after cycling 
training program. There was no difference in the relative 
expression levels of the miRNAs analyzed between the EG and 
CG before and after the cycling training program. Regarding 
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the effect of the interval training on a cycle ergometer, there 
was an increase in the relative expression levels of miR‑106a‑5p 
in the EG (P=0.04) and no difference in the CG (P=0.07) 
compared with the levels before training (Fig. 1A). There was 
an increase in the relative expression levels of miR‑103a‑3p in 
the CG (P=0.005), but no significant difference was observed 
in the EG (P=0.09) after training (Fig. 1B). The expression 
levels of miR‑29a‑3p were upregulated in the CG (P=0.06) 
(Fig. 1C), while no statistical difference was noted in the EG 
(P=0.16).

Correlation between relative expression levels of miRNAs, 
MMSE, UPDRS, MoCA and 6MWT. Spearman's rank correla‑
tion coefficient was used to identify the correlation between 
the analyzed variables. The cognitive profile assessed using 
the MMSE was moderately, positively correlated with the 
relative expression levels of miR‑106a‑5p, miR‑103a‑3p and 
miR‑29a‑3p (Fig. 2).

The variables UPDRS, MoCA and 6MWT were not 
correlated with the relative expression levels of the assessed 
miRNAs (Table II).

Target genes. The target genes for the three miRNAs were 
identified using the TargetScan and miRDB databases. Among 
these genes, 943 genes were predicted for miR‑106a‑5p, 438 
genes for miR‑103a‑3p and 771 genes for miR‑29a‑3p in both 
databases (Fig. S1 and Data S1). The analysis of the main 
biological processes involved with the target genes identified 
an important relation with the ‘Wnt signaling pathway’, as 
well as with the development of the nervous system, bones and 
muscles (Fig. 3 and Table SII).

Table I. Characteristics of the study participants at baseline (n=8).

	 Groups
	--------------------------------------------------------------------------------------------
Characteristics	 EG (n=4)	 CG (n=4)	 P‑value

Demographic and economic data			 
  Age, years	 66.25±12.97	 63.50±9.60	 0.745
  Years of schooling	 11.00±2.16	 10.25±6.94	 0.843
  ABEP, points	 26.50±7.41	 29.25±14.86	 0.752
Clinical characteristics			 
  Time of diagnosis, years	 5.75±3.68	 9.25±5.73	 0.344
Hoehn & Yahr scale			 
  Stage I	 3 (75)	 3 (75)	 ‑
  Stage II	 1 (25)	 1 (25)	 ‑
  Stage III	 0	 0	 ‑
UPDRS‑ section III	 12.50±2.38	 8.50±2.51	 0.069
Global cognition			 
  MMSE	 27.50±1.73	 26.75±2.63	 0.651
  MoCA	 25.50±4.65	 23±5.47	 0.513
Cardiorespiratory performance			 
  Distance in 6MWT, m	 422.00±84.36	 546.79±74.99	 0.060

Data were analyzed by t‑test and are presented as the mean ± SD or n (%). n, absolute frequency; %, relative frequency; EG, Experimental 
Group; CG, Control Group; ABEP, Brazilian Marketing Research Association; MMSE, Mini‑Mental State Examination; UPDRS, Unified 
Parkinson's Disease Rating Scale; 6MWT, 6‑min Walk Test; MoCA, Montreal Cognitive Assessment.
 

Figure 1. Relative expression levels of (A) miR‑106a‑5p, (B) miR‑103a‑3p 
and (C) miR‑29a‑3p in the CG and EG before and after interval training on 
a cycle ergometer. Data are presented as the mean ± SD of relative expres‑
sion. Statistical differences were calculated using the t‑test for independent or 
paired samples. miR, microRNA; CG, control group; EG, experimental group.
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Discussion

PD is the most prevalent movement disorder of the central 
nervous system, characterized by the progressive loss of dopa‑
minergic neurons in the substantia nigra pars compacta and 
the accumulation of α‑synuclein (10,16,20). The accumulation 
of the α‑synuclein protein leads to neuronal dysfunction. 
miRNAs can modulate the accumulation of this factor and 
other proteins by regulating the genes that encode these toxic 
proteins and transcription factors, or by altering the expres‑
sion of proteins that regulate survival of neuronal cells (75). 
In this context, miRNAs are involved directly and indirectly 
in the pathogenesis of PD (75‑79), and therefore, miRNAs that 
target genes involved in neurodegeneration are of potential 
therapeutic value (80).

In the present study, it was possible to observe an increase 
in relative expression levels of miR‑106a‑5p, miR‑103a‑3p 
and miR‑29a‑3p in serum of individuals who participated in a 
supervised cycling training program of 30 min, three times a 

week for a period of 8 weeks. Notably, the program promoted 
a significant increase in the expression of miR‑106a‑5p.

