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Abstract

Integrative network modeling of data arising from multiple genomic platforms provides insight 

into the holistic picture of the interactive system, as well as the flow of information across many 

disease domains including cancer. The basic data structure consists of a sequence of hierarchically 

ordered datasets for each individual subject, which facilitates integration of diverse inputs, such as 

genomic, transcriptomic, and proteomic data. A primary analytical task in such contexts is to 

model the layered architecture of networks where the vertices can be naturally partitioned into 

ordered layers, dictated by multiple platforms, and exhibit both undirected and directed 

relationships. We propose a multi-layered Gaussian graphical model (mlGGM) to investigate 

conditional independence structures in such multi-level genomic networks in human cancers. We 

implement a Bayesian node-wise selection (BANS) approach based on variable selection 

techniques that coherently accounts for the multiple types of dependencies in mlGGM; this 

flexible strategy exploits edge-specific prior knowledge and selects sparse and interpretable 

models. Through simulated data generated under various scenarios, we demonstrate that BANS 

outperforms other existing multivariate regression-based methodologies. Our integrative genomic 

network analysis for key signaling pathways across multiple cancer types highlights 

commonalities and differences of p53 integrative networks and epigenetic effects of BRCA2 on 

p53 and its interaction with T68 phosphorylated CHK2, that may have translational utilities of 

finding biomarkers and therapeutic targets.
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1 Introduction

Cancer is a complex disease that is caused by deregulation of several molecular processes 

and cellular pathways, usually triggered by genetic alterations in specific sets of genes 

(Hanahan and Weinberg, 2000, 2011; Creixell et al., 2012). Pathway and network analysis 

aim to gain insight into these underlying interactive mechanisms, and to reduce data 
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involving thousands of altered genes and proteins to a smaller, and more interpretable set of 

functionally altered processes (Pe’er and Hacohen, 2011). The Cancer Genome Atlas 

(TCGA) has generated a rich source of multi-dimensional genomics (’omics for short) data 

for patients across multiple tumor types and their subtypes (http://cancergenome.nih.gov). 

More recently, The Cancer Proteome Atlas (TCPA) (http://bioinformatics.mdanderson.org/

main/TCPA:Overview) has generated a complementary set of reverse phase protein array 

(RPPA)-based proteomic data across most of these patients’ samples, covering major 

oncogenic signaling pathways (Li et al., 2013; Akbani et al., 2014). Multi-level integration 

and processing of network information across these modalities is emerging, based on the 

principle that any biological mechanism is a systematic conflation of multiple molecular 

events and their interactions (Kristensen et al., 2014).

The basic data structure constitutes of a finite sequence of hierarchically-ordered datasets for 

each individual subject, which facilitates integration of diverse inputs such as genomic, 

transcriptomic, and proteomic data to investigate the unified regulatory mechanisms 

underlying the biology of various cancers. Figure 1 shows a conceptual data structure that 

allows for the characterization of dependencies within and between the datasets from the 

ordered layers. Two types of edges characterize the network structure: undirected edges 

within each layer, and directed edges to distinguish variables in a layer from variables in all 

the previous layers. Most integrative analyses rely on directed relationships between 

different data platforms based on the biological mechanisms (Wang et al., 2013), and the 

variables observed from each platform constitute a layer. For example, following the central 

dogma of biology, the first layer could constitute DNA-level data (copy number, 

methylation), the second layer the transcriptomic (mRNA expression), and the third layer 

proteomic data. In this context, the directed edges capture cross-platform (e.g., 

transcriptional, translational) dependencies, and the undirected edges capture the within-

platform dependencies.

Modeling each of the layers independently does not account for the hierarchical multi-

layered structure of the data, and can only provide information on how networks operate at a 

static point in time or under a static condition. A critical next step is to understand a holistic 

and dynamic picture of the interactive system and the information flow, which can only be 

achieved by simultaneously modeling multiple layers of data. Our objective is to investigate 

the conditional dependencies among the variables from multiple layers, while accounting for 

the order defined by the underlying layered structure of the data. Statistically, this translates 

to a structural estimation of graphs with a mixture of directed and undirected edges. This 

objective poses significant methodological and computational challenges, however, to 

building a single graphical model that includes hierarchical multiple graphs with directed 

edges for dependencies, constrained by orders between layers, as well as with undirected 

edges for unconstrained dependencies within layers.

Chain graphs have been used to model the layered architecture of networks, where the 

vertices can be naturally partitioned into ordered sets that exhibit undirected and directed 

acyclic relations within and between the sets. The conditional independencies that 

correspond to missing edges (i.e., Markov properties in the chain graphs) have been studied 

by Lauritzen and Wermuth (1989); Frydenberg (1990); Andersson et al. (2001). Drton and 
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Eichler (2006) introduced a point-estimation approach to maximum likelihood estimation 

given the graph structure, and Drton and Perlman (2008) proposed a constraint-based 

method to estimate the structure. However, all of the above-mentioned methods for chain 

graphs are restricted to low-dimensional data with sample sizes larger than the number of 

vertices.

In its simplest form (two layers), a chain graph is equivalent to a multiple multivariate 

regression model. Multiple predictors affect multiple responses that exhibit a correlation 

structure, and both regression coefficients (for directed edges) and the error precision matrix 

(for undirected edges) are assumed to be typically sparse. Approaches based on the doubly-

penalized joint likelihood have been proposed by Rothman et al. (2010); Yin and Li (2011). 

A joint L1 penalty was imposed on both the regression coefficients and the precision matrix, 

resulting in a penalized likelihood that is bi-convex (but not convex), which implies that the 

optimization algorithm may be unstable and fail to converge (Lee and Liu, 2012). Cai et al. 

(2012); Chen et al. (2016) proposed a two-step approach, in which only regression 

coefficients are estimated in the first step, and then the error inverse covariance matrix is 

obtained in the second step, given the estimated regression parameters. To select good initial 

parameters for this bi-convex problem, Lin et al. (2016) proposed an L1 penalized maximum 

likelihood estimation with prescreening of variables, and extended this methodology to 

multi-layered graphs with an arbitrary number of layers. In a Bayesian framework, Bhadra 

and Mallick (2013); Consonni et al. (2017) proposed a Bayesian model based on the hyper-

inverse Wishart prior on the covariance matrix, which assumes that the UGs within each 

layer are decomposable. The decomposability assumption is generally restrictive, explores a 

smaller model space, and potentially provides misspecification of the structure for networks 

in many real applications.

