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Abstract

Cells use mitophagy to remove dysfunctional or excess mitochondria, frequently in response to imposed stresses, such as
hypoxia and nutrient deprivation. Mitochondrial cargo receptors (MCR) induced by these stresses target mitochondria to
autophagosomes through interaction with members of the LC3/GABARAP family. There are a growing number of these
MCRs, including BNIP3, BNIP3L, FUNDCI, Bcl2-L-13, FKBPS, Prohibitin-2, and others, in addition to mitochondrial
protein targets of PINK1/Parkin phospho-ubiquitination. There is also an emerging link between mitochondrial lipid signaling
and mitophagy where ceramide, sphingosine-1-phosphate, and cardiolipin have all been shown to promote mitophagy. Here,
we review the upstream signaling mechanisms that regulate mitophagy, including components of the mitochondrial fission
machinery, AMPK, ATF4, FoxOs, Sirtuins, and mtDNA release, and address the significance of these pathways for stress
responses in tumorigenesis and metastasis. In particular, we focus on how mitophagy modulators intersect with cell cycle
control and survival pathways in cancer, including following ECM detachment and during cell migration and metastasis.
Finally, we interrogate how mitophagy affects tissue atrophy during cancer cachexia and therapy responses in the clinic.

Keywords Autophagy - Mitochondria - Mitophagy - PINK1/Parkin - BNIP3/BNIP3L - FUNDC1 - BCL2-L-13 - LC3/
GABARAP - Metabolism - Respiration - Fission - DRP1 - UPR™ - Electron transport chain - AMPK - ATF4 - NAD™ -
PARP - Sirtuins - FoxOs - Metastasis - ROS - Mitohormesis - Cachexia

