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Abstract 

Background:  Ovarian cancer (OC) is the most lethal gynaecological tumor. Changes in glycolysis have been proven 
to play an important role in OC progression. We aimed to identify a novel glycolysis-related gene signature to better 
predict the prognosis of patients with OC.

Methods:  mRNA and clinical data were obtained from The Cancer Genome Atlas (TCGA), International Cancer 
Genome Consortium (ICGC) and Genotype Tissue Expression (GTEx) database. The “limma” R package was used to 
identify glycolysis-related differentially expressed genes (DEGs). Then, a multivariate Cox proportional regression 
model and survival analysis were used to develop a glycolysis-related gene signature. Furthermore, the TCGA train‑
ing set was divided into two internal test sets for validation, while the ICGC dataset was used as an external test set. A 
nomogram was constructed in the training set, and the relative proportions of 22 types of tumor-infiltrating immune 
cells were evaluated using the “CIBERSORT” R package. The enriched Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways were determined by single-sample gene set enrichment analysis (ssGSEA) with the “GSVA” R pack‑
age. Finally, the expression and function of the unreported signature genes ISG20 and SEH1L were explored using 
immunohistochemistry, western blotting, qRT-PCR, proliferation, migration, invasion and xenograft tumor assays.

Results:  A five-gene signature comprising ANGPTL4, PYGB, ISG20, SEH1L and IRS2 was constructed. This signature 
could predict prognosis independent of clinical factors. A nomogram incorporating the signature and three clini‑
cal features was constructed, and the calibration plot suggested that the nomogram could accurately predict the 
survival rate. According to ssGSEA, the signature was associated with KEGG pathways related to axon guidance, mTOR 
signalling, tight junctions, etc. The proportions of tumor-infiltrating immune cells differed significantly between the 
high-risk group and the low-risk group. The expression levels of ISG20 and SEH1L were lower in tumor tissues than in 
normal tissues. Overexpression of ISG20 or SEH1L suppressed the proliferation, migration and invasion of Caov3 cells 
in vitro and the growth of xenograft tumors in vivo.

Conclusion:  Five glycolysis-related genes were identified and incorporated into a novel risk signature that can effec‑
tively assess the prognosis and guide the treatment of OC patients.
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Background
Ovarian cancer (OC) is the eighth most commonly diag-
nosed gynaecological malignancy in the world and the 
eleventh most lethal gynaecological malignancy in China 
[1, 2]. Although great advancements in its treatments, 
including surgery, immunotherapy, and PARP inhibitors, 
have been achieved, the 5-year overall survival (OS) rate 
of OC is only 45% [3]. Currently, seventy-five percent of 
OC patients are diagnosed at an advanced stage [4]. Early 
assessment, which is of profound significance to improve 
the quality of life and survival rate of OC patients, can 
be achieved by identifying effective biomarkers of poor 
prognosis. Glycolysis is a complicated reaction and is the 
first step in the catabolism of most carbohydrates, the 
process does not use any molecular oxygen and is a major 
metabolic pathway [5]. The reprogramming of metabo-
lism is a key hallmark of cancer, and aerobic glycolysis 
is the main source of energy for cancer cells [6]. Some 
studies found that tumor tissues metabolized over 10 
times more glucose than normal tissues, and lactic acid 
levels increased by 2 times [7, 8]. The dysregulation of 
glycolysis has been demonstrated in a variety of tumors, 
including OC [9–11]. Glycolytic enzymes such as HK2 
and PKM2 are elevated in OC cells and influence tumor 
progression, indicating that they could be potential prog-
nostic markers and therapeutic targets for OC [12, 13]. 
Oncogenes (such as AKT and mTOR) and tumor sup-
pressors (such as p53) participate in anti-apoptotic and 
cell survival mechanisms by regulating these enzymes 
and by regulating the metabolism and growth of cancer 
cells [14, 15]. Zhao et al. proved that OC cell impose glu-
cose restrictions on T cells and suppress their function, 
which could provide a new therapeutic strategy [16]. 
Our study developed a novel gene signature based on the 
expression of glycolysis-related genes to assess patient 
prognosis for OC. Further, we explored the function of 
abnormal expression of those hub genes in OC, which 
could become potential therapeutic targets in the future.