In this article, we propose a novel approach for a multi-layered Gaussian graphical model 

(mlGGM) that accommodates data from an arbitrary number of layers. The mlGGM is a 

special case of the chain graph model, where the random variables that correspond to the 

vertices are assumed to follow a multivariate Gaussian distribution, and the zero structures 

of the mean parameter and the precision parameter directly link to the absence of the 

directed and undirected edges, respectively. We construct a regression-based formulation 

that converts the mlGGM into a more tractable node-wise multiple regression model. We 

generalize the node-wise multiple regression approach that coherently accounts for 

conditional independencies in mlGGMs. We jointly select both undirected and directed 

edges that point to a vertex via Bayesian variable selection priors for each of the regressions, 

allowing for a much larger graph space than that of decomposable graphs. Moreover, the 

prior formulation allows for the incorporation of relevant prior knowledge through the edge-

specific informative prior, and provides a computationally more efficient procedure to 

estimate mlGGMs.

Through simulation studies under various settings of the mlGGMs, we demonstrate the 

utility of our node-wise regression framework in the structural recovery of the mlGGM, and 

compare its performance to those of related multivariate regression-based methods. We also 

numerically evaluate sign consistency (i.e., whether our univariate regression-based 

formulation correctly finds the signs of the undirected and directed dependencies when we 
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have the known structure). We illustrate the applicability and versatility of mlGGMs to infer 

integrated genomic networks for multi-omic data, using biological hierarchies among the 

platforms across multiple cancers. The signed topological structure obtained from our 

method allows for more refined inference of both cross- and within-platform dependencies, 

including the inhibition/activation between platforms and positive/negative correlations 

within platforms. Furthermore, we investigate the commonalities and differences in their 

multi-layered network structures across cancer types, and show translational utilities of these 

integrative networks.

The rest of this article is organized as follows. Section 2 provides data structure and 

backgrounds on mlGGMs. Section 3 presents the joint model and the corresponding prior 

construction. We introduce our Bayesian node-wise selection (BANS) framework in Section 

4. We discuss posterior inference on graphical structure estimation in Section 5. Simulation 

studies are carried out in Section 6. We demonstrate the utility of our method in multi-

layered genomic network studies across cancer types in Section 7. Section 8 concludes the 

article.

2 Background

2.1 Data structure

We consider a graphical model over p biological units across multi-omic data, Y = (Y1,

…,Yp)T ∈ℝ p. Here p could constitute different platform-specific observations (e.g., genes, 

proteins, etc.), but for ease of conceptual and technical exposition, we use genes throughout. 

A graph of Y can be denoted by G = (V,E), where V = {1,…, p} includes all genes across 

platforms, and E may contain both directed (→) and undirected edges (–) between the 

genes. We assume to know a priori that a partitioning T = {τk ∣1 ≤ k ≤ q}, q ≤ p, is a family 

of pairwise disjoint ordered layers of p genes. The ordered partitioning T implies that any 

edges between the layers are directed. In other words, each layer Tk constitutes genes from a 

platform, and the layers are ordered according to a biological hierarchy. Formally, the 

partitioning T is called a dependence chain if k < l ⇒ v ½ u∀u ∈ τk, v ∈ τl. In other words, 

when k < l, any edges between Tk and Tl point from a vertex in Tk to a vertex in Tl. For each v 
∈ V , let 1 ≤ t(v) ≤ q be the index, such that v ∈ τt(v). We assume without loss of generality 

that the vertices are labeled, such that, t(u) < t(v) ⇒ u < v. Factorization based on biological 

hierarchies. The integrative genomic analyses for multi-platform genomics data can be 

performed based on coherent biological justifications motivated by their hierarchical 

dependencies. Following the central dogma of biology, where the epigenetic and DNA level, 

such as methylation and copy number variation, potentially regulate mRNA expression 

(transcription regulation), which in turn is known to regulate protein expressions (translation 

regulation) (Morris and Baladandayuthapani, 2017). For our case study, we integrate four 

datasets from copy number aberration (CNA), methylation, mRNA expression, and protein 

expression, and the dependence chain (T ) constitutes four (q) disjoint sets that have their 

own unique order: (CNA, methylation) < mRNA < protein (see Figure S14)

Notationally, if u → v, the vertex u is a parent of v. Let pav = {u ∈V :u → v ∈ E} and paA = 

∪v∈Apav, A be the sets of parents of v and a subset A⊆V , respectively. We assume the 

dependence chain allows for factorization of DAGs at the layer level (i.e., the graph in 
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Figure 1 is a DAG of the dependence chain, τ1,…, τq). We denote the sub-vector of Y 
corresponding to a subset A⊂V by YA. The joint probability distribution of Y can be 

factorized as

P (Y ) = ∏
τ ∈ T

P (Y τ ∣ Y paτ) (1)

(Lauritzen, 1996). Through factorization, the network structure in Figure 1 can be viewed as 

q − 1 two-layered models, such as {Yτm : m = 1,…, k − 1} versus Yτk for k > 1, plus a one-

layered UG model for Yτ1. In the example of using DNA methylation, CNA, mRNA 

expression and protein expression, the multi-layered networks can be constructed from two 

UG models for CNA and methylation, and two two-layered models for mRNA and protein 

expressions.

To complete our chain graph model, we specify the Markov property. For a dependence 

chain T , we define the cumulatives to be the set Cl = ∪k≤l τk for 1 ≤ l ≤ q. Andersson et al. 

(2001) proposed a Markov property for chain graphs and set the pairwise Markov property 

for G as

u − v ∉ E Y u ⊥ Y v ∣ Y Ct(v), {u, v}for t(u) = t(v)
u v ∉ E Y u ⊥ Y v ∣ Y Ct(v) − 1, {u}for t(u) < t(v) . (2)

A missing directed edge between two random variables Yu and Yv implies that they are 

conditionally independent, given all other variables in τ1,…, τt(v)−1, while the conditional 

set of missing undirected edges is all other variables in τ1,…, τt(v).

2.2 Multi-layered Gaussian graphical models

In this section, we specify each factor in (1). We assume that the p × 1 random vector Y 
follows the multivariate Gaussian distribution N(0,Ω−1), with the positive definite precision 

matrix Ω. The mlGGM G = (V,E), following the Markov property stated in (2), is

Y = BY + ò, ò ∼ N(0, K−1), (3)

where B = (bvu) is a p × p matrix with u → v ∉ E ⇔ bvu = 0, and K = (κvu) is a positive 

definite p × p matrix with v − u ∉ E ⇔ κuv = κvu = 0. Then the precision matrix of Y is

Ω = (I − B)TK(I − B), (4)

where I is an identity matrix. B is a coefficient matrix for which the zero structures encode 

the directed edges between layers. The precision matrix of the error ò, K is a symmetric 

matrix, where the nonzero off-diagonal elements represent the undirected edges within a 

layer after taking out the effects from the directed edges, and the ith diagonal element is the 

inverse variance of Yi.