In healthy individuals, previous studies have reported 
changes in miRNA expression levels after aerobic exercise. For 
instance, Denham et al (34) observed a reduction in miR‑210 
and an increase in miR‑21 after 12 weeks of physical exercise 
on the treadmill. In four studies, changes were identified in 
38 miRNAs in neutrophils (25), 33 miRNAs in peripheral 
blood mononuclear cells (26), 22 miRNAs in natural killer 
cells  (27) and 18 in monocytes  (28) in healthy men after 
exercise using a cycle ergometry. Another study revealed the 
acute and chronic effects of stationary bike exercise in healthy 
young individuals on the expression levels of miRNAs (46). In 
a previous study, miR‑106a, miR‑221, miR‑30b, miR‑151‑5p, 
let‑7i, miR‑146a, miR‑652 and miR‑151‑3p expression levels 
were decreased, while miR‑338‑3p, miR‑330‑3p, miR‑223, 
miR‑139‑5p, miR‑143, miR‑145 and miR‑424 expression levels 
were increased after 1 h of training. After 12 weeks, there was 
a decrease in miR‑342‑3p, let‑7d, miR‑766, miR‑25, miR‑148a, 

Table II. Correlation between the variables UPDRS, MoCA, 6MWT and the relative expression levels of miR‑106a‑5p, 
miR‑103a‑3p and miR‑29a‑3p.

	 miR‑106a‑5p	 miR‑103a‑3p	 miR‑29a‑3p
	---------------------------------------------------	---------------------------------------------------	---------------------------------------------------  
Variables	 ρ	 P‑value	 ρ	 P‑value	 ρ	 P‑value

MoCA	 0.450	 0.093	 0.340	 0.214	 0.457	 0.088
UPDRS	 ‑0.234	 0.365	 ‑0.248	 0.337	 ‑0.304	 0.241
6MWT	 0.085	 0.760	 0.237	 0.390	 0.143	 0.608

Correlation was assessed using the Spearman's Rank Correlation Coefficient. MoCA, Montreal Cognitive Assessment; UPDRS, Unified 
Parkinson's Disease Rating Scale; 6MWT, 6‑min walk test; miR, microRNA.
 

Figure 2. Correlations between the values obtained in the MMSE and the relative expression levels of (A) miR‑106a‑5p, (B) miR‑103a‑3p and (C) miR‑29a‑3p. 
The correlation was assessed using the Spearman's Rank Correlation Coefficient (r). Significant P‑values are marked with an asterisk. MMSE, Mini‑Mental 
State Examination; miR, microRNA.
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miR‑185 and miR‑21 expression levels and an increase in 
miR‑103 and miR‑107 expression levels (46). These results 
suggested the potential value of miRNAs as a possible physi‑
ological mediator of exercise‑induced adaptation in healthy 
individuals and in individuals with neurological diseases, such 
as PD.

In the present study, positive correlations were observed 
between the MMSE values and the relative expression levels 
of miR‑106a‑5p, miR‑103a‑3p and miR‑29a‑3p, indicating 
that the increase in the expression level of these miRNAs 
was associated with decreased cognitive deficit. Other 
studies also reported a correlation between miR‑29a expres‑
sion and MMSE in patients with vascular dementia  (81), 
and between miR‑103a expression and MMSE in Japanese 
subjects without a clinical diagnosis of dementia who 
attended a health examination in Yakumo, Hokkaido (82). A 

study involving an ovariectomized mouse model of cognitive 
impairment suggested that miR‑106a may be a marker of 
onset or a potential therapeutic target for cognitive distur‑
bances (83). At present, to the best of our knowledge, only 
Serafin et al (79) demonstrated dysregulation of miR‑103a‑3p 
and miR‑29a‑3p in PD; additionally, overexpression in 
peripheral blood mononuclear cells of patients treated with 
L‑dopa was observed.

Prediction analyses of target genes in the present study 
revealed that these miRNAs are associated with important 
biological processes involved in motor function and in the 
development of the central nervous system. Some of these 
target genes have been validated in functional experiments, 
where it has been reported that miR‑106a‑5p regulates the 
expression of the autophagy‑related gene 7 (84), and suppres‑
sion of this gene is associated with the death of dopaminergic 

Figure 3. Ontological analysis of significant biological processes associated with Parkinson's disease regulated by the predicted target genes of (A) miR‑106a‑5p, 
(B) miR‑103a‑3p and (C) miR‑29a‑3p. miR, microRNA.
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neurons and accumulation of α‑synuclein  (85). Moreover, 
miR‑106a‑5p has been reported to regulate the expression of the 
hypoxia‑induced factor‑1 gene (86), which is associated with 
cell death in various neurodegenerative diseases. In addition 
to regulating processes related to neurogenesis, miR‑106a‑5p 
serves a role in myogenesis. Recently, miR‑106a‑5p has been 
identified in animal models as a repressor of myogenesis as it 
inhibits differentiation and promotes atrophy by blocking the 
PI3K/AKT signaling pathway via PIK3R1 (87). A previous 
study also observed that miR‑106a‑5p was downregulated 
immediately after acute exercise in young healthy men (88); 
however, the impact of exercises in older men is yet to be 
elucidated.