Methods
Data source
Samples from OC patients with complete prognostic data 
were utilized in this study. Clinical information and mRNA 
expression data for 375 OC samples from The Cancer 
Genome Atlas (TCGA) database were downloaded from 
the University of California, Santa Cruz (UCSC) Xena 
Browser (http://​xena.​ucsc.​edu/). Data from 93 tumor sam-
ples were obtained from the International Cancer Genome 

Consortium (ICGC) database (https://​icgcp​ortal.​genom​
ics.​cn/​relea​ses/​curre​nt/​Proje​cts/​OV-​AU). In addition, 
the gene expression profiles for 88 healthy patients were 
collected from the Genotype Tissue Expression (GTEx) 
database. Normalized gene expression was measured as 
fragments per kilobase of transcript per million mapped 
reads (FPKM), and the values were log2-transformed. 
TCGA and GTEx mRNA data were merged into one gene 
expression profile using the comBat algorithm in the “sva” 
R package to eliminate batch effects. The Voom standard-
ized method was employed to normalize the RNA-seq data 
in this study.

Gene set enrichment analysis (GSEA), gene ontology (GO) 
analysis and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis
We searched for the keyword “glycolysis” in Molecular 
Signatures Database (MSigDB) v4.0 (http://​www.​broad​
insti​tute.​org/​gsea/​index.​jsp), and eight glycolysis-related 
gene sets (Additional file  1: Table  S1) were downloaded 
to construct a glycolysis gene expression matrix [17]. The 
“limma” R package was used to identify glycolysis-related 
differentially expressed genes (DEGs) with a false discovery 
rate (FDR) < 0.05 between ovarian tumor tissues and nor-
mal tissues. GSEA was utilized to assess MSigDB-derived 
hallmark gene sets to predict the differentially enriched 
biological processes between normal and OC samples. 
|Normalized enrichment score (NES)|> 1, nominal (NOM) 
p-value < 0.05 and FDR q-value < 0.25 were set as the cut-
offs. GO analysis and KEGG pathway enrichment analysis 
were performed with R software via the “clusterprofiler” 
package.

Identification and validation of a glycolysis‑related gene 
signature
In the TCGA training set, univariate Cox regression analy-
sis was used to identify the DEGs significantly associated 
with OS (P < 0.05). Next, multivariate Cox regression analy-
sis using the “forestplot” R package was performed for fur-
ther screening, and the filtered mRNAs were categorized 
into risk (hazard ratio (HR) > 1) and protective (0 < HR < 1) 
types. Based on the multivariate Cox regression analysis 
results, we developed a prognostic risk score formula. The 
optimal prognostic mRNA expression levels were mul-
tiplied by the relative regression coefficients as follows 
[18–20]:

Risk Score(patient)

=

∑
i Coefficient (mRNAi) × Expression (mRNAi)
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The patients were divided into high-risk and low-risk 
groups based on the best cut-off risk score [21]. The 
Kaplan–Meier survival curves, time-dependent receiver 
operating characteristic (ROC) curve and risk score dis-
tribution for OS prediction were assessed to validate the 
prognostic significance of the risk score.

To further investigate the feasibility of our signature, 
the TCGA training set was randomly divided into two 
internal test sets (TCGA, n1 = 188 and n2 = 187), and 
these datasets and an external test set (ICGC, n3 = 93) 
were applied to validate our signature. Similar to the 
training set approach, survival curves for the low-risk 
and high-risk groups were plotted by the Kaplan–Meier 
method, and risk score distribution was presented with 
the “pheatmap” R package in the three test sets.

Construction of the nomogram
The TCGA training set was used to construct a nomo-
gram for predicting survival outcomes (1-year, 3-year and 
5-year survival) via the “rms” packages in R. Calibration 
plots were drawn to determine the consistency between 
the actual survival rates and the nomogram-predicted 
rates.

Gene set variation analysis (GSVA) and tumor‑infiltrating 
immune cell analysis
To determine the correlation between the risk score and 
biological pathways, we assessed the corresponding gene 
expression profiles of these samples via single-sample 
gene set enrichment analysis (ssGSEA) using the “GSVA” 
R package. An enrichment score corresponding to each 
function was obtained for each sample, and the correla-
tion between these functions and the risk score was fur-
ther calculated.

The RNA-seq data from the TCGA training set were 
used to calculate the abundance of 22 types of infiltrat-
ing immune cells in each sample using the CIBERSORT 
algorithm. Differences in the abundance of immune cells 
between the high risk and low risk groups were explored 
by the “limma” package in R.