The mlGGM in (3) for a dependence chain T with ∣T∣= q > 1 can be expressed as one GGM 

for T1 and q − 1 two-layered GGMs by the factorization in (1). For a matrix A = (aij), we 
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denote sub-matrices AS1,S2 = (aij)i∈S1,j∈S2 and AS = (aij)i∈S,j∈S. We also denote the 

transpose of a sub-matrix, AS1, S2
T = (AS1, S2)T. Under the factorization in equation (1), the 

model in (3) can be re-expressed as the component-wise conditional distributions:

Y τ ∣ Y paτ ∼ N(Bτ, paτY paτ, Kτ
−1)for all τ ∈ T . (5)

Because the first layer T1 has an empty parent set, it has zero mean in (5) and is equivalent to 

the UG. The conditional distribution corresponds to a multivariate multiple regression, 

where the block of variables Yτ is regressed on the parents Ypaτ.

There are other formulations of chain graphs based on the Lauritzen-Wermuth-Frydenberg 

(LWF) Markov property (Lauritzen and Wermuth, 1989; Frydenberg, 1990). In the case of 

continuous variables with a joint multivariate Gaussian distribution, the Markov property in 

(2) is coherent with data generated by the linear system in (5) (Cox and Wermuth, 1993; 

Andersson et al., 2001; Drton and Eichler, 2006). Further details on implication of Markov 

properties are in Section S1.

3 Joint model and prior construction

In this section, we discuss the estimation problem of the multi-layered graph structure that 

includes both directed and undirected edges, which induces network-based integration of 

multi-omic data. Under known T , our focus is to estimate the zero-structures of B and K 

that encode the directed edges and undirected edges between and within layers, respectively. 

For directed edges, the problem boils down to finding the parents, pav for v ∈ τk ⊆ V from 

the cumulative Ck−1, which is the union of all the preceding layers of Tk. The model 

corresponding to the first layer, T1, is given by

Y τ1 ∼ N(0, Kτ1
−1), (6)

where there are no predictors. From the second component to the last component, τ2,…τq 

with ∣T∣= q, the structure of the model is expressed by the following multivariate multiple 

regressions:

Y τk = Bτk, Ck − 1Y Ck − 1 + òτk, and òτk ∼ N(0, Kτk
−1), k = 2, …, q, (7)

where Ck is the cumulative for the kth layer. The model for the first layer only involves the 

parameter for the precision matrix Kτ1 , which is a traditional model for UGs (Lauritzen, 

1996). The parameters of interest are the coefficient matrices {Bτk,Ck−1 : k = 2,…, q}, which 

encode the directed edges across the layers, and {Kτk : k = 1,…, q}, which encode the 

conditional dependencies within the layers, after adjusting for the effects from the directed 

edges. Fitting the set of regression models can be performed independently and in parallel, 

assuming priors over the parameters that are independent across the regressions. 

Component-wise regressions. In this component-wise regression framework, we can use the 
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Inverse Wishart prior for Kτk
−1 and the independent normal priors for elements of Bτk,Ck−1 : 

for all k = 1,…, q,

Kτk
−1 ∼ InverseW isℎart ∣ τk ∣ (δτk, λτkI ∣ τk ∣ ),

bvw ∼ N(0, cvw2 ∕ κvv)forall v ∈ τk and w ∈ Ck − 1,
(8)

where λτk > 0 and δτk > 0 for all k = 1,…, q, and cvw are constants. The prior of each 

regression coefficient bvw is dependent on the precision kvv of the variable Yv (vth diagonal 

element of K).

In essence, we are able to divide the estimation problem of the mlGGM in (3) into smaller 

multivariate regression problems by specifying the priors that are independent across τ ∈ T 

in (8). The Inverse-Wishart distribution is the global conjugate prior for covariance matrices. 

However, the number of parameters greatly increases as the total number of variables from 

multiple layers increases. For estimating the two-layered GGM for the kth component, Tk, 

we have ∣τk∥Ck−1∣+∣τk∣(∣τk∣+1)/2 number of parameters for the directed edges, undirected 

edges, and the variances of the variables in Tk. The number of parameters is 3775, even for 

∣τk∣= 50 and ∣Ck−1∣= 50. Moreover, the number of parameters becomes larger when we 

handle downstream layers, due to the increasing number of preceding layers. Bhadra and 

Mallick (2013) and Consonni et al. (2017) proposed a joint selection of the nonzero 

elements of Bτk,Ck−1 and Kτk, where the undirected relations encoded in Kτk correspond to 

the limited space of decomposable graphs using the hyper-inverse Wishart prior (Dawid and 

Lauritzen, 1993). Moreover, the method selects entire columns of the coefficient matrix 

Bτk,Ck−1, and fails to select single elements of this matrix (i.e., a variable in an upper layer is 

either connected to all variables in a lower layer or to none), and the same precision matrix 

Kτk informs the selection of the coefficient matrix Bτk,Ck−1. Assumptions on both Bτk,Ck−1 
and Kτk, while improving computational efficiency due to conjugate formulation and 

allowing for the exact calculation of the marginal likelihood of the graph, impose the 

artificial restriction on both undirected and directed structures, and may potentially result in 

misspecification of the networks structures. In particular, the space of decomposable graphs 

corresponding to Kτk is increasingly sparse with the increasing size of Tk. For example, the 

percentages of graphs that are decomposable decrease as 95%, 80%, 55%, 29% and 12% for 

∣τk∣= 4, 5, 6, 7, and 8, respectively (Armstrong, 2005).

4 Bayesian node-wise selection (BANS) framework

To circumvent the above-mentioned challenges, we develop a model selection procedure that 

allows for more general graph space than the procedures proposed by Bhadra and Mallick 

(2013); Consonni et al. (2017), as well as greater computational efficiency than the joint 

model formulation. We propose a Bayesian node-wise selection (BANS) method to jointly 

estimate undirected edges and directed edges of mlGGMs, using a node-wise regression 

framework. For a node, the Bayesian variable selection approach simultaneously finds its 

neighbors and parents, which are connected by undirected and directed edges, respectively.
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4.1 Working model

For all v ∈ V, Cv and Pv are defined by the set of all other vertices in the same layer as v, 

τt(v), {v} and all the preceding vertices, Ct(v)−1, respectively. We consider multivariate 

regression between τt(v) as responses and Pv as predictors. Note that the sets in {Pv : v ∈ τ} 

are all the same, and we consider Pv = Pτ for v ∈ τ. We re-express models (6) and (7) to 

node-wise regressions:

Yv = Y Pv
T bv + òv for all v ∈ V ,

where ò = (ò1,…, òp)T ~ N(0,K−1) and bv is a ∣Pv∣×1 vector of {bvu : u ∈ Pv}. For the well-

known conclusion that gives the relation between the concentration matrix of the 

multivariate normal distribution and the regression coefficients (Anderson, 1984), we have 

the following lemma.

Lemma 1. For all v ∈ V, òv = òCv
T αv + ev, where αv = −KCv,v/κvv and ev ~ N(0,1/κvv) is 

independent of òV, {v}.

The undirected edges encoded in the zero structures of the precision matrix K can be found 

by the zero structures of the regression coefficients obtained from regressing each residual 

ϵv to the residuals corresponding to the other vertices in the same layer.