Abbreviations BCL-XL BCL2-like 1 long
AD Alzheimers disease BNIP3 BCL2 interacting protein 3
ADP Adenosine diphosphate BNIP3L BCL2 interacting protein 3 like
ALS Amyotrophic lateral sclerosis BCL2-L-13 BCL2-like-13
AMPK 5" AMP-activated protein kinase BRCALl Breast cancer 1
ANT Adenine nucleotide transporter CCCP Carbonyl cyanide 3-chlorophenylhydrazone
ARIH1 Ariadne RBR E3 ubiquitin protein ligase 1 CK2 Casein kinase-2
ASNS Asparagine synthetase CL Cardiolipin
ASS1 Argininosuccinate synthase-1 DAG Diacyl glycerol
Atad3a ATPase family AAA-domain-containing DELEI1 DAP3-binding cell death enhancer 1
protein 3 A DTT Dithiothreitol
ATF4 Activating transcription factor 4 DRP1 Dynamin-related protein 1
ATM Ataxia telangiectasia mutated ECM Extracellular matrix
ATP Adenosine triphosphate ERK Extracellular signal-regulated kinase
BCL-2 Breakpoint cluster locus-2 ETC Electron transport chain
FA Fanconi anemia
FANC-C FA protein C
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cGAS Cyclic GMP-AMP synthase ROS Reactive oxygen species
GPX4 Glutathione peroxidase-4, GTPase activat- S1P Sphingosine-1-phosphate
ing protein SDS Sodium dodecyl sulfide
HIF Hypoxia inducible factor SPHK1 Sphingosine kinase 1
HCC Hepatocellular carcinoma SRC Rous sarcoma oncogene
HRI Heme-regulated inhibitor STING Stimulator of Interferon Genes
IMM Inner mitochondrial membrane TAX1BP1  Taxl-binding protein 1
IRF3 Interferon response factor 3 TAZ Tafazzin
LC3 Microtubule-associated protein 1 light chain TBK TANK-binding kinase 1
3 TCA Tricarboxylic acid cycle
LIR LC3 interacting region TIM Translocase of inner membrane
LKB1 Liver kinase B1 TFE Transcription factor E
LLC Lewis Lung carcinoma TMD Transmembrane domain
MARCHS  Membrane-associated ring finger (C3HC4) TNBC Triple-negative breast cancer
5 TOM Translocase of outer membrane
MCR Mitochondrial cargo receptor ULK1 Unc-51-like autophagy activating kinase 1
MITF Melanocyte inducing transcription factor UPR™ Mitochondrial unfolded protein response
MFF Mitochondrial fission factor VPS34 Vacuolar protein sorting 34
MEN Mitofusin XP Xeroderma pigmentosum
MMP Mitochondrial processing peptidase ZIP1 Zinc transporter-1 precursor
MPP Mitochondrial processing peptidase
mtDNA Mitochondrial DNA
MULI1 Mitochondrial E3 ubiquitin ligase 1 Introduction
NAC N-acetyl cysteine
NAD + Nicotinamde adenine dinucleotide Mitophagy is a selective form of macro-autophagy in which
NBRI1 Near BRCA1 mitochondria are preferentially targeted for degradation at
NDP52 Nuclear dot protein 52 the autophagolysosome [1, 2]. Mitophagy is required to
NLRP3 Nucleotide binding domain and leucine rich eliminate mitochondria that have become dysfunctional,
repeat pyrin domain-containing 3 and thus serves an important housekeeping role that pre-
NR Nicotinamide riboside serves mitochondrial function and limits production of
NRF2 Nuclear factor, erythroid 2 like damaging reactive oxygen species (ROS). Mitophagy can
OMM Outer mitochondrial membrane also eliminate healthy mitochondria to reduce overall mito-
OPTN Optineurin chondrial mass as an adaptive response to stresses such as
OXPHOS Oxidative phosphorylation, p62/SQSTM1 hypoxia and nutrient deprivation, to ensure efficient use of
PA Phosphatidic acid scarce metabolites and oxygen, and again limit production
PARK2 Parkin encoding locus of excess ROS. The turnover of mitochondria by mitophagy
PARKG6 PINK1 encoding locus relies on the activity of a growing list of mitochondrial
PARKS LRRK?2 encoding locus cargo receptors (MCRs), that include BNIP3, BNIP3L
PARL PINK/PGAMS5-associated rhomboid-like (NIX), FUNDCI, Bcl2-L-13, FKBPS, FANC-C, Prohibi-
proteases tin-2 (PHB-2), Metaxin-1, Cardiolipin, and others, in addi-
PARP Poly-ADP-ribose polymerase tion to mitochondrial proteins that are substrates of PINK1/
PD Parkinson’s disease Parkin-mediated ubiquitination. These MCRs localize to the
PDAC Pancreatic ductal adenocarcinoma mitochondria and promote mitophagy by interacting directly
PFKFB3 6-Phosphofructo-2-kinase/fructose-2,6-bi- with processed LC3/GABARAP proteins through conserved
phosphatase 3 LC3 Interaction Regions (LIR) (Fig. 1). Importantly, the
PGAMS Phosphoglycerate mutase family member 5 expression and/or processing of these MCRs is modulated
PHB-2 Prohibitin-2 by stresses that induce mitophagy, including mitochondrial
PHGDH D-3-phosphoglycerate dehydrogenase depolarization, hypoxia, nutrient deprivation, etc. For exam-
PINK1 PTEN-induced putative kinase 1 ple, BNIP3, BNIP3L, and FUNDC1-mediated mitophagy
PMI P62-mediated mitophagy inducer is activated by hypoxia, while cardiolipin and PHB-2 are
PSATI1 Phosphoserine aminotransferase 1 exposed by mitochondrial damage. In addition to these
RAF Rapidly accelerated fibrosarcoma oncogene MCRs that bind LC3/GABARAP proteins directly, there
RHEB Ras homolog enriched in brain are other signaling molecules that contribute to activation
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(a)
BNIP3 GSWVELHFS
BNIP3L SSWVELPMN
BCL2L13 ESWQQIIAM
FUNDC1 DSYEVLDLT
(d)

Fig. 1 Modulation of mitochondrial cargo receptor interactions with
LC3 family members by post-translational modification. a Alignment
of the LIR motifs (blue) in BNIP3, BNIP3L, Bcl1L13 and FUNDC1
mitochondrial cargo receptors that are required for them to interact
with processed LC3/GABARAP family members, and highlight-
ing the serine residue (red) at —1 in each LIR motif that is subject
to phosphorylation to further promote LC3/GABARAP interaction.
b BNIP3 is phosphorylated on S17 (and S24) adjacent to the critical
tryptophan reside at W18 which promotes its interaction with LC3B-
II. The kinase responsible is currently unknown. ¢ Similarly, BNIP3L