Tissue specimens
Fresh OC tissues and adjacent normal tissues were col-
lected from the Chinese Academy of Medical Sciences 
and the CAMS & PUMC Medical College. No patients 
received treatment before surgery, and all patients signed 
informed consent forms provided by the Cancer Hospital, 
CAMS & PUMC. The primary tumor area and morpho-
logically normal surgical margin tissue were immediately 
isolated from each patient by an experienced pathologist 
and stored in liquid nitrogen until use. The study was 
approved by the Ethics Committee of the Cancer Insti-
tute (Hospital), CAMS & PUMC (17-099/1355).

Cell culture
The human OC cell line Cavo3 was provided by the Cell 
Resource Center, IBMS, CAMS/PUMC. The cell lines 
were cultured in DMEM supplemented with 10% foe-
tal bovine serum (Invitrogen, San Diego, CA) at 37  °C 
under 5% CO2 in a humidified incubator.

Transfection and lentiviral transduction
All plasmid constructs generated are described in 
Additional file 1: Table S2. Cells were transfected with 
overexpression plasmid using Lipofectamine 2000 (Inv-
itrogen) following the manufacturer’s protocols. To 
generate the lentivirus, 293FT cells (Invitrogen) were 
co-transfected with psPAX2, pMD2G, pLVX-ISG20-
IRES-Neo or pLVX-SEH1L-IRES-Neo. Forty-eight 
hours after transfection, the lentiviral supernatants 
were collected and filtered through a 0.45-μm filter. 
The lentiviruses were added to media containing 8 µg/
ml polybrene (Sigma, St. Louis, MO, USA) and trans-
duced into Cavo3 cells according to the manufacturer’s 
instructions. Stable cell strains expressing ISG20 or 
SEH1L were selected for at least 1  week using G418 
(0.5 mg/ml, Invitrogen).

Total RNA extraction and quantitative real‑time PCR
RNA extraction and quantitative real-time PCR (qRT-
PCR) analysis were performed as described previously 
[22]. The primer sequences are shown in Additional 
file 1: Table S3. GAPDH served as an internal control.

Western blotting and immunohistochemistry analysis
Western blotting and immunohistochemistry (IHC) 
methods were performed as described previously [22]. 
The IHC quantitation analysis was calculated by ImageJ 
software and statistically analyzed in three random fields. 
The antibodies used were as follows: anti-ISG20 anti-
body (Proteintech, Wuhan, China), anti-SEH1L antibody 
(Sigma, St. Louis, MO, USA), and anti-ERK1/2 antibody 
(Cell Signaling Technology, Danvers, MA, USA).

Cell viability assays
Cells were seeded into 96-well plates at a concentration 
of 2000 cells per well. Cell viability was detected by Cell 
Counting Kit-8 assay (CCK-8, Dojindo, Japan) accord-
ing to the manufacturer’s protocol. The absorbance at 
450  nm was measured using an automatic microplate 
reader (BioTek, Winooski, VT, USA). Measurements 
were taken every 24 h for 7 consecutive days.

Cell migration and invasion assays
For the migration assay, 700 μl DMEM with 20% serum 
was added to the lower chamber of a Transwell plate 
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(Corning, NY, USA), and 1.5 × 105 cells were added to 
200 μl serum-free DMEM in the upper chamber. After 
incubation for 24 h at 37 °C, the Transwell chamber was 
removed, cleaned once with PBS, and fixed solution 
(methanol: acetone = 1:1) was fixed for 30  min, then 
stained with 0.5% crystal violet for 30 min. The cham-
ber was rinsed with PBS, and the cells on the upper side 
of the filter were carefully wiped away. The relative cell 
density was measured by ImageJ: saved the results of 
the migration and invasion experiments at × 50 mag-
nification in PNG format, eliminated the influence of 
background with ImageJ and randomly selected four 
fields to get the mean gray value, used the mean gray 
value to assess Transwell assay. The data were presented 
as the mean ± SD from three separate experiments. For 
the invasion assay, the procedure was similar to the 
migration assay, except the Transwell membrane was 
coated with 300  ng/ml Matrigel (BD Biosciences, San 
Jose, CA, USA) and the added cells were incubated for 
36 h.