Proposition 1. For all v ∈ V , Y v = Y Pv
T bv + Y Cv

T αv − Y Pv
T BCv, Pv

T αv + ev, where αv = −KCv,v/κvv 

and ev ~ N(0,1/κvv) is independent of òV, {v}.

The proof of Proposition 1 is provided in Section S2. From Proposition 1, we coherently 

convert the estimation problem of mlGGM in (3) to that of node-wise regressions. For a 

given node, both undirected edges between vertices in the same layer and directed edges 

toward the vertex can be jointly uncovered by model selection for a regression model. Our 

working model can be re-expressed as follows: for all v ∈ V ,

Y v = ∑
i ∈ Pv

bviY i + ∑
j ∈ Cv

αvjY j + ∑
j ∈ Cv

αvj ∑
i ∈ Pv

− bijY i + ev,
(9)

where ev ~ N(0,1/κvv). Our model (9) for a vertex v ∈ V involves regression coefficients for 

the directed edges from the vertices in the preceding layers (Pv → v), undirected edges from 

the vertices in the same layer (Cv − v), and directed edges from the vertices in the preceding 

layers to the vertices in the same layer other than v(Pv → Cv).

A simple illustrative example.—Consider the linear model corresponding to the chain 

graph with two layers for genes {Y1,Y2} and proteins {Y3,Y4} described with solid lines in 

Figure 2 (a): Y1 = ò1, Y2 = ò2, Y3 = b3lY1 + ò3, and Y4 = b42Y2 + ò4, where ϵ1 and ϵ2 and 

(ò3,ò4) are mutually independent, and ϵ3 and ϵ4 (the residuals of proteins after taking out 

effects from genes) have bivariate normal distribution with an arbitrary covariance matrix. 

The undirected edge between proteins Y3 and Y4 is estimated by the regression coefficients, 

α43 and α34, from the two regressions for responses Y3 and Y4 in our working model with 
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true nonzero regression coefficients, as shown in Figure 2 (b). For example, for the protein 

Y3, our working model includes effects for the parent gene Y1, the neighbor protein Y4, and 

the indirect effect of the neighbor’s parent gene Y2. Therefore, when we select directed and 

undirected edges for a biological unit v, the indirect effects of its neighbor’s parents are 

adjusted.

The next step is to deduce the prior distribution of {αv∣v ∈ V} from the joint prior on the 

precision matrix K. The priors in (8) are re-expressed as follows: for all τ ∈ T,

αvw ∣ κvv ∼ N(0, 1 ∕ (λτκvv))forall v ∈ τ and w ∈ Cv,
κvv ∼ Gamma(δτ + ∣ τ ∣ − 1

2 , λτ
2 )forall v ∈ τ,

bvw ∼ N(0, cvw2 ∕ κvv)forall v ∈ τ and w ∈ Pv,
(10)

where the Wishart prior on Kτ translates to normal and gamma priors on αv and Kvv for v ∈ 
τ.

4.2 Model selection priors

Our goal is to infer the dependence structure of the underlying chain graph of the data Y. 

Using our framework, the undirected and directed edges of the chain graph can be selected 

using zero restrictions on the regression parameters, B and α. Based on the priors in (10), 

model selection is achieved through a mixture prior on the regression coefficients: for all v ∈ 
τ, w ∈ Pv, u ∈ Cv, and τ ∈ T ,

Directed edges : bvw ∣ γvw, κvv ∼ γvwN(0, cvw2 ∕ κvv) + (1 − γvw)δ0,
Undirected edges : αvu ∣ ηvu, κvv ∼ ηvuN(0, 1 ∕ (λτκvv)) + (1 − ηvu)δ0,
Variance parameters : κvv ∼ Gamma(δτ + ∣ τ ∣ − 1

2 , λτ
2 ),

(11)

where δ0 is the Dirac delta function and cvw, and λτ, and δτ are fixed hyperparameters. We 

complete the formulation of our model by specifying the prior on γvw and ηvw:

P (γvw = 1) = pvw and P (ηvw = 1) = qvw,

where pvw and qvw are fixed hyperparameters. The binary indicators, γvw and ηvw, are latent 

variables that encode the directed structure between layers and the undirected structure 

within a layer. If γvw = 1, the arrow from w to v (w → v) is included in the graph, and γvw 

= 0 otherwise. If ηvw = 1, the undirected edge between v and w (v − w) is present in the 

graph.

5 Likelihood and posterior inference

For each vertex, we implement the Bayesian procedure to select the parents from the 

preceding layers and neighbors from the same layers as the vertex. Let Y = (y1,…yp) and YA 

for a set A ⊂ V be a n × p data matrix and n× ∣A∣ sub-matrix of Y for which the columns 

correspond to the set of vertices A. From Proposition 1, we have the following node-wise 

likelihood function:
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L = ∏
τ

∏
v ∈ τ

p(yv ∣ YCv ∪ Pv, αv, κvv, Bτ, Pv)

= ∏
τ

∏
v ∈ τ

κvv
2π

n ∕ 2
exp −

κvv
2 yv − YPvbv − YCvαv + YPvBCv, Pv

T αv
T

yv − YPvbv − YCvαv + YPvBCv, Pv
T αv ,

where αv = −KCv,v/κvv. We construct the likelihood L by pooling conditional densities 

within each of the two-layer models. The inference using the likelihood L is not equivalent 

to the joint likelihood from our original model in (6) and (7), because the resulting local 

distributions are likely to be inconsistent in that there is no joint distribution p(Yτ∣YPτ) from 

each of the local distributions p(Yv∣YCv∪Pτ) (Heckerman et al., 2000). The results are 

asymmetry of the structure, magnitudes, and signs inferred from {αv : v ∈ V} between α43 

and α34 in Figure 2. The neighborhood selection approach (Meinshausen and Bϼhlmann, 

2006) for UGs requires a symmetrization step after estimating the regression coefficients for 

all node-wise regressions. Similarly, in our model framework, the set of undirected edges 

can be defined by {v − w : ηvw = 1and ηwv = 1} or {v − w : ηvw = 1or ηwv = 1}. For more 

accurate inference on the graphical structure, instead of using the post-hoc symmetrization, 

we implement MCMC sampling (BANS) to estimate the posterior distributions with the 

symmetric constraint ηvw = ηwv and showed better accuracy in the structural learning than 

post-hoc symmetrization obtained from BANS-parallel (Section S7.5 in the Supplementary 

Materials). However, considering the gain in computation efficiency by using the node-wise 

parallelizable procedure, BANS-parallel is scalable and useful for high-dimensional 

problems.