of mitophagy including DRP1, FIS1, and MFF that are bet-
ter known for their role in other aspects of mitochondrial
dynamics. Ceramide and sphingolipids modulate mitophagy
partly by recruiting LC3 to mitochondria, while other novel
mitophagy modulators such as the adenine nucleotide
transporter (ANT) affect mitophagy by controlling PINK1
import into mitochondria for degradation. The growing list
of mitophagy modulators (Table 1) underlines the extent
to which it is important for cells to control mitochondrial
turnover and mitochondrial function in response to differ-
ent stresses and signals. That there are so many different
mitophagy modulators also causes one to question the extent
to which these mitophagy pathways are redundant and inter-
act with each other, or alternatively are uniquely required for
mitophagy in response to distinct stresses. In this review,
we will examine some of these questions in the context of
tumorigenesis and metastasis to assess whether mitophagy
may be a valid and more targeted therapy in cancer treatment
than general autophagy.

is phosphorylated on S35 (and S34) adjacent to W36 of its LIR motif
that promotes its interaction with LC3B and GABARAP. d ULK1
phosphorylates FUNDC1 on S17 to promote LC3 interaction, while
PGAMS (not shown) de-phosphorylates inhibitory phospho-S13, also
to promote LC3 interaction. e Interaction of FUNDC1 with LC3B is
repressed by phosphorylation on Y18 by SRC kinase within its LIR
motif and also inhibited by CK2 phosphorylation on S13. f Bcl2-L-13
is phosphorylated on S272 adjacent to its LIR motif and also interacts
with ULK]1, although whether ULK1 phosphorylates Bcl2-L-13 on
$272 has not been shown

Mitophagy pathways and mitochondrial
cargo receptors

Before addressing the role of different mitophagy modula-
tors in cancer, we first review the major molecular path-
ways that regulate mitophagy with a particular focus on
mitochondrial cargo receptors that localize to mitochondria
in response to mitochondrial stresses. Table 1 summarizes
known mitophagy modulators more comprehensively.

PINK1/Parkin-dependent mitophagy

Mitochondrial membrane depolarization (AY,,) induces
mitophagy through activation of PTEN-induced puta-
tive kinase-1 (PINK1), a serine/threonine ubiquitin kinase
encoded by the PARKG6 locus, which accumulates at the
outer mitochondrial membrane (OMM) where it recruits
E3 ubiquitin ligases, most notably Parkin, encoded by the
PARK?2 locus [3, 4]. PINK1 phosphorylates Parkin on S65
within its ubiquitin-like (UBL) domain, derepressing Parkin
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auto-inhibition and amplifying recruitment of active Par-
kin to the OMM [4]. This leads to the ubiquitination and
phosphorylation of proteins at the OMM, such as Mitofu-
sin-2 (Mfn2) and the voltage-dependent anion channel-1
(VDAC-1), that then interact with the Optineurin (OPTN)
and NDP52 cargo receptors, but also p62/Sqstm1 in some
systems, which contain critical LIR motifs [3, 5-7]. PINK1/
Parkin-dependent mitophagy is the major mechanism in the
cell for elimination of depolarized mitochondria (Fig. 2).
At healthy mitochondria, the amino-terminal mitochon-
drial targeting sequence (MTS) of PINKI1 is translocated
to the mitochondrial matrix where it is cleaved off by mito-
chondrial processing peptidase (MPP), while the trans-
membrane portion of PINKI1 is cleaved by PINK/PGAMS5-
associated rhomboid-like (PARL) proteases, and then, the
remaining 52 kD fragment of PINKI1 is retrotranslocated
back out to the cytosol and degraded at the proteasome
according to the N-end rule [4, 8, 9]. Mitochondrial import
of PINKI1 at healthy mitochondria is facilitated by Atad3a,
an AAA + ATPase that spans the IMM and OMM [10]. Inac-
tivation of Atad3a increases mitophagy of both depolarized
and healthy mitochondria, which is partially rescued by
PINKI1 deletion, indicating that Atad3a plays an important
role in preventing aberrant accumulation of PINK1 [10].
Conversely, the adenine nucleotide transporter-1 and -2
(ANT) plays a role in promoting PINK1 accumulation by
suppressing translocase of inner membrane (TIM) proteins,
TIM23 and TIM44, that are involved in PINK1 mitochon-
drial import [11]. This function of the ANT was independent