Xenograft model tumor assay
The animal experiments were approved by the Ani-
mal Center of the Institute of National Cancer Center/
Cancer Hospital, CAMS & PUMC (NCC2021A002), 

and followed the National Institutes of Health guide 
for the care and use of Laboratory animals. Four-week-
old female nude mice (BALB/c-nu, HFK Bioscience, 
Beijing, China) were subcutaneously injected with 
3 × 106 Caov3 cells stably expressing pLVX-ISG20-
IRES-Neo, pLVX-SEH1L-IRES-Neo or empty vector. 
The tumor size was measured every 5 days. The tumor 
volume (V) was calculated with the following formula: 
V = 0.524 × L × W2, where L is the length and W is 
the width of the tumor. At the end of the experiment 
(after 3 weeks), the mice were euthanized by an intra-
peritoneal injection of 100 mg/kg pentobarbital sodium 
(Sigma, St. Louis, MO, USA), and the xenograft tumors 
were resected and weighed.

Statistical analysis
All statistical analyses were performed with R software 
3.5.3 and SPSS 22.0 software (SPSS Inc. Chicago, IL, 
USA). Statistical significance was established at a prob-
ability value of P < 0.05. The difference in OS between 
groups was assessed by Kaplan–Meier analysis with the 
log-rank test. Student’s t-test was used to determine 
the significance of differences between two groups, and 
ANOVA was used for comparisons between more than 
two groups.

Fig. 1  Flow chart for the research
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Results
Identification and enrichment analysis of glycolysis‑related 
DEGs
To describe our research more clearly, we created a flow 
chart (Fig. 1). Clinical and transcriptome data from 375 
patients who provided tumor tissues were downloaded 
from TCGA database, and the data for 88 normal tis-
sues were obtained from the GTEx database. To identify 
whether eight glycolysis-related gene sets showed signifi-
cant differences between normal and ovarian tumor tis-
sues, GSEA was conducted; the results revealed that the 
BIOCARTA_GLYCOLYSIS_PATHWAY (NES = 1.53, 
NOM p-value = 0.002 and FDR q-value = 0.001) 
and HALLMARK_GLYCOLYSIS (NES = 1.8, NOM 
p-value = 0.0024 and FDR q-value = 0.004) gene sets were 
significantly differently enriched between the two groups 
(Fig. 2a), suggesting that glycolysis plays an essential role 
in OC.

A total of 268 glycolysis-related DEGs, consisting of 
149 upregulated and 119 downregulated genes, were 
observed between tumor tissues and normal tissues. A 
heat map of representative DEGs is shown in Fig.  2b. 
Moreover, we performed GO analysis and KEGG path-
way enrichment analysis to verify whether the DEGs 
are involved in glycolysis. The results showed that the 
enriched biological process (BP) term was related to 
the glycolytic process, the enriched molecular function 
(MF) term was related to glucose binding (Fig. 2c), and 
the enriched KEGG pathways were related to glyco-
lysis/gluconeogenesis and amino sugar and nucleotide 
sugar metabolism (Fig.  2d), which demonstrated that 
these DEGs are indeed related to glycolysis.

Fig. 2  Identification of glycolysis-related DEGs in the TCGA training set and functional analysis of DEGs. a GSEA of two gene sets that were 
significantly differentially enriched between normal and tumor tissues. b Heat map of representative DEGs. The colours in the heat map represent 
the expression levels (blue to red represents the spectrum from low to high. c The results of GO enrichment analysis are shown in a bubble chart: 
molecular function (MF), biological process (BP), and cellular component (CC). d KEGG enrichment analysis of DEGs
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Construction and validation of a risk signature with five 
glycolysis‑related genes
Next, we performed univariate and multivariate Cox 
regression analyses between the 268 candidate genes 
above and the survival data. A forest plot of HRs showed 
that ANGPTL4, PYGB and IRS2 were risk factors 
(HR > 1), and ISG20 and SEH1L were protective factors 
(HR < 1) for OS (Fig. 3a and b). The survival analyses of 
the five genes are presented in Additional file 1: Fig. S1a–
e. Ultimately, five glycolysis-related genes, ANGPTL4, 
PYGB, IRS2, ISG20 and SEH1L, were selected to estab-
lish a gene signature.

We searched the cBioPortal website for alterations in 
the above five gene. Additional file  1: Fig. S2a indicates 
that the five genes were altered in 51 (12.81%) of the 398 
patients; ANGPTL4 and PYGB showed the most diverse 
alterations, including amplification and missense muta-
tions (Additional file  1: Fig. S2b). The expression levels 
of ANGPTL4, PYGB and IRS2 were upregulated and 
those of ISG20 and SEH1L were downregulated in ovar-
ian tumor tissues compared with normal tissues (Fig. 3c). 
The correlation analysis showed that the absolute value of 
the R values was less than 0.3, indicating that these five 
genes are independent of each other (Fig. 3d).