5.1 MCMC Sampling

Our neighborhood selection approach for the chain graph model enables us to estimate the 

chain graph via a node-wise variable selection framework. Now we consider estimating the 

undirected edges and directed edges toward a vertex v. Since the parameter spaces for the 

binary indicators η and γ are enormous, computing the explicit posterior probabilities for all 

possible subsets poses computational challenges. Instead, we use a stochastic search variable 

selection (SSVS) to generate a Gibbs sequence for each vertex v(George and McCulloch, 

1993). Our sampling scheme consists of two parts for updating undirected edges and 

directed edges. The symmetric constraints of the UG structure can be incorporated when 

sampling η by assuming ηvw = ηwv for v ≠ w. The MCMC algorithm, which is described in 

detail in Section S3 can be summarized as follows. For a vertex v ∈ τ ⊆ V at iteration t:

1. Undirected edges

1.1 Set yv = yv − YPvbv and Xv = YCv − YPvBCv, Pv
T .

1.2 Update {ηk : k ∈ τ} and set nev
(t) = {w ∈ τ :ηvw ≠ 0}.

1.3 Update αk:k ∈ {v} ∪ nev
(t) , and κkk:k ∈ {v} ∪ nev

(t) .

2. Directed edges
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2.1. Set yv = yv − YCvαv and Xτ = (YPv −αvu1 YPv −αvu2 YPv …), where u1,u2,

… are vertices in nev
(t).

2.2. Update {γv : v ∈ τ}, Bτ,Pv, and κvv.

Sampling parameters that correspond to undirected edges are not independent among the 

vertices in the same layer, due to the imposed symmetric constraints. Thus, our MCMC 

sampling is performed for each layer. Within an MCMC sampling, steps 1 and 2 are 

repeated for all vertices in a layer. The mlGGM estimation using this MCMC sampling 

method is called BANS. We also implemented node-wise sampling scheme, called BANS-

parallel in Section S6.

5.2 Graphical structure estimation

The posterior samples of the model parameters for undirected and directed edges obtained 

from our MCMC methods are used to perform Bayesian inference. The MCMC samples 

explore the distribution of possible graphs, with each graph leading to a different topology 

based on the model parameters. The maximum a posteriori (MAP) estimate represents the 

mode of the posterior distribution of possible graphs. This approach is not feasible, however, 

since the space of possible graphs is large and the most likely graph may still appear only in 

a very small proportion of MCMC samples. An alternative and practical solution is to select 

the edges marginally by using all of the MCMC samples and averaging the presence/absence 

of each edge over the MCMC samples (Hoeting et al., 1999).

We propose a false discovery rate (FDR)-based determination of significant networks. Our 

MCMC methods are applied to each of the layers as responses, with all the preceding layers 

as predictors. For each layer, suppose we have M posterior samples of the corresponding 

parameter set. From M MCMC iterations for all layers, we estimate the posterior marginal 

probability of edge inclusion for each edge gvw as the proportion of MCMC iterations after 

the burn-in in which the edge v − w for t(v) = t(w) or w → v for t(w) < t(v) was selected in 

the graph. The values 1 − gvw can be considered as Bayesian q-values, or estimates of the 

local FDR (Storey and Tibshirani, 2003; Newton et al., 2004), if the vwth edge is called a 

discovery. Given a desired FDR level α ∈ (0,1), we call the set of edges Xϕα = {(v,w) : gvw 

> ϕα discoveries. The significance threshold ϕα can be determined based on the approach of 

Baladandayuthapani et al. (2014). We first sort all {gvw} in descending order to yield {g(t)}. 

Then we set ϕα = g{ξ), where ξ = max{k ∣ k−1∑j = 1
k (1 − g(j)) < α}. We expect that only 

100α% of the discovered Xϕα are false positives. An alternative approach is to select the set 

of edges that appear with marginal posterior probability of inclusion greater than ϕα = 0.5 

(Barbieri and Berger, 2004). This rule results in an expected FDR for 

ϕα, FDR =
∑(v, w) (1 − gvw)I(gvw > ϕα)

∑(v, w)I(gvw > ϕα) , where I is the indicator function.

6 Simulations

The aim of our simulation study is to compare BANS with other joint estimation approaches 

under various simulation settings that generate high- and low-dimensional data under the 

mlGGM in (3) (Section 6.2). We perform sensitivity analysis of our model to 
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hyperparameters and check the convergence of the proposed algorithm in Section S4 and S5 

of the supplementary materials, respectively. Section S7 includes extensive simulation 

studies evaluating sign consistency of the estimated partial correlations for edges using 

structured sampling scheme and the performance of BANS and BANS-parallel with 

different types of priors under various simulation settings of non-Gaussian synthetic data.

6.1 Data generation with random chain graphs

To generate random chain graphs, we assume that the UGs within layers follow the Erdös 

and Rényi (ER) model (Erdős and Rényi, 1960). A graph that follows the ER model is 

constructed by randomly connecting the vertices. We assume that each undirected edge 

within a layer is included in the chain graph with probability pE independent from all other 

edges. We also assume that each directed edge between two consecutive layers is 

independently linked with probability pE / 2. Thus, the vertex i in the graph is almost surely 

connected to (∣τt(i)∣−1)pE undirected edges and ∣τt(i)−1−1∣pE / 2 directed edges. We generate 

an adjacency matrix A = (Aij)p×p that represents a random chain graph on V = {1,…, p} with 

Aij = Aji = 1 for i − j, and Aij = 1 and Aji = 0 for i → j. We use the random chain graph 

generation procedure as follows: (1) assign p vertices to the dependence chain T = {τk∣k = 1,

…, q} so that the sizes of the layers are mostly the same; (2) set independent realizations of 

Bernoulli(pE) in the lower triangular elements of the sub-matrix corresponding to each layer, 

then symmetrize it; and (3) set independent realizations of Bernoulli(pE / 2) in the off-block 

diagonal elements between two consecutive layers. Given a randomly generated chain graph 

G with the dependence chain T , the observed data are simulated by the mlGGM in equation 

(3), after setting the intensities of the nonzero elements of B and K . The nonzero elements 

of B and K are randomly sampled from (−1.5,−0.5)∪(0.5,1.5). To guarantee the positive 

definiteness of K , their diagonal elements are filled by column-wise sums of absolute 

values, plus a small constant. Then we draw a random sample Y of size n from the 

distribution N(0,Ω−1) with Ω in equation (4). In the additional simulation setting that 

emulates the DNA Damage response network estimated for 309 TCGA lung squamous cell 

carcinoma (LUSC) samples (Section S7.1), we used the parameter estimates B and K 

obtained from the real data application to generate simulation datasets.

6.2 Performance evaluation

We compare the performance of our BANS method against those of multivariate regression-

based methods in learning the topologies of chain graphs under various simulation settings 

of mlGGMs according to the simulation parameters, the number of variables (p), sample size 

(n), number of layers (q), and degree of sparsity (pE). We consider the following multivariate 

regression-based methods for two-layer models: multivariate regression with covariance 

estimation (MRCE) (Rothman et al., 2010), and covariate-adjusted precision matrix 

estimation (CAPME) (Cai et al., 2012), which are available in R packages MRCE and capme, 

respectively. We apply glasso (Friedman et al., 2008) for MRCE and CLIME (Cai et al., 

2011) for CAPME to estimate the UG for the first layer, as MRCE and CAPME are not 

applicable to UGs.