of its role in ADP/ATP exchange at the IMM and loss of
ANT decreased levels of both PINK1 and Parkin in mouse
brain and heart, causing the accumulation of dysfunctional
mitochondria and cardiomyopathy [11]. Interestingly,
mutant forms of ANT found in patients with cardiomyopa-
thy and opthalmoplegia were unable to rescue mitophagy
defects in ANT null cells, whereas mutant ANT that cannot
bind ATP or promote ADP/ATP exchange was able to rescue
mitophagy defects. Together with evidence showing mito-
chondrial abnormalities in these patients, this work indicates
that defective mitophagy arising from mutant ANT causes
the pathologies in these patients [11].

In addition to their activation by mitochondrial depo-
larization, PINK1 and Parkin-dependent mitophagy are
also activated by accumulation of unfolded proteins in the
mitochondrial matrix [12, 13] suggesting a link between
the mitochondrial unfolded protein response (UPR™) and
mitophagy, two key mitochondrial quality control processes
in the cell.

While most research has focused on the interaction of
PINK1 with Parkin, PINK1 interacts functionally with other
mitochondrial E3 ubiquitin ligases involved in mitophagy,
including ARIH1, MARCHS, and MUL1, which can sub-
stitute for Parkin in mitophagy in various contexts [14—17].

BNIP3/BNIP3L-dependent mitophagy

Originally categorized as pro-apoptotic BH3-only pro-
teins, BNIP3 and BNIP3L (NIX) function primarily as

Fig.2 PINK1 degradation controls turnover of depolarized mito-
chondria. a PINKI1 is a ubiquitin kinase that is degraded at functional
mitochondria. PINK1 import via the TOM/TIM protein complexes is
highly regulated and dependent on mitochondrial membrane polariza-
tion. PINK1 uptake into the mitochondria is positively regulated by
the Atad3a AAA + ATPase, and negatively regulated by the adenine
nucleotide translocase (ANT) that interferes with TOM23 and TIM40
to block PINK1 uptake. This function of ANT is separable from its
function in ADP/ATP exchange at the IMM. The MTS of PINKI
is proteolytically cleaved off in the matrix by MPP, while the trans-
membrane part of PINKI1 is cleaved by PARL protease and then
retrotranslocated back to the cytosol for proteasomal degradation.

@ Springer

b In response to loss of mitochondrial membrane potential (AY,,),
PINKI1 uptake at the mitochondria is blocked and it accumulates at
the OMM, where it recruits the Parkin E3 ubiquitin ligase. PINK1
phosphorylates Parkin within it UBL domain derepressing its activ-
ity and also phosphorylates ubiquitin groups on Parkin substrates (S).
Parkin ubiquitinates substrates (S) at the OMM such as MFN-2 and
Vdacl and other proteins and these phospho-ubiquitinated substrates
are bound by cargo receptors, such as p62/Sqstm1 and OPTN1, which
also interact with LC3 to promote mitophagy. Recruitment of OPTNI1
and other cargo receptors to the OMM is dependent on TBKI1 that is
recruited away from centrosomes and its role in mitosis to the OMM
in PINK1/Parkin-dependent manner
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stress-induced MCRs. BNIP3 and BNIP3L are tail-anchored
proteins that integrate into the OMM via their carboxy ter-
minal transmembrane domains (TMD) with the remaining
bulk of both proteins facing into the cytosol where a tightly
conserved LIR motif (WVEL) near the amino-terminal end
of each protein (W18 to L21 in BNIP3, and W36 to L39 in
BNIP3L; Fig. 1a) interacts with processed LC3/GABARAP
[18-20]. The putative BH3 domains in BNIP3 and BNIP3L
are poorly conserved (2 amino acids out of 11) and are
redundant for BNIP3/BNIP3L function in mitophagy [21,
22]. Furthermore, the interaction of BNIP3 and BNIP3L
with Bcl-X; (and Bcl-2) is mediated via the amino-termi-
nal region overlapping with the LIR motif, and not depend-
ent on the putative BH3 domains in BNIP3/BNIP3L [23].
This work also suggested that the interaction of BNIP3/
BNIP3L with Bcl-X; enhances their interaction with LC3/
GABARAP family members to promote mitophagy [23].
The BNIP3 TMD consists of a glycine zipper that mediates
homo-dimerization via hydrogen bonding between polar
residues on the inside of the glycine zipper, while hydro-
phobic residues on the outside of the zipper stabilize the
dimer in the OMM lipid bilayer [24]. Remarkably, BNIP3
and BNIP3L dimers are resistant to SDS, DDT, and urea,
and can be visualized on denaturing gels [25, 26] but to
what extent BNIP3 or BNIP3L dimers are stable in vivo has
not been examined. While dimerization is not required for
integration into the OMM, recent evidence suggests that
dimerization is required for efficient LC3/GABARAP inter-
action [26]. Also, intriguingly, BNIP3 and BNIP3L have
been shown to heterodimerize [27], but when and where
such heterodimers form in a physiological context has not
been determined.

