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Abstract

Multimodal data fusion is a topic of great interest. Several fusion methods have been proposed to 

investigate coherent patterns and corresponding linkages across modalities, such as joint 

independent component analysis (jICA), multiset canonical correlation analysis (mCCA), mCCA

+jICA, disjoint subspace using ICA (DS-ICA) and parallel ICA. JICA exploits source 

independence but assumes shared loading parameters. MCCA maximizes correlation linkage 

across modalities directly but is limited to orthogonal features. While there is no theoretical limit 

to the number of modalities analyzed together by jICA, mCCA, or the two-step approach mCCA

+jICA, these approaches can only extract common features and require the same number of 

sources/components for all modalities. On the other hand, DS-ICA and parallel ICA can identify 
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both common and distinct features but are limited to two modalities. DS-ICA assumes shared 

loading parameters among common features, which works well when links are strong. Parallel 

ICA simultaneously maximizes correlation between modalities and independence of sources, 

while allowing different number of sources for each modality. However, only a very limited 

number of modalities and linkage pairs can be optimized. To overcome these limitations, we 

propose aNy-way ICA, a new model to simultaneously maximize the independence of sources and 

correlations across modalities. aNy-way ICA combines infomax ICA and Gaussian independent 

vector analysis (IVA-G) via a shared weight matrix model without orthogonality constraints. 

Simulation results demonstrate that aNy-way ICA not only accurately recovers sources and 

loadings, but also the true covariance/linkage patterns, whether different modalities have the same 

or different number of sources. Moreover, aNy-way ICA outperforms mCCA and mCCA+jICA in 

terms of source and loading recovery accuracy, especially under noisy conditions.

Index Terms—

Multimodal data fusion; Independence; Correlation; aNy-way ICA; N-way

I. Introduction

With the fast advancement of technology, growing medical data from different imaging 

modalities and omics (e.g. genomics, transcriptomics, epigenomics, microbiomics) can be 

collected from the same participants for a variety of diseases. Data from different modalities/

omics provide unique and complementary features for understanding diseases. Thus, 

integrative/fusion methods are essential to identify unique and coherent biomarkers across 

modalities.

Several fusion approaches have been proposed to explore the latent shared structures in 

multimodal datasets in order to discover and establish links among modalities. To that end, 

joint independent component analysis (jICA) [1] has focused on identifying shared loadings 

across modalities. Meanwhile, mCCA+jICA [2] proposed a multiset canonical correlation 

analysis (mCCA) preprocessing in order to improve the correspondence over modalities and 

more closely satisfy the assumption of shared identical loadings prior to jICA, enabling N-

way multimodal fusion. With similar motivation, disjoint subspace using ICA (DS-ICA) [3] 

proposed to apply jICA on the common subspace extracted with principal component 

analysis-CCA (PCA-CCA) [4], and separate ICAs on the remaining (distinct) subspace. 

Parallel ICA [5], on the other hand, proposed to interweave separate (parallel) ICAs, one per 

modality, with simultaneous maximization of correlation between specific multimodal 

loading pairs. This is attractive because both independence and linkage are optimized 

together rather than in two steps. However, Parallel ICA (and 3-way Parallel ICA) [5, 6] is 

limited in the number of modalities and linked components it can robustly detect since it 

optimizes individual correlation pairs rather than the entire underlying linkage structure.

Here, we propose a new model called aNy-way ICA, which overcomes these limitations. 

aNy-way ICA optimizes the entire loadings correlation structure of linked components via 

Gaussian independent vector analysis (IVA-G) [7] and simultaneously optimizes 
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independence via separate (parallel) ICAs. Therefore, aNy-way ICA is capable of detecting 

multiple linked sources over any number of modalities without requiring orthogonality 

constraints on sources and permitting different number of sources for different modalities. 

The remainder of the paper is organized as follows. Section II introduces the aNy-way ICA 

model. Section III describes simulation scenarios. Results and conclusions are shown in 

sections IV and V, respectively.