We investigate the performance of our method under different simulation settings by varying 

(p,n,q,pE). Different measures of structural difference can be used to assess the performance 
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of our method. We define TP, TN, FP, and FN as the total number of true positive, true 

negative, false positive, and false negative edges, respectively. For goodness of estimation, 

we use sensitivity TP/(TP+FN), specificity TN/(TN+FP), and Matthew’s correlation 

coefficient (MCC): {(TP × TN) − (FP × FN)} / {(TP + FP)(TP+FN)(TN + FP)(TN + 

FN)}1/2 that ranges from −1 (total disagreement) to 1 (perfect classification), with a larger 

value corresponding to a better fit.

To evaluate the sensitivity, specificity, MCC, and number of discoveries, we determine the 

tuning parameters of glasso, MRCE, CLIME and CAPME using five-fold cross-validation, 

and control the FDR at 0.1 for BANS. To further compare the performance on graph 

structure recovery, we obtain the receiver operating characteristic (ROC) curve and the MCC 

curve as the function of the number of discoveries for each simulation dataset by varying the 

tuning parameters for MRCE and CAPME, as well as the cutoff for the posterior marginal 

probability of edge inclusion for BANS. The sensitivity, specificity, MCC, and number of 

discoveries for the selected tuning parameters, and pAUC and AUC obtained from the ROC 

curves, are shown in Table S1. In terms of graph structure recovery, our method yields better 

performance for all settings. The number of discoveries is very close to the number of edges 

in the true graph, while other methods tend to provide a much greater number of edges. The 

small standard errors for the number of discoveries suggest that our procedure is stable 

across simulation replicates. Figure 3 and Figure S11-S13 display the ROC curves and MCC 

curves averaged over 50 replications, which demonstrate that our method performs better 

than MRCE and CAPME. Our method shows better ROC curves and MCC curves for all 

four simulation settings across different tuning parameters. In the high-dimensional case, 

when p = 200 and n = 100 (Figure 3), the sensitivities of MRCE and CAPME are flattened 

for some intervals of 1-specificity, and MRCE shows unstable variable selection 

performance, because the curves show a decreasing pattern as the tuning parameters 

decrease.

We evaluated the performance of BANS in simulation settings where data were generated 

from non-Gaussian, and the graphical structures were the same as the estimated DNA 

damage response network for 309 TCGA lung squamous cell carcinoma. We performed 

comparisons to (1) BANS-parallel (Section S6), (2) XMRF (Wan et al., 2016), that fits UGs 

to mixed data types, (3) Neighborhood selection of UGs using Florseshoe prior (Carvalho et 

al., 2010) and (4) objective Bayes fractional Bayes factor (OBFBF) (Consonni et al., 2017) 

using model averaging. Given the simulation settings where the data are generated from 

Poisson distribution, BANS showed better performance than XMRF (Section S7.2). For the 

evaluation of our prior choice, the point mass prior in equation (11) showed superior 

performance than Horseshoe prior and OBFBF in estimating UGs (Section S7.3 and Section 

S7.4). While BANS-parallel without symmetric constraint in the MCMC sampling showed 

smaller AUC and MCC values than BANS, it still performed better than other methods such 

as MRCE and CAPME (Figure S8). Considering the gain in computational efficiency 

(Section S7.5), BANS-parallel is potentially useful alternative in high-dimensional setting. 

Finally, we confirmed that posterior inference on signs of edges were accurately estimated 

from the structured MCMC algorithm given η and γ using BANS (Section S7.6).
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7 Pan-Cancer Network Anaysis of Multi-platform Omic Data

Biological motivation

Crosstalk within signaling pathways and their perturbation by oncogenes limit single gene-

based approaches to understanding cancer biology. Approaches have been developed for 

discovering mutations that perturb signaling networks (so-called network-attacking 

mutations) to understand how individual genomic variants initiate network perturbation 

(Creixell et al., 2012). Although genomic variants are critical to understanding functional 

cancer networks, it is well-established that complex molecular networks and systems are 

formed by a large number of interactions of genes and their products, which operate in 

response to different cellular conditions (Bandyopadhyay et al., 2010). Therefore, systematic 

approaches to unravelling cancer-specific rewiring of molecular networks are key to the 

successful identification of network-based drug targets for cancer treatment, in the paradigm 

of network medicine that acknowledges the application of network topology and dynamics 

towards identification of therapeutic targets (Barabási et al., 2011).

TCGA PanCancer Atlas initiative (Weinstein et al., 2013) built a uniformly-processed 

dataset and a unified data analysis pipeline to develop an integrated picture of commonalities 

and differences across tumor types. Recent studies (Hoadley et al., 2018; Sanchez-Vega et 

al., 2018) reclassified human tumor types based on molecular similarity and investigated co-

occurence of alterations in tumor signaling pathways, which differentiate between individual 

tumors and tumor types using TCGA pan-cancer data. (Akbani et al., 2014) investigated 

correlations between protein and other data types, such as mRNA, copy number, and 

mutation data across cancer. (Gong et al., 2017) performed expression quantitative trait locus 

(eQTL) analysis that focuses on the links between genotypes and gene expression for pan-

cancer TCGA data. These methods only consider links between two platforms; they do not 

incorporate within platform dependencies. Using our BANS method, graph-based multi-

level integration approach, our goal is to understand unified interplay within and between 

genomic, epigenomic, transcriptomic, and proteomic platforms to elucidate the 

commonalities and differences in systems across cancer types.

Data structures

We applied our method to multi-omic datasets from the 7 TCGA tumor types, lung 

adenocarcinoma (LUAD, n=356), lung squamous cell carcinoma (LUSC, n=309), colon 

adenocarcinoma (COAD, n=338), rectum adenocarcinoma (READ, n=121), uterine corpus 

endometrial carcinoma (UCEC, n=393), ovarian serous cystadenocarcinoma (OV, n=227), 

and skin cutaneous melanoma (SKCM, n=333). For each of the tumor types, we included 

multi-platform data, DNA methylation, copy number alteration, mRNA expression data, and 

reverse phase protein array (RPPA)-based proteomic data. Genomic features from each data 

platform constitute a layer; the ordering of the layers follows biological justifications, 

because of the natural interplay among diverse genomic features: gene encoded by DNA is 

transcribed to mRNA, mRNA is translated to protein, and DNA methylation helps to 

regulate transcription (Morris and Baladandayuthapani, 2017) (Figure S14).
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Based on the principle that within-platform interactions arise from pathway-based 

dependencies that are altered across different tumor types, we selected 10 key signaling 

pathways, based on emerging literature on RPPA-based proteomic profiling of various tumor 

types (Akbani et al., 2014; Cherniack et al., 2017; Li et al., 2017). The pathways and the 

gene membership for each pathway are listed in Table S2. We focus on building integrative 

networks for all combinations of the 10 pathways and the 7 cancer types. Using TCGA-

Assembler (Zhu et al., 2014), we downloaded CNA, DNA methylation, mRNA expression, 

and protein expression data, then matched the samples across platforms. We applied BANS 

separately to each type of cancer and pathway combination (10×7=70 analyses). The 

MCMC sampler was run for 10,000 iterations of burn-in, followed by 20,000 iterations as 

the basis for inference. For each analysis, we estimated the graph structure at FDR 0.1 and 

obtained the signs of each nonzero coefficient using the cutoff ξ = 0.5 for the posterior 

probability of the signs from the structured estimation. Figures S15-S24 display the 

estimated networks for all pathways and cancer types.