BNIP3 and BNIP3L are rapidly induced at a transcrip-
tional level by stresses, such as hypoxia and nutrient depri-
vation, but like many stress response proteins, both proteins
are also rapidly turned over by mitophagy and at the pro-
teasome, requiring the stressed cell to maintain transcrip-
tion of BNIP3 and BNIP3L until the stress is removed [2].
Both BNIP3 and BNIP3L are transcriptionally activated by
HIF-1 in response to hypoxia and elevated ROS [28, 29],
and BNIP3 in particular is a strong hypoxia marker that gets
induced rapidly and to high levels as oxygen drops below 2%
[30-32]. BNIP3 is also a validated transcriptional target of
PPAR« explaining its induction in the liver in response to
nutrient deprivation and fasting [22, 33, 34], and is induced
by FoxO3A in atrophying and cachectic muscle [35-37].
BNIP3 and BNIP3L are both transcriptionally regulated by
p53 [38, 39], but while BNIP3L is upregulated transcription-
ally by p53 [38], BNIP3 is repressed [39], suggesting that
they play differential roles in the response to DNA damage
and other signals that activate p53.

In addition to regulation at a transcriptional level,
BNIP3 and BNIP3L are modulated post-translationally by

phosphorylation [23, 40]. Both proteins are phosphorylated
on the serine residue (S17 in BNIP3 and S35 in BNIP3L)
adjacent to the critical tryptophan residue in their LIR motifs
(W18 in BNIP3 and W36 in BNIP3L) [23, 40] (Fig. 1b, c).
These phosphorylation events promote their interaction with
LC3/GABARAP [23, 40], and also their interaction with
Bcl-X; [23]. BNIP3 and BNIP3L are multiply phospho-
rylated, but it remains to be determined what kinases are
involved in modulating BNIP3/BNIP3L levels and activity.

Beyond phosphorylation, BNIP3L is ubiquitinated by
Parkin and promotes PINK1/Parkin-induced mitophagy [41,
42]. However, neither BNIP3 nor BNIP3L requires PINK1
or Parkin to elicit mitophagy [43], and conversely, BNIP3 is
not required for PINK1 accumulation, or for Parkin recruit-
ment to the OMM [43]. Nevertheless, Parkin/PINK1 loss
causes HIF-1a stabilization [44, 45] but whether BNIP3
or BNIP3L, that are both HIF targets, are upregulated by
PINK1/Parkin loss has not been examined, although BNIP3
can compensate in mitophagy for Parkin loss [43].

BNIP3 and BNIP3L play important functions in tissue
differentiation and stress responses with each protein exhibit-
ing distinct tissue expression patterns [2]. BNIP3 is induced
in a PPAR-a-dependent manner in response to fasting [22,
33, 34] and is required for glucagon-induced mitophagy in
the liver [22]. BNIP3 exhibits zonal expression patterning
in the liver with high expression around the central vein
of the liver lobule where cells are most hypoxic [46], and
low expression around the more oxygenated periportal vein
[22]. As a result, mitochondrial mass is zonal in the liver
with higher mitochondrial mass around the central vein and
lower mitochondrial mass around the periportal vein [22].
Metabolic processes are spatially organized across the liver
lobule, such that opposing activities, such as urea cycle and
glutamine synthesis, fatty acid oxidation and lipogenesis,
and gluconeogenesis and glycolysis, are physically sepa-
rated [47]. This likely improves the efficiency of metabolite
re-cycling and avoids competition between metabolic path-
ways for common substrates [47]. Loss of BNIP3-dependent
mitophagy caused mitochondria to accumulate aberrantly
and disrupted metabolic zonation in the liver, such that
periportal processes such as urea cycle were expanded at
the expense of central vein concentrated processes, such as
glutamate-glutamine cycling and glycolysis [22].