Fig. 3  Construction and validation of the risk signature in the TCGA training set. a, b Five glycolysis-related genes (ANGPTL4, PYGB, IRS2, ISG20 and 
SEH1L) were selected to construct a risk signature according to univariate Cox regression analysis (a) and multivariate Cox regression analysis (b). c 
Differential mRNA level between ovarian tumor tissues and normal tissues in TCGA training set. *P < 0.05; **P < 0.01; ***P < 0.001. d The correlations 
between the mRNA levels of the five genes. e PCA based on mRNA data between the low-risk (n = 187) and high-risk groups (n = 188). f The 
Kaplan–Meier survival curves of the low-risk group and the high-risk group were distinct, indicating the prognostic value of the risk signature. g ROC 
curves were used to assess the efficiency of the risk signature for predicting 5-, 7- and 9-year survival. h The risk score distribution, the expression 
profiles of the five genes and the survival status of patients
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The risk score was calculated as fol-
lows: risk score = (0.1500 × mRNA level 
of ANGPTL4) + (0.3194 × mRNA level 
of PYGB) + (− 0.2542 × mRNA level of 
ISG20) + (− 0.2911 × mRNA level of 
SEH1L) + (0.1492 × mRNA level of IRS2). The patients 
were stratified into high-risk and low-risk groups accord-
ing to the best cut-off value of the risk score. Principal 
component analysis (PCA) based on genome expres-
sion data confirmed the significant distribution differ-
ence between the two risk groups (Fig.  3e). In addition, 
patients with a high risk score presented significantly 
worse OS than those with a low risk score (Fig.  3f, 
P < 0.001). To investigate the diagnostic accuracy of the 
glycolysis-related risk signature, the areas under the 
time-dependent ROC curves (AUCs) were computed. 
The AUCs of the risk signature for predicting 5-, 7- and 
9-year survival were 0.680, 0.706 and 0.793, respectively 
(Fig.  3g). These results demonstrate that the risk score 
can effectively predict patient survival rates. Conse-
quently, as the risk score increased, the expression lev-
els of ANGPTL4, PYGB and IRS2 were upregulated, the 
expression levels of ISG20 and SEH1L were downregu-
lated, and the mortality rate tended to increase (Fig. 3h).

Internal and external validation of the risk signature
To determine the authenticity of the above prognostic 
model, a total of 375 OC patients were randomly divided 
into two internal test sets based on the TCGA training 
set. In the first internal cohort, samples were divided into 
a low-risk group (n = 94) and a high-risk group (n = 94). 
The Kaplan–Meier survival curves suggested that 
patients with higher risk scores had poorer prognoses 
than those with lower risk scores (Additional file 1: Fig. 
S3a). As the risk score increased, the expression levels 
of ANGPTL4, PYGB and IRS2 increased, the expression 
levels of ISG20 and SEH1L decreased, and the propor-
tion of patients who died markedly increased in the first 
internal cohort (Additional file  1: Fig. S3b). The same 
conclusions were reached in the second internal cohort 
(Additional file 1: Fig. S3c and d).

For the external test set, data from 93 OC samples were 
collected from the ICGC database, and we further evalu-
ated the performance of the risk signature. The Kaplan–
Meier survival curves showed that patients with a higher 
risk score had a poorer prognosis (Fig. 4a, P < 0.05). In the 
ICGC test set, as the risk score increased, the expression 
levels of ANGPTL4, PYGB and IRS2 were upregulated, 
the expression levels of ISG20 and SEH1L were downreg-
ulated, and the number of surviving patients decreased 
(Fig.  4b). These findings in the ICGC external test set 
and two internal test sets, which were from different data 

sources, indicate that the risk signature performs well in 
predicting the survival of OC patients.