II. METHOD

aNy-way ICA aims to simultaneously maximize the independence of sources s while 

minimizing the mutual information between subspace component vectors (SCV) ak. As 

shown in Fig. 1, without loss of generality, we consider three modalities: structural MRI 

(sMRI), functional MRI (fMRI) and electroencephalography (EEG), each with 5, 4, and 6 

sources, respectively. While the total number of sources Cm is different per modality, at most 

K = 4 SCVs (maximum number of one-to-one correspondences across all modalities) can be 

extracted. For each modality, ICA decomposes the data Xm (dimension: N × Lm; m = 1,2,3 

modality indices; N is the number of subjects; Lm is the feature dimensionality) into a 

source matrix Sm (dimension: Cm × Lm) with corresponding loading matrices Am 

(dimension: N × Cm), i.e., Xm = AmSm.

The source matrix is estimated by the product of a weight matrix Wm and data as Sm = 

WmUXm, where U is a fixed projection into a shared variance-adjusted space (see below). 

The loading matrix is then reconstructed as the product of data and pseudo-inverse of the 

source matrix Am = XmSm
− , a key strategy of this work. SCVs are then formed by 

concatenation of linked loadings across the three modalities, where the total number of 

SCVs K is the minimum component number among the three modalities. Assuming each 

SCV follows a multivariate Gaussian distribution, mutual information among SCVs is 

minimized utilizing IVA-G since that has been shown to correspond to mCCA’s generalized 

variance (GENVAR) approach without orthogonality constraints [8].

The cost function of aNy-way ICA is thus defined as:

maxw∑m = 1
M H ym − λ ⋅ I a1, ⋯, aK . (1)

where M is the total number of modalities, H(ym) represents the entropy of ym (the same as 

Infomax ICA cost [9]), ym is a nonlinear transformation of the bias-adjusted source um 

(ym = 1
1 + e−um

, um = sm + bm, bm a bias), I(a1, ⋯, aK) is the mutual information among 

SCVs ak, λ is a regularizer to balance between independence (ICA) and correlation (IVA-G) 

maximization. The entropy of ym [9] and mutual information among SCVs ak [7] are 

defined in (2) and (3), respectively:

H ym = − E ln pym ym . (2)
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I a1, ⋯, aK = ∑k = 1
k H ak − H a1, ⋯, aK . (3)

where pym ym  is the probability density function of the vector ym. The k-th SCV ak can be 

formed as ak = APk
⊤, where Pk

⊤ is akin to a permutation matrix that selects the loadings from 

the k-th component of each modality, and A = [A1, ⋯, AM] is a concatenation of loadings 

from all modalities.

H(ak) represents the marginal entropy of the k-th SCV and H a1, ⋯, aK ≈ ∑m
M log|det Sm

−Pm
⊤ |

is the joint entropy of all SCVs, which simplifies to a determinant function on the sources 

after noting the entropy of the data is constant. The proposed aNy-way ICA is then solved 

by stochastic gradient descent (SGD), utilizing the relative gradients [10] of (2) and (3) with 

respect to W, which are given, respectively, as:

∇Wm
H = I + 1 − 2ym um⊤ Wm . (4)

∇Wm
I = − Wm

− ⊤ KmV1m
− Ṡm

− Wm − Wm
− ⊤ Fm

⊤ Tm
− ⊤ Qm

⊤ Wm . (5)

where I is an identity matrix, 1 is a column vector of ones, ⊤ is the matrix transpose, 

Km = diag std V1m
⊤  is a diagonal matrix, and std V1m

⊤  is a vector with the standard 

deviations from each row of V1m
⊤ . V1m

⊤ = U⊤Xm is based on the eigenvalue decomposition 

(EVD) of Σ =EVD UΛU⊤, with Σ = 1
M ∑m = 1

M Σm
trace Σm

 being the average of normalized 

sample covariance matrices from each modality Σm =
xmxm⊤

Lm − 1  (Xm has zero mean rows and 

columns). Ṡm
− = Ṡm1

− ⋯ ṠmK
− Pm is an intermediate gradient for the pseudo-inverse of the 

source matrix of the m-th modality, and Ṡmk
− = − 1

N − 1Xm
⊤zmk with zmk = ak ak

⊤ak
−1P1m

⊤ . 

