Skip to main content
. 2021 Jul 6;150:111400. doi: 10.1016/j.rser.2021.111400

Table 5.

Estimated energy consumption for RNA-type vaccines – Example scenarios of the Czech Republic.

Stages Conversion factor (as summarised in Fig. 8) Estimated energy consumption (for 709,750 doses)
Type of Vaccine (RNA)
1st batch = 9,750 doses [111]
2nd batch = 700,000 doses [112]
Production and manufacturing
Material production and extraction
  • Glass Vials

  • Syringe

  • 0.014 kWh/vials or power and 0.243 MJ/vials of natural gas [90] (1 vial equivalent to 5 doses [113])

Other Assumptions:
  • Glass vials only, low dead volume syringes etc. not accounted

  • Fuel consumption in transporting the materials is not accounted

  • Based on Belboom et al. [90] where the improvement in energy efficiency is not accounted

  • 2.98 × 10−5 kWh/pcs syringe

Other Assumptions:
  • Electricity consumption = 1,785.7 kWh (Estimated based on [114] for 60 M pcs, conversion = 5.6 R/kWh [115])

  • 1.99 × 103 kWh of power (~7.1 × 103 MJ) for vials

  • 3.45 × 104 MJ natural gas for vials

  • 21.2 kWh of power (76.1 MJ) for the syringe

  • Sum = ~4.2 × 104 MJ

Vaccine manufacturing
  • 3.34 kWh of power/g of vaccine [92]) (1 dose = 100 μg of mRNA [93])

Other Assumptions:
  • Based on the study by Kis [92]

  • 2.37 × 102 kWh of power (~8.53 × 102 MJ)

Cold Supply Chain (energy consumption embedded by packaging is excluded)
Sum for “from Kalamazoo” = ~6.0 × 106 MJ
Sum for “from Karlsruhe (air cargo)” = 4.9 × 105 MJ
Sum for “from Karlsruhe (road transport)” = 1.5 × 104 MJ
Sum for “from Puurs (air cargo)” = 7.6 × 105 MJ
Sum for “from Puurs (road transport)” = 2.5 × 104 MJ
Dry ice during transportation
  • 0.14 kWh/kg dry ice [102] (1 dose required 0.00466 kg dried ice [107])

  • 4.62 × 102 kWh of power (~1.6 × 103 MJ)

Fuel consumption (Air Cargo)
  • 11.96 L/km (see Fig. 8, and in-text discussion)

Other Assumptions (Kalamazoo Scenario):
  • Distribute from Kalamazoo sites [116] to Prague and Brno

  • Kalamazoo to Prague = 7,123 km

  • Prague to Brno = 203 km

  • Energy density 34.2 MJ/L

  • Deliver in two batches

Other Assumptions (Kalamazoo Scenario):
  • Karlsruhe site [116] to Prague and Brno

  • Karlsruhe to Prague = 398 km

  • Prague to Brno = 203 km

  • Energy density 34.2 MJ/L

  • Deliver in two batches

Other Assumptions (Puurs Scenario):
  • Puurs site [116] to Prague and Brno

  • Puurs to Prague = 724 km

  • Prague to Brno = 203 km

  • Energy density 34.2 MJ/L

  • Deliver in two batches

  • ~6 × 106 MJ (from Kalamazoo)

  • ~4.9 × 105 MJ (from Karlsruhe)

  • ~7.58 × 105 MJ (from Puurs)

Fuel consumption (Refrigerated Lorry)
  • 5 L/h for refrigeration (see Fig. 8)

  • 0.3 L/km engine consumption (see Fig. 8)

Other Assumptions [111]:
  • From Prague airport to The Military University Hospital Prague, General University Hospital Prague and Na Bulovce Hospital (26 km) – 1.45 h (include 15 min unloading)

  • From Brno airport to University Hospital Brno and FNUSA Hospital Brno (21 km) – 1 h including unloading

  • Distribute among hospitals

  • Energy density 34.2 MJ/L

  • Deliver in two batches

Karlsruhe Scenarios (without air cargo)
  • Karlsruhe to Prague = 520 km (by road transport without air cargo, 5 h)

  • Deliver in two batches

  • Puurs Scenarios (without air cargo)

  • Puurs to Prague = 900 km (by road transport without air cargo, 9 h)

  • Deliver in two batches

  • Distribute in Prague = ~1136 MJ

  • Distribute in Brnõ 785 MJ

  • Additional

~1.2 × 104 MJ (if from Karlsruhe to Prague without air cargo)
  • Additional

~2.15 × 104 MJ (if from Puurs to Prague without air cargo)
End of the life cycle
Waste management
  • Incineration is among the standard method.

  • Considerate energy is consumed if autoclaving, chemical disinfection, microwave/radio-wave treatment and crushing/shredding are implemented

  • The energy consumption of transporting depends on the distance and frequency

  • ~41.3 MJ/kg can be recovered from plastic medical waste. See Fig. 8 for more information