Assessment of the OS of high‑risk and low‑risk OC patients 
in different subgroups
We performed Kaplan–Meier survival analysis accord-
ing to age, tumor number, tumor status, tumor grade 
and tumor stage in the TCGA training set. Patients were 
stratified into the age > 60 or <  = 60 subgroup, tumor 
number > 20 or <  = 20 subgroup, tumor-free or tumor 
subgroup, grade 1–2 or grade 3 subgroup, and stage I–II 
or stage III–IV subgroup. The OS of patients in the high-
risk group was significantly shorter than that of patients 
in the low-risk group in the age > 60 subgroup (Addi-
tional file 1: Fig. S4a, P < 0.01), which was consistent with 
the results in the age <  = 60 subgroup (Additional file 1: 
Fig. S4b, P < 0.001), tumor number > 20 subgroup (Addi-
tional file  1: Fig.  S4c, P < 0.05), tumor number <  = 20 
subgroup (Additional file  1: Fig.  S4d, P < 0.001), tumor-
free subgroup (Additional file 1: Fig. S4e, P < 0.05), with-
tumor subgroup (Additional file  1: Fig.  4  Sf, P < 0.01), 
grade 3 subgroup (Additional file  1: Fig.  S4h, P < 0.001) 
and stage III-IV subgroup (Additional file  1: Fig. S4j, 
P < 0.001). The above findings further showed that our 
risk signature still has good predictive ability in different 
clinical subgroups.

Construction of a nomogram for predicting the 1‑, 3‑ 
and 5‑year survival
To assess the independent prognostic value of the risk 
signature, univariate and multivariate Cox regression 
analyses, including age, stage, grade, tumor number and 
risk score, were performed in the training set (Fig. 5a and 
b). The results indicated that the risk score was an inde-
pendent prognostic factor for OS.

Nomograms can be used to apply risk signatures 
intuitively and effectively and can be conveniently 
used to predict outcomes. Age, stage, tumor status and 
risk score were incorporated into a nomogram. The 
nomogram predictions for 1-, 3- and 5-year OS are 
presented in Fig.  5c. As shown in Fig.  5d–f, the cali-
bration curves for the nomogram for 1-, 3- and 5-year 
survival were almost identical to the standard curve. 
These results indicate that our nomogram demon-
strates fair accuracy for predicting the survival rates of 
OC patients.

GSVA and immune infiltration analysis of the risk signature 
between low‑ and high‑risk group
In order to explore the relationship between the risk 
score and biological function in different samples, we 
performed ssGSEA using the “GSVA” R package. Enrich-
ment analysis of risk score groups revealed the top 10 
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Fig. 4  External validation of the risk signature in the ICGC external test set. a Kaplan–Meier survival curves showed the prognostic value of the risk 
signature in the ICGC external test set (n3 = 93). b The risk score distribution (When the risk score of the high-risk group was above 10 points, it was 
recorded as 10, which was convenient for visual display and did not affect the results), the expression profiles of the five genes and the survival 
status of patients
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KEGG pathways closely related to the risk score (Fig. 6a). 
KEGG_AXON_GUIDANCE, KEGG_MTOR_SIGNAL-
ING_PATHWAY, KEGG_TIGHT_ JUNCTION, KEGG_
ADHERENS_JUNCTION, KEGG_FOCAL_ADHESION, 
KEGG_ NOTCH_SIGNALING_PATHWAY, and 
KEGG_ECM_RECEPTOR_INTERACTION were posi-
tively correlated with the risk score. KEGG_PROTEA-
SOME, KEGG_PYRIMIDINE_ METABOLISM and 

KEGG_FOLATE_BIOSYNTHSIS were negatively corre-
lated with the risk score (Fig. 6b).

The mRNA data from the training set were used to 
determine the infiltration levels of 22 major immune 
cell types in each sample via the CIBERSORT algorithm 
(Fig.  6c). As shown in Fig.  6d, the proportions of some 
infiltrating immune cells were significantly different 
between the high-risk and low-risk groups. Among them, 
the infiltration levels of resting memory CD4+ T cells, 

Fig. 5  Construction of a nomogram for predicting the 1-, 3- and 5-year survival of OC patients. a, b Univariate Cox regression analysis (a) and 
multivariate Cox regression analysis (b) were applied to evaluate the contribution of each variable to OC survival. c A nomogram for predicting the 
1-, 3- and 5-year survival rates of OC patients was established. d–f Calibration curves showed the actual rate versus predicted probability of 1- (d), 
3- (e) and 5-year (f) survival
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gamma delta T cells and activated mast cells were signifi-
cantly higher in the high-risk group than in the low-risk 
group. In contrast, the infiltration levels of CD8+ T cells, 
memory activated CD4+ T cells, follicular helper T cells, 
M1 macrophages and activated dendritic cells were sig-
nificantly higher in the low-risk group.