7.1 Global commonalities and differences in mlGGMs

We first investigated the number of edges that are shared and differentiated across different 

cancer types for each of the possible edges at the platform level. For each combination of the 

cancer types and pathways, the mlGGM contains 4 layers at CNA, DNA methylation, 

mRNA expression, and protein expression, and allows 9 different types of dependencies, 

represented by the 4 types of undirected edges (i.e., CNA–CNA, methylation–methylation, 

mRNA–mRNA, and protein–protein) and the 5 types of directed edges (i.e., CNA 

→miRNA, CNA →protein, methylation → mRNA, methylation →protein, and mRNA 

→protein) (Figure S14). Across all pathways, our BANS method detected 433 (UCEC), 350 

(SKCM), 328 (OV), 240 (READ), 391 (COAD), 394 (LUAD), and 361 (LUSC) directed/

undirected edges in the estimated mlGGMs. Across all 10 pathways, we decomposed the 

edges by the aforementioned 9 types of dependences within and between the four layers, as 

well as the numbers of intersecting edges across the 7 cancer types are depicted using UpSet 

plots (shown in Figure 4). UpSet plot is an effective visualization of intersections for more 

than three sets, and a more-scalable approach than Euler diagrams (Lex and Gehlenborg, 

2014). For each of the 9 possible relations within and between layers, the UpSet plot 

contains column and row bar plots. The column bar plot encodes all edge set intersections in 

the columns of a matrix using a binary pattern, and renders bars above the matrix columns to 

represent the number of exclusively intersecting edges that are shared by the corresponding 

cancer types to the column, but not of the others. The row bar plot displays the total number 

of edges for each cancer type.

Between platform regulatory relations: Transcriptional and translational effects 

represented by directed edges CNA →mRNA (Figure 4-b) and mRNA → Protein (Figure 4-

h) tend to be shared across cancer types, which is along expected lines of the basic 

biological mechanisms. For example, in Figure 4-b, 36 edges were shared by all 7 cancer 

types, and few unique edges to a cancer type were found. We found few regulatory edges 

from CNA to proteins, and from methylation to mRNA and Protein across cancer types 

(Figure 4-c,e,f). For example, for Methylation → mRNA in Figure 4-e, we found 7 edges 

unique to OV and COAD.
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Within platform conditional dependencies: The undirected edges represent 

dependencies within platform after taking out the regulatory effects from upstream 

platforms. The dependence structures within platforms tend to be unique to cancer type. For 

CNA (Figure 4-a), UCEC, COAD, LUSC, and LUAD had 23, 15, 11, and 7 edges that are 

not shared by any other cancer types, while 6 edges were shared across all cancer types. For 

Methylation (Figure 4-d), OV included 14 unique edges among 48 edges in total. For mRNA 

(Figure 4-g), SKCM had 13 of 45 edges that were unique. For protein (Figure 4-i), UCEC 

had the largest protein network, with 62 protein-protein interactions, 13 of which were 

unique to the cancer, while the same number of the edges were shared across all cancer 

types.

7.2 Pan-cancer network signaling

We investigate the extent of cross-signaling within- and between- layers for each pathway 

across tumor types. For a given network, we define the ratio of the observed number of 

edges to the total number of possible edges as connectivity score (CS): high (low) CS value 

indicates high (low) cross-signaling of the network. We also compute standard deviation of 

CS values across cancer types to represent that the levels of connectivity of the network are 

different across tumor types: the genes in the network are highly connected (high signaling) 

in some cancers, but have few connection (low signaling) in other cancers. Figure 5 displays 

the CS values and the variability are displayed: CS ranged from 0 to 0.5, and the variability 

ranged from 0 to 0.17. The overall pattern of the heat map suggests that the within-layer sub-

networks had a higher level of signaling than between-layer sub-networks. The core reactive 

pathway showed a high level of network signaling within platforms, and the highest level of 

protein-protein signaling across tumor types, which suggests that our estimation aligns well 

with the a priori functional characteristics of this pathway, which was defined on the basis of 

all tumor types (Akbani et al., 2014). The CS was markedly different in methylation-

methylation networks for most of the pathways, compared to other types of sub-networks: 

the apoptosis pathway for LUAD and COAD, cell cycle pathway for OV, EMT pathway for 

UCEC, TSC/mTOR pathway for LUAD, breast reactive pathway for UCEC, and core 

reactive pathway for READ, UCEC, and SKCM showed the high level of signaling for 

methylation-methylation. The transcriptional and translational effects that are represented by 

CNA →mRNA and mRNA →protein sub-networks showed the high-level of signaling 

across pathways and cancer types, compared to other between-layer networks, again 

following along expected lines of the biological hierarchy.

7.3 p53 Integrative Networks

In this section we focus on a gene/protein of particular interest (i.e., p53) across all tumor 

types. p53 is the most frequently mutated gene in human tumors, and has a central role as a 

tumor suppressor and novel therapeutic target (Bouchet et al., 2006; Levine, 2019). The 

transcription factor p53 is activated downstream of the DNA damage response (DDR) in 

reaction to cell stress, and mediates distinct outcomes of DDR signaling (Reinhardt and 

Schumacher, 2012). The TP53 gene encodes the p53 protein that targets a large set of genes 

associated to apoptosis and cell cycle pathways (Bouchet et al., 2006; Reinhardt and 

Schumacher, 2012). Due to the high level of inter-connectivity of the DDR with other 

signaling networks, predicting the efficacy of treatment and designing an optimal 
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combination therapy to target multiple genes will require a detailed understanding of the 

tumor-specific signals of other molecules.

Let gij be the estimated posterior marginal probability of the edge (i − j or i → j) inclusion. 

We consider the estimated mlGGMs are weighted graphs, whose edges have been assigned 

the given posterior inclusion probabilities, and the degree of the nodes across all layers are 

defined as the summation of the weights for the edges that are connected to the node: 

W i = ∑j = 1
p I(i j or i j or i − j)gij, ∀i ∈ V . The degree of the nodes in a weighted 

mlGGM measures the strength of nodes in terms of the total weight of their directed and 

undirected connections. With the goal of studying the underlying mechanism of p53 protein, 

we focused on the sub-networks of the estimated mlGGMs, which include the nodes 

connected to the p53 protein by any lengths of paths including both undirected and directed 

edges. Figure 6 displays the p53 integrative networks, where the edges are colored and 

weighted by the signs and the posteriors, gij, and the sizes of nodes are weighted by their 

degrees, Wi.