Note that P1m
⊤  selects the m-th column from the matrix to its left, and Pm expands the 

concatenation of Ṡmk
−  vectors from Lm × K to Vm × Cm (effectively inserting zero columns as 

needed). Finally, approximating the determinants in the SCV joint entropy term as the 

product of singular values of Sm
− Pm

⊤ =SVD U2mDmV2m
⊤  (via singular value decomposition 

(SVD)) and collecting constant terms into Fm = U2m
⊤ V1m

− ⊤ Km and Qm = Pm
⊤ V2m, yields the 

final form in (5), where Tm = FmWm
−1Qm.

Since the source/loading ordering from separate ICAs per modality would be arbitrary (not 

linked), it is important not to over-emphasize independence early during the optimization. 

Rather, we propose to project the multimodal data into a shared variance-adjusted space, i.e., 

along the shared basis U defined above, which provides a good (linked) starting point for the 

optimization. Also, we observed improved loading (SCV) linkage and source alignment by 

initially optimizing only IVA-G for a few steps/epochs (here, 5) before optimizing (1). 
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Moreover, the regularizer parameter λ is initialized with 1 and adaptively adjusted by 

annealing it according to the entropy trend during the optimization: whenever entropy 

decreases with a slope larger than a threshold (here, 10−4), this triggers λ to be reduced by a 

factor (here, 0.8).

III. SIMULATION

Simulated sMRI, fMRI and EEG data were employed to validate the proposed aNy-way 

ICA, where sMRI and fMRI sources were simulated with the SimTB toolbox [11]. For EEG 

sources, we used a subset of simulated independent Laplacian timeseries in [12], which had 

an autocorrelation around 0.85 between timepoint t and t − 1, and 0.2 between t and t − 10. 

Each SCV was sampled from a zero mean m-dimensional multivariate Gaussian distribution 

with unique covariance structures (correlations’ range: [0.2,0.8]). SCVs were then organized 

into loading matrices Am. If applicable, extra loadings for non-linked sources were sampled 

from a standard Normal distribution and padded to Am. Finally, the data was generated as 

the product of the loading and source matrices as Xm = AmSm. The following scenarios were 

then examined:

Scenario 1:All 3 modalities had the same number of sources Cm = 7. The number of 

subjects was fixed at N = 500. Feature dimensions (Lm) for sMRI, fMRI and EEG 

data were 31064 (voxels), 17420 (voxels), 4444 (time points), respectively (same Lm 

used for scenario 2). Comparisons were performed against both mCCA and mCCA

+jICA.

Scenario 2:sMRI, fMRI, and EEG data had different number of sources. In part (a), 

we assessed the effect of varying the number of linked SCVs (K = [3,5,7,9,11]) while 

keeping N = 500 fixed. The number of sources Cm for sMRI, fMRI and EEG data 

were set as K + 1, K, and K + 2, respectively, except for K = 11 where C1 = C2 = 11, 

and C3 = 12. In part (b), the number of sources Cm for sMRI, fMRI and EEG data 

were fixed at 8, 7, 9, respectively, while the subject number N varied from 100 to 

1000. For each subject number, 10 sets of SCV/loadings were generated and run for 

each modality. Finally, in part (c), we assessed the effect of additive Gaussian white 

noise with Cm fixed at 8, 7, 9 for sMRI, fMRI and EEG, respectively, and N fixed at 

500. The signal-to-noise ratio (SNR) varied from 0db to 30dB with a step size of 

5dB. For each SNR level, the noise samples Eim were generated 5 times, yielding 

noisy data Xim
Noisy = Xm + Eim, i = 1, …, 5 for modality m. Note: scenarios 1, 2(a), and 

2(b) were noise-free.

The following component-wise performance measures were computed per modality for aNy-

way ICA, mCCA and mCCA+jICA: correlations between recovered sources and ground-

truth, as well as correlations between recovered loadings and ground-truth. To examine SCV 

recovery, we also calculated the MSE value between the recovered and groundtruth SCV 

cross-correlations (linkages), considering the diagonal blocks and off-diagonal portions 

separately, as well as together (whole matrix). For mCCA and mCCA+jICA, we estimated 

both K = min
m

Cm and K = max
m

Cm for all modalities (two separate runs). For scenario 2(a), 

correlations were averaged across matched components per modality, while for scenarios 
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2(b) and 2(c), correlations were averaged across runs and matched components. MSE values 

were averaged across runs.