Prediction analyses of target genes of miR‑103a‑3p 
have demonstrated a relationship with the Wnt signaling 
pathway (89,90). This pathway is associated with the survival 
of dopaminergic neurons and their dysregulation may be a 
potential cause for PD (89,90), suggesting that miR‑103a‑3p can 
regulate the expression of the extracellular Dickkopf‑1 protein 
(DKK1) (88). A recent study confirmed that miR‑103a‑3p can 
regulate DKK1 expression (88). Furthermore, this protein can 
block the canonical Wnt pathway, contributing to neurotoxicity 
in PD (91,92). miR‑103a‑3p is also involved in the regulation 
of several other PD‑related processes, such as the regulation 
of myocyte enhancer factor‑2 (MEF2D) transcription factor, 
and the regulation of MEF2D is associated with loss of dopa‑
minergic neurons (93,94). miR‑103a‑3p and miR‑29a‑3p are 
related to insulin resistance, a process that may be linked to 
neurodegeneration in DP (95‑100).

In the present study, although miR‑29a‑3p did not show 
a statistically significant difference between the pre‑ and 
post‑exercise groups, a correlation with cognitive profile 
assessed using the MMSE was noted. One of the targets of 
miR‑29a‑3p is G protein‑coupled receptor 37 (GPR37) (99). 
The intracellular accumulation of GPR37 is neurotoxic and 
is associated with PD (99). Inactivation of GPR37 produces 
motor and non‑motor phenotypes relevant to PD (99). Thus, 
poor regulation of GPR37 due to overexpression of miR‑29a‑3p 
may be associated with PD (79). CDC42, a candidate gene for 
PD involved in neuronal death (100), was also identified as a 
potential target for miR‑29a‑3p.

An emerging paradigm of post‑transcriptional molecular 
regulation due to physical exercises involves the action of 
miRNAs, which regulate mRNA translation  (38). Several 
studies have examined the acute and/or chronic effects of phys‑
ical exercises s(aerobic and resistance) on various miRNAs in 
healthy individuals (25‑36), athletes (37‑40) and in young and 
older adults (41‑50), as well as in patients with CHF (51,52), 
CKD (53), DM2 associated with morbid obesity (54), predia‑
betes  (55) and intermittent claudication  (56,57). In these 
studies, most of the investigated subjects were men. Moreover, 
to the best of our knowledge, the effects of physical exercises 
on the expression of miRNAs in individuals with PD have 
not been investigated. Thus, the present study was the first to 
investigate the effects of an interval cycling training program 
on the expression levels of miRNAs in serum samples from 
men with PD.

In the present study, the interval cycling training program 
increased the expression levels of miR‑106a‑5p, miR‑103a‑3p 
and miR‑29a‑3p, with a statistically significant increase observed 

in the expression of miR‑106a‑5p. However, there is limited 
information regarding this miRNA in PD. The current results 
indicated that these miRNAs may participate in the response to 
exercise; however, further studies with a larger sample size are 
required to confirm these results. The present results suggested 
that miR‑106a‑5p, miR‑103a‑3p and miR‑29a‑3p may partially 
reflect exercise‑induced responses or time regulation controlled 
by miRNAs during exercise.

Limitations of the present work are that the selected partici‑
pants were only men, and that the dosage and treatment were 
not investigated. Therefore, future research should be performed 
to investigate whether this is a sex‑specific issue, as well as to 
examine the relationship between patients were treated with 
L‑dopa or Prolopa.

In conclusion, in men with PD, serum expression levels of 
miR‑106a‑5p, miR‑103a‑3p and miR‑29a‑3p were increased in 
response to a supervised interval training program on a cycle 
ergometer for 30 min, three times a week for a period of 8 weeks. 
It was found that the program promoted a significant increase 
in the expression of miR‑106a‑5p. Additionally, the expres‑
sion levels of miR106a‑5p, miR‑103a‑3p and miR‑29a‑3p were 
positively correlated with MMSE values. Further studies are 
required to clarify the potential use of these circulating miRNAs 
as markers of adaptation to physical exercise. The present results 
indicated that these three miRNAs were associated with the 
exercise response and cognitive improvement in men with PD.
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