BNIP3L is markedly upregulated and essential for
mitophagy during normal red blood cell differentiation such
that loss of BNIP3L resulted in anemia and splenomegaly
due to production of defective reticulocytes [48—50]. Sphin-
gosine kinase (SPHK1) contributes to BNIP3L induction
during erythroid differentiation [51]. SPHKI is required
for the UPR™ in worms which is a transcriptional response
to mitochondrial stress mediated by transcription factors
such as ATF4, NRF2, and FoxOs that induce expression of
genes that mitigate against mitochondrial stress, including
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mitochondrial proteases, mitochondrial protein chaperones,
autophagy genes, anti-oxidants, etc. [52, 53]. Taken together
with the mitochondrial localization of SPHK1 in response
to stress, this suggests a mechanism linking activation of the
UPR™ to mitophagy through induction of BNIP3L. BNIP3L
is also required for differentiation of retinal ganglion cells
during embryogenesis, where it is induced in mid-gestation
by hypoxia [54]. This results in a BNIP3L-dependent glyco-
lytic switch that is also seen during the polarization of M1
macrophages [54]. BNIP3/BNIP3L-dependent mitophagy
was also required for survival of long-lived NK memory
cells in response to viral infection [55].

Both BNIP3 and BNIP3L interact with Rheb [56, 57], the
small GTPase required to promote lysosomal localization
and activity of mTOR, a major growth-promoting kinase
in the cell [58]. BNIP3 binding repressed Rheb activity and
disrupting the BNIP3-Rheb interaction promoted mTOR
activity and cell growth, consistent with a growth suppres-
sive role for BNIP3 via its inhibitory interaction with Rheb
[56]. By contrast, the interaction of BNIP3L with Rheb
elicited mTOR-independent effects on cell growth [57].
BNIP3L-dependent mitophagy induced by switching cells
from growth in glucose-only media to growth in glutamine
plus galactose required interaction of BNIP3L with Rheb at
the OMM in a tri-molecular complex with processed LC3
[57]. The relative importance of BNIP3/BNIP3L interac-
tions with Rheb has not yet been addressed in a physiologi-
cal setting.

FUNDC1

Like BNIP3 and BNIP3L, FUNDCI1 promotes hypoxia-
induced mitophagy, but in contrast to BNIP3 and BNIP3L,
the activation of FUNDC1 by hypoxia is mediated primar-
ily at a post-translational level, via regulation of its phos-
phorylation state [59]. Like BNIP3 and BNIP3L, FUNDC1
integrates into the OMM, although FUNDCI is a multi-pass
protein with three TMDs, and has an amino-terminal LIR
motif (YVEL from Y18 to L21), which projects into the
cytosol to interact with LC3 family members [59]. Its inter-
action with LC3B is tightly modulated by phosphorylation
on S17 immediately adjacent to its LIR motif that is phos-
phorylated by ULK1 (Fig. 1d), the catalytic component of
the autophagy pre-initiation complex [60, 61], in response
to hypoxia to enhance LC3B interaction and mitophagy
[62]. FUNDCI is also phosphorylated by oncogenic SRC
on Y18 within the LIR motif (Fig. 1e) to block LC3 inter-
action and mitophagy [62]. The FUNDC1-LC3B interac-
tion is also inhibited by phosphorylation on S13 by Casein
Kinase 2 (CK2). Conversely, PGAMS phosphatase de-phos-
phorylates S13 to promote LC3 interaction and mitophagy
[63]. Interestingly, PGAMS also plays a role in mitophagy
by promoting PINK1 accumulation [64]. FUNDCI is also
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modulated by the MARCHS E3 Ub ligase that ubiquit-
inates FUNDCI1 on K119 to promote its turnover and limit
hypoxia-induced mitophagy [17]. In addition to interacting
with LC3B, FUNDCI interacts with DRP1 and Calnexin at
mitochondrial-ER junctions where it appears to be required
for recruiting DRP1, since mutant forms of FUNDCI1
that cannot bind DRP1 cannot promote mitophagy [65].
FUNDCI1 may also play a role in the cellular response to
proteostatic stress through its interaction with HSC70 [66].
While the hypoxia-induced microRNA, miR-137 represses
both FUNDC1 and BNIP3L expression during hypoxia pos-
sibly limiting mitophagy [67], the extent to which FUNDC1
function in hypoxia-induced mitophagy overlaps with that
of BNIP3 and BNIP3L has not been examined.