IV. RESULT

Fig. 2 illustrates the seven sources for (a) sMRI, (b) fMRI, and (c) EEG data in scenario 1. 

Fig. 3 (a)–(d) shows their recovery accuracies: under noise-free conditions, aNy-way ICA 

recovered all designed SCV structures very well (the MSE value was 2.8E-4). Both mCCA 

and mCCA+jICA failed to recover, as indicated by the large values on off-diagonal 

positions, likely due to overfitting of correlations and inability to estimate non-orthogonal 

sources in mCCA, plus potential residual source misalignments from mCCA leaking into 

jICA for mCCA+jICA. Fig. 3 (e)–(f) demonstrates aNy-way ICA accurately recovered both 

sources and loading coefficients for all three modalities, contrary to mCCA and mCCA

+jICA.

Performance measures for scenario 2(a) are shown in Fig. 4. aNy-way ICA accurately 

recovered components and loadings for sMRI and fMRI data, with slightly reduced recovery 

accuracy for EEG data (especially for 9 and 11 SCVs). The inter-symbol interference [13] 

for the recovered loading matrix and minimum distance indices [14] for the recovered source 

matrix corroborate these observations and, thus, are omitted here. Lower accuracies for EEG 

data are likely due to its relatively small feature dimensionality (L3 = 4444) and weaker 

designed correlation linkages with other modalities within each SCV. Overall, aNy-way ICA 

outperformed mCCA+jICA and mCCA in terms of source and loading recovery. mCCA

+jICA and mCCA decompositions with the minimum component number of the three 

modalities had higher accuracies compared to those obtained with the maximum component 

number. As the SCV number increased (e.g., 9 or 11 SCVs), source and loading accuracies 

from both mCCA and mCCA+jICA dropped. Table I lists MSE values for aNy-way ICA’s 

recovered covariance structure. aNy-way ICA fully recovered the designed covariance 

structure when SCV number was 3, 5, and 7, and largely recovered it when SCV number 

was 9 and 11 (actually, sMRI and fMRI were aligned well but not sMRI-EEG and fMRI-

EEG).

Fig. 5 demonstrates performance measures for scenario 2(b). As number of subjects 

increased, the recovery accuracies of sources and loadings for fMRI and EEG, as well as the 

covariance structure of SCVs, increased, although there were some variations when the 

subject number was less than 400. Variation of accuracies of EEG data from aNy-way ICA 

were probably due to weak covariance structures generated from few samples. MSE values 

for the whole matrix, diagonal blocks, and off-diagonal blocks of the recovered SCV cross-

correlation are listed in Table II 2(b). As the number of subjects increased, the MSE values 

decreased (except for N = 400 and N = 1000).

Performance measures for scenario 2(c) are plotted in Fig. 6. Increasing the strength of noise 

superimposed on data, recovery accuracies of sources and loadings dropped. aNy-way ICA 

outperformed mCCA and mCCA+jICA when SNR ≥ 5dB. When SNR = 0db, aNy-way 

ICA, mCCA, as well as mCCA+jICA failed to recover the sources and loadings. Table II 

2(c) summarizes MSE values of the whole matrix, diagonal blocks and off-diagonal blocks 
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of the recovered SCV cross-correlation, reflecting larger MSE values for smaller SNR (i.e. 

heavier noise).

V. CONCLUSION

The proposed aNy-way ICA simultaneously optimizes independence of sources and 

correlations across modalities without orthogonality constraints. It can be flexibly applied to 

N-way multimodal fusion with the same or different number of sources per modality. 