7.3.1 Translational findings—Our results confirm that the transcriptional effect from 

TP53 at CNA to TP53 gene expression, and translational effects from TP53 gene expression 

to the p53 protein across 6 tumor types (all except for SKCM), all with positive regulations. 

In contrast, the SKCM network included no upstream regulatory effects (from DNA and 

RNA) and only included protein-protein interactions. UCEC and SKCM shared the same 

protein-protein interactions between p53 protein expression and T68 phosphorylated CHK2 

(CHK2PT68): CHK2 is a protein kinase that is activated in response to DNA damage and 

directly phosphorylated p53 on serine 20, which provides a mechanism for increased 

stability of p53 (Hirao et al., 2000) and has been suggested as an anticancer therapy target 

given its role as a tumor suppressor (Zannini et al., 2014). These findings prioritize UCEC 

and SKCM as potential cancer types for CHK2 targeting. We also found epigenetic effects in 

the p53 sub-networks: only UCEC had a positive regulatory effect from BRCA2 DNA 

methylation, which was correlated with CHEK1 DNA methylation. The physical and 

functional interactions between BRCA2 and TP53 have been reported and hypermethylation 

of the CpG island in the promotors of BRCA2 gene involve their inactivation and therefore a 

higher risk of developing a tumor including uterine cancer (Rajagopalan et al., 2010; Bosviel 

et al., 2012).

Epigenetic drugs have been developed and the anticancer effects are often tested using 

genome-editing technologies such as CRISPR-Cas9 systems, called Epigenome editing, 

which provides advantages over direct gene knockout based on RNA interference 

(Kungulovski and Jeltsch, 2016). Moreover, successes of epigenetic drugs have been 

reported by the important roles in synergy with other anticancer therapies or in reversing 

acquired therapy resistance (Morel et al., 2019). Our findings through this deeper 

investigation of underlying biological mechanisms of p53 networks across multiple 

molecular levels and cancer types have the potential to facilitate the development of novel 

therapeutic strategies, specifically gene-drug interactions for single and combination agents.
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8 Discussion

We propose a unified Bayesian framework to model the layered architecture of networks 

from multiple omic data. We employ a multi-layered Gaussian graphical model (mlGGM) to 

investigate the conditional dependencies among the variables from multiple layers, while 

accounting for the order defined by biological hierarchies. The mlGGM is built upon a 

multivariate regression framework with mean and residual precision parameters, for which 

zero structures represent undirected and directed edges in the chain graph. Our fully 

probabilistic formulation coherently converts the complex mlGGM into more tractable, 

node-wise multiple regression models, wherein the zero structures of the regression 

coefficients encompass both the undirected and directed edges. Our edge-specific variable 

selection priors on node-wise regression models allow for flexible modeling of any type of 

graph, without restriction to decomposable graphs, as well as the incorporation of relevant 

prior knowledge, while maintaining computational efficiency. We applied our Bayesian 

node-wise selection (BANS) method to Pan-cancer integrative network analysis and found 

structural commonalities and differences across cancer types. We also identified underlying 

mechanisms of the p53 protein, which is a novel drug target for cancer treatment.

For identifiability, the main assumption in this article is that the layers have natural ordering. 

Ma et al. (2008) and Ha et al. (2015) proposed methods to estimate a Markov equivalence 

class of a chain graph and a DAG (as a special case of the chain graph model) by recovering 

skeletons on its subgraphs with no ordering information. In the absence of natural ordering, 

a chain graph is not identifiable and only its Markov equivalence class can be identified. In 

many applications, the vertices are naturally partitioned into multiple ordered layers, along 

with time points or the intrinsic biological mechanisms.

For chain graph models, there are two main types of conditional independencies implied by 

the LWF Markov property and the alternative Markov property (AMP). Through zero 

structures of the mean parameter B and the residual precision matrix K in the mlGGM in (3), 

we describe the AMP on chain graph models. For the LWF Markov property in high-

dimensional Gaussian settings, Sohn and Kim (2012); McCarter and Kim (2014) made a 

convex formulation by using a conditional joint distribution given the predictors. The AMP 

Markov property is coherent, however, with data generation (as described in Section S1) by 

the direct link between the zero structure of the parameters in the multivariate linear 

regressions, and the presence/absence of edges in the graph.

For the resulting asymmetry of the structure, we impose the constraint on K during MCMC. 

Although most graphical model selection approaches based on node-wise regressions focus 

on estimating the structure, we showed the numerical performance of estimating signs of the 

directed edges and undirected edges, based on the structured estimation from the conditional 

posterior P(α,κ,B∣Y,η,γ) where η and γ are subjected to the structure G.

Our node-wise regression-based formulation, BANS to jointly estimate the undirected and 

directed edges to a node provides a flexible modeling framework. In particular, the proposed 

approach can be extended to allow nonlinear regulatory relations between layers, instead of 

the linearity assumption on the parameter B, and to infer multiple mlGGMs where some of 
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the graphs may be unrelated, while others share common edges. BANS R codes 

implementing our method are available on https://github.com/***/BANS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Example network for q ordered layers. In our application, we consider four layers 

corresponding to DNA methylation, Copy number aberration, gene expression and protein 

expression (see Section 7).
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Fig. 2. 
An example of a chain graph with layers {1, 2}, {3, 4}. (a) Solid lines represent the data 

generating structure and dotted lines display how we parameterize undirected edges in our 

neighborhood selection framework. (b) Our working model.
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Fig. 3. 
ROC curves and MCC curves for graph structure learning for (p,n,q,pE) = (200,100,10,0.03).
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Fig. 4. 
UpSet plots showing relationships of mlGGMs across all 10 pathways between 7 cancer 

types. Each column-wise bar corresponds to the number of exclusively intersecting edges 

that are shared by the cancer types represented by the dark circles, but not of the others, and 

each row-wise bar displays the total number of edges for the corresponding cancer type.
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Fig. 5. 
Heatmap depicting connectivity score (CS) of the within- and between-layer sub-networks 

of the estimated mlGGMs across the 7 cancer types and 10 pathways. The scores are 

indicated on a low-to-high scale (grey-red-black). The standard deviations of the CS values 

across cancer types are displayed in the barplots.
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Fig. 6. 
Integrative sub-networks for the p53 protein (red circle), inferred from BANS for LUAD, 

LUSC, COAD, READ, UCEC, OV, and SKCM. Each connected component includes all 

nodes that are connected to the p53 protein by any lengths of paths, including both 

undirected and directed edges for each cancer. The colors of edges indicate the inferred signs 

of the edges: negative (red) and positive (blue). The sizes of nodes and the widths of edges 

are weighted by their degrees and posterior edge inclusion probabilities, respectively.
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