Expression and function analysis of unreported signature 
genes ISG20 and SEH1L in OC
ANGPTL4, PYGB and IRS2 have been reported to be 
upregulated in OC, and this dysregulation promotes OC 
cell proliferation, invasion, migration and drug resist-
ance [23–26]. However, the expression and function of 
ISG20 and SEH1L in OC have not yet been reported. 
We applied immunohistochemistry, western blotting 
and qRT-PCR to detect the differences in the expression 
of ISG20 and SEH1L between paired tumor tissues and 
adjacent non-tumor tissues. The protein (Fig. 7a, and b) 
and mRNA (Fig. 7c) levels of both factors were lower in 
tumor tissues than in normal tissues.

To clarify the functional role of ISG20 and SEH1L in 
OC cells, overexpression plasmids were constructed and 
applied to increase their expression levels (Fig. 7d). The 
CCK-8 assay was applied to detect cell proliferation. The 
overexpression of ISG20 or SEH1L significantly inhibited 
the proliferation of Caov3 cells (Fig. 7e). Transwell assays 
were applied to detect the invasion and migration abil-
ity of Caov3 cells in  vitro, and the number of cells that 
passed through the polycarbonate membrane was smaller 
in the ISG20- or SEH1L-overexpressing group than in 
the control group, indicating that ISG20 or SEH1L over-
expression could significantly inhibit the invasion and 
migration of Caov3 cells (Fig. 7f ).

In addition, nude mice bearing xenograft tumors were 
divided into the pLVX-ISG20-IRES-Neo, pLVX-SEH1L-
IRES-Neo and pLVX-IRES-Neo groups. Stable overex-
pression of ISG20 or SEH1L by pLVX-ISG20-IRES-Neo 
or pLVX-SEH1L-IRES-Neo in Caov3 cells reduced tumor 
growth. The changes in tumor volume and weight in the 
nude mice are shown in Fig. 7g–i. The results indicated 

Fig. 6  GSVA and immune infiltration analysis of the risk signature between low- and high-risk group. a GSVA revealed KEGG pathways associated 
with the risk signature. b The top 10 risk signature-related KEGG pathways. c Infiltration abundance of 22 immune cells in each sample; samples 
were sorted by risk score from left (lowest) to right (highest). d The differences in the infiltration level of 22 immune cells between the low-risk and 
high-risk groups. The green line is the low-risk group, and the red line represents the high-risk group
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that ISG20 or SEH1L could significantly inhibit tumori-
genicity in vivo.

Discussion
In recent years, research on malignant tumors and 
energy metabolism has attracted considerable attention. 
The Warburg effect is illustrated by the metabolic path-
way shift from mitochondrial oxidative phosphoryla-
tion to glycolysis in tumor cells [27]. Although glycolysis 
produces ATP less efficiently than aerobic respiration, it 
satisfies the need for tumor cell proliferation by increas-
ing NADPH synthesis and protects cells from oxidative 
stress [28]. Despite notable advances in the study of can-
cer and glycolysis, research on cancer markers associated 
with glycolysis is limited. In this study, we identified a 

glycolysis-related gene signature for predicting the prog-
nosis of OC patients.

Despite significant advances in treatment, the OS rate 
for OC remains poor. There is evidence that clinico-
pathological parameters (such as tumor-node-metastasis 
(TNM) stage) are insufficient for accurately predicting 
patient prognosis [29]. Therefore, a large number of mol-
ecules have been examined and identified as biomark-
ers related to the development and prognosis of cancer. 
For example, CA125 has been the most widely used bio-
marker in gynaecological malignancy in the past 20 years, 
and the detection of mutations in BRCA1 and BRCA2 
genes has been widely used in the clinical screening of 
OC [30, 31]. However, these biomarkers cannot inde-
pendently predict patient survival. Here, we constructed 

Fig. 7  Expression and function analysis of unreported signature genes ISG20 and SEH1L in OC. a, b Immunohistochemistry (a) and western 
blotting (b) analysis of ISG20 and SEH1L protein levels in paired tumor tissues and adjacent normal tissues. Scale bar = 50 μm. c qRT-PCR analysis 
of ISG20 and SEH1L mRNA levels in paired tumor tissues and adjacent normal tissues. *P < 0.05. d Western blotting analysis of ISG20 or SEH1L 
expression in Caov3 cells transfected with pLVX-ISG20-IRES-Neo, pLVX-SEH1L-IRES-Neo or empty vector. e Cell proliferation was detected by the 
CCK-8 assay. **P < 0.01; ***P < 0.001. f Cell migration and invasion were evaluated by Transwell assays. g Tumor growth curve. h. Xenograft tumors. 
Scale bar = 1 cm. i The weights of xenograft tumors. **P < 0.01; ***P < 0.001
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a gene signature that integrated the prognostic effects of 
five glycolysis-related genes, and this signature was supe-
rior to a single biomarker in predicting disease prognosis.