Simulation results support that aNy-way ICA can recover sources and loadings, as well as 

the true covariance patterns, with improved accuracy compared to mCCA and mCCA+jICA, 

especially under noisy conditions.
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Clinical Relevance—

This establishes a model for N-way data fusion of any number of modalities and linkage 

pairs, allowing different number of non-orthogonal sources for different modalities.
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Figure 1. 
Diagram of aNy-way ICA. Sources Sm are estimated by maximization of independence in 

each modality separately. Corresponding loadings Am are then organized into SCVs ak, 

followed by minimization of their mutual information with IVA-G, which amounts to 

maximization of the correlation structure within the SCV without orthogonality constraints 

[8]. The model is optimized with stochastic gradient descent until convergence.
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Figure 2. 
Scenario 1 sources for (a) sMRI, (b) fMRI, and (c) EEG data.
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Figure 3. 
Scenario 1. Cross-correlation of SCVs from (a) groundtruth, (b) aNy-way ICA, (c) mCCA

+jICA, and (d) mCCA. Correlation coefficients between (e) recovered sources and ground-

truth, and between (f) recovered loadings and ground-truth for each independent component 

(IC): sMRI (downward triangle), fMRI (star), and EEG data (upward triangle) from aNy-

way ICA (red), mCCA+jICA(green) and mCCA(blue). Note that shapes and colors are 

consistent throughout the paper.
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Figure 4. 
Scenario 2(a), where the number of the SCVs varied from 3 to 11. Recovered source 
accuracies for (a) sMRI, (c) fMRI, and (e) EEG data, and loading accuracies for (b) sMRI, 

(d) fMRI, and (f) EEG data using aNy-way ICA (red), mCCA+jICA with maximum (solid 

green) or minimum component number (dashed green), mCCA with maximum (solid blue) 

or minimum component number (dashed blue). Values are averaged across matched 

components per modality.
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Figure 5. 
Scenario 2(b), where the number of subjects N varied from 100 to 1000. Recovered source 
accuracies for (a) sMRI, (c) fMRI, and (e) EEG data, and loading accuracies for (b) sMRI, 

(d) fMRI, and (f) EEG data. Values are averaged across runs and matched components per 

modality.
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Figure 6. 
Scenario 2(c), where SNR varied from 30db to 0db. Recovered source accuracies for (a) 

sMRI, (c) fMRI, and (e) EEG data, and loading accuracies for (b) sMRI, (d) fMRI, and (f) 

EEG data. Values are averaged across runs and matched components per modality.
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TABLE I.

MSE Values Between the Recovered and Ground-Truth SCV Cross-Correlations by aNy-Way ICA while 

Varying the Number of SCVs

MSE
2(a) Varying Number of SCVs (K)

3 5 7 9 11

All* 2×10−4 5×10−4 6×10−4 2×10−2 6×10−3

Diag* 3×10−5 2×10−5 2×10−4 8×10−2 3×10−2

Off* 3×10−4 7×10−4 6×10−4 9×10−3 3×10−3

*
Note: ‘All’ denotes MSE of whole matrix, ‘Diag’ denotes MSE of diagonal blocks only, ‘Off’ denotes MSE of off-diagonal blocks only.
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TABLE II.

MSE Values Between Recovered and Ground-Truth SCV Cross-Correlations BY aNy-Way ICA while Varying 

the Number of Subjects or SNR.

MSE

2(b) Varying Number of Subjects (N) 2(c) Varying SNR

N All* Diag* Off* SNR All* Diag* Off*

100 2×10−2 5×10−2 1×10−2 0 4×10−2 2×10−1 1×10−2

200 1×10−2 4×10−2 8×10−3 5 3×10−2 2×10−1 4×10−3

300 8×10−3 2×10−2 5×10−3 10 3×10−2 1×10−1 1×10−2

400 1×10−2 3×10−2 6×10−3 15 1×10−2 7×10−2 2×10−3

500 8×10−3 3×10−2 5×10−3 20 8×10−3 3×10−2 4×10−3

700 5×10−3 1×10−2 4×10−3 25 2×10−3 5×10−3 1×10−3

1000 6×10−3 2×10−2 4×10−3 30 9×10−4 4×10−4 1×10−3

*
Note: ‘All’ denotes MSE of whole matrix, ‘Diag’ denotes MSE of diagonal blocks only, ‘Off’ denotes MSE of off-diagonal blocks only.
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