Bcl2-L-13

Bcl2-L-13 is a Bcl-2-related homolog of ATG32 in yeast
that integrates into the OMM via a C-terminal TMD and
interacts with LC3B via a conserved LIR motif (WQQI) at
amino acids 273-276 (Fig. 1f) [68]. Bcl2-L-13 over-expres-
sion induces mitochondrial fragmentation and mitophagy,
independent of DRP-1 and Parkin, and rescues mitophagy in
Atg32-deleted yeast [68]. Bcl2-L-13 expression is induced
by mitochondrial depolarization and knockdown of Bcl2-
L-13 impeded CCCP-induced mitophagy [68]. Given that
Bcll-L-13 acts independently of Parkin, these results sug-
gest that Parkin is not essential for mitophagy induced by
mitochondrial membrane depolarization, but further work
is needed to determine whether Bcl2-L-13 depends on
PINK1 and other mitochondrial E3 Ub ligases to function.
The induction of Bcl2-L-13 by mitochondrial depolarization
was associated with its phosphorylation on S272, adjacent
to its LIR motif at 273-276 [68]. Recent work has shown
that ULK1 binds to Bcl2-L-13 in a manner dependent on the
kinase activity of ULKI1, in a tri-molecular complex with
LC3B, and that ULK1 is required for Bcl2-L-13-dependent
mitophagy [69], but whether ULK1 phosphorylates Bcl2-
L-13 on S272 was not determined. Physiological studies
addressing the importance of Bcl2-L-13 for mitophagy
in vivo have not been reported.

Prohibitin-2

Prohibitin-2 (PHB-2) promotes cristae structure and sup-
ports electron transport chain (ETC) complex formation at
the IMM [70]. PHB-2 interacts directly with LC3B via an
LIR motif (YQRL) at amino acids 121-124 that is required
for mitophagy induced by mitochondrial membrane depo-
larization and to eliminate paternal mitochondria in worms
[71]. It has been suggested that proteasomal degradation of
OMM proteins during mitophagy is required to expose IMM
proteins, such as PHB-2 that are turned over by mitophagy
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[72], and indeed, PHB-2 relies on Parkin-mediated rupture
of the OMM to promote mitophagy [71]. Various stresses
known to induce mitophagy, including mitochondrial depo-
larization, happen at the IMM, and thus, it is significant
that IMM molecules like PHB-2 and cardiolipin induce
mitophagy.

Cardiolipin, ceramide, and lipid-dependent mitophagy

Cardiolipin is a phospholipid required to properly anchor
proteins to the IMM, including components of the ETC,
and to stabilize mitochondrial cristae [73]. Cardiolipin relo-
calizes to the OMM in response to stresses, such as mito-
chondrial membrane depolarization and respiratory chain
inhibition, where it binds directly to processed LC3B to
promote mitophagy [74]. LC3-dependent mitophagy was
attenuated by blocking the LC3B—cardiolipin interaction,
knocking down cardiolipin synthase, or preventing trans-
port of cardiolipin to the OMM [74]. LC3 interacts with
mature tetralinoleoyl—cardiolipin that is dependent on pro-
cessing from immature monolyso-cardiolipin by the Tafazzin
(TAZ) phospholipid trans-acylase, an enzyme found mutated
in patients with Barth syndrome. TAZ deficiency prevents
cardiolipin processing and blocks mitophagy leading to
mitochondrial dysfunction (reduced respiration and ROS
production), cardiomyopathy, and other pathologies found
in Barth syndrome patients [75].