Consistent with other studies [23–26], we observed 
that ANGPTL4, PYGB and IRS2 were highly expressed in 
ovarian tumor tissues and patients with high expression 
of ANGPTL4, PYGB or IRS2 had significantly lower OS 
rates than patients with low expression of these factors. 
ANGPTL4, a secreted glycoprotein in the angiopoietin-
like protein family, is involved in glucose and lipid metab-
olism and also plays an essential role in the prevention of 
apoptosis, induction of angiogenesis, inhibition of angio-
genesis and facilitation of metastasis [23, 32, 33]. It was 
reported that deregulation of ANGPTL4 slows OC pro-
gression through VEGFR2 phosphorylation [26]. Besides, 
Yang et  al. found that the TAZ-ANGPTL4-NOX2 axis 
regulates ferroptosis and chemotherapy resistance in OC 
[34]. PYGB is a rate-limiting enzyme in the process of 
glycogen metabolism that provides energy. Multiple stud-
ies have revealed that PYGB is highly expressed in vari-
ous cancers, including lung cancer, prostate cancer and 
breast cancer [35–37], and PYGB has also been investi-
gated as a diagnostic molecular marker in gastric cancer 
[38]. Zhang et al. [39] found that PYGB is upregulated in 
OC tissue and that overexpression of PYGB is related to 
a poor prognosis in OC patients. Mechanistically, PYGB 
promotes OC cell proliferation, invasion and migra-
tion via the Wnt/β-catenin signalling pathway [24]. IRS2 
plays a critical role in the regulation of the physiological 
effect of insulin through its specific receptor. Moreover, 
in terms of the metabolic effect of insulin, high IRS2 
expression can promote the reuptake and full utilization 
of glucose by cells, thus enhancing insulin sensitivity. A 
previous study indicated that IRS2 is upregulated and 
activated by the PI3K/AKT pathway to induce the growth 
and suppress the apoptosis of OC cells [25].

Consistent with the database results, our experiments 
confirmed that ISG20 and SEH1L are expressed at low 
levels in tumor tissues and that both of these genes can 
inhibit the proliferation, invasion, and migration of OS 
cells. ISG20, a 3′–5′ exonuclease, has been reported to 
inhibit the replication of some viruses, including hepa-
titis B virus (HBV), hepatitis C virus (HCV) and human 
immunodeficiency virus (HIV) [40–42]. Lin et  al. [43] 
found that the overexpression of ISG20 in hepatocellular 
carcinoma specimens was positively correlated with clin-
ical parameters such as vascular infiltration and tumor 
size. Moreover, the SEH1L gene encodes part of the 
NUP107-160 nuclear pore complex, which is involved in 
mitosis. SEH1L is associated with nail diseases and non-
syndromic congenital diseases [44, 45]. Thus far, no study 
has clarified the mechanisms of ISG20 and SEH1L in OC, 

so we will design a series of in vivo and in vitro experi-
ments to address this in the future.

In this study, we conducted a comprehensive analy-
sis and constructed a novel gene signature to predict 
the prognosis of OC patients. The risk signature, based 
on the expression levels of five-related glycolysis genes, 
is more economical and clinically feasible than whole-
genome sequencing. Nomograms that integrate gene 
signatures with clinicopathological parameters enable 
clinicians to more accurately analyse the prognosis of 
each patient. However, this study also presents several 
limitations. First, the gene signature needs to be validated 
further in multi-centre trials and larger patient cohorts 
because we developed and verified this signature using 
data from a single centre. Second, BRCA1/2 mutations 
are important in OC, so we should have factored this into 
our analyses; we might identify a separate gene signature 
for patients with BRCA1/2 mutations in the next step.

Conclusions
Our study identified a novel glycolysis-related signa-
ture and established a feasible nomogram model for 
OS prediction in OC patients that could be applied to 
guide individualized prognosis evaluation. These signa-
ture hub genes in the glycolysis pathway, such as ISG20 
and SEH1L, could serve as new treatment targets in the 
future.
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