Ceramide is a bioactive sphingolipid known to induce
caspase-independent cell death that may be attributed to
a lethal form of mitophagy [76]. Ceramide C18 induced
expression of LC3B-II, co-localized with LC3B-II at mito-
chondria, and caused recruitment of autophagosomes to
mitochondria. The interaction of ceramide with LC3B-II
relied on LC3 lipidation, since ceramide did not interact with
LC3B-I. Over-expression of ceramide synthase-1 (CS1),
but not catalytically dead CS1 (H183A), induced LC3B-II,
LC3 puncta and mitophagy [76]. While ceramide-induced
mitophagy required DRP1, it did not require p62/Sqstm1
or BNIP3L [76]. Interestingly, serine deprivation of tumor
cells caused a marked decrease in ceramide, as well as lower
levels of sphingolipids, cardiolipin, and phenylethanolamine,
and was associated with mitochondrial fragmentation, mito-
chondrial dysfunction, and reduced cell proliferation [77].
These defects were rescued by providing ceramide (C16) to
cells, although the effects of ceramide on mitophagy were
not examined in this study.

Another lipid-dependent modulator of mitophagy is
Lipin-1, a phosphatidic acid phosphatase that catalyzes
the conversion of phosphatidic acid (PA) to diacylglycerol
(DAG), which is required for de novo synthesis of phos-
pholipids and triglycerides [78, 79]. Patients with heritable
Lipin-1 mutations develop muscle atrophy that is associ-
ated with mitochondrial dysfunction and lipid droplet

accumulation due to a failure in autophagy [80]. Muscle-
specific over-expression of a Lipin-1 transgene rescued
these defects in mice and also ameliorated the myopathy
that develops following statin treatment [80]. Ceramide and
other phospholipids accumulated in Lipin-1-deficient muscle
following statin treatment but the extent to which this con-
tributed to defects in mitophagy was not examined. Lipin-1
is required for activation of Protein Kinase D (PKD) and
VPS34 to promote autophagosome fusion with lysosomes
[80], but recent work also shows that Lipin-1 is required
for the interaction of BNIP3 with LC3 in muscle [81]. How
the role of Lipin-1 in mitophagy intersects with its role in
control of nuclear transcription factor activity or in lipid
signaling pathways is not clear.

Sphingosine kinase 1 (SPHK-1) catalyzes the formation
of sphingosine-1-phosphate (S1P) from sphingosine, and
while sphingosine (and ceramide) promote cellular senes-
cence or apoptosis, S1P stimulates tumor cell proliferation
and migration [82, 83]. SPHKI is hypoxia-inducible [82,
84] and, as mentioned above, promotes mitophagy during
erythropoiesis in part by inducing BNIP3L expression [51].
SPHKI also activates the UPR™ in response to respiratory
chain inhibition, inhibition of mitochondrial protein import
or inhibition of mitochondrial fission or fusion [85]. SPHK1
localizes to mitochondria in response to mitochondrial stress
and production of S1P regulates a number of mitochondrial
proteins involved in the UPR™ to promote mitochondrial
functionality [85]. In particular, S1P interacts directly with
PHB-2 to promote ETC complex formation, suggesting that
PHB-2 (and BNIP3L) may act downstream of lipid signal-
ing to promote mitochondrial function and mitophagy, but
much remains to be investigated in this area to understand
how signaling lipids regulate mitophagy.

Upstream sensing of mitochondrial stress
to induce mitophagy

Mitochondria are subject to many different kinds of stresses,
including oxidative damage caused by respiratory chain
inhibition, mutation of the mitochondrial genome that can
repress respiration, failure to properly uptake mitochon-
drial proteins that then accumulate in the cytosol and cause
an imbalance in mitochondrial to nuclear encoded pro-
teins, defects in mitochondrial translation such as occur in
response to certain antibiotics, as well as stresses shown to
induce mitophagy, such as low oxygen and membrane depo-
larization [53]. As discussed above, much is known about
how the cell promotes mitophagy in response to membrane
depolarization (PINK1 accumulation) or hypoxia (induction
of BNIP3/BNIP3L). Here, we examine several signaling
pathways that have been linked to induction of mitophagy
downstream of mitochondrial stresses (Fig. 3).
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Fig.3 Mitochondrial stress-sensing pathways that modulate
mitophagy. Mitochondrial stress and dysfunction is sensed in vari-
ous ways and feeds forward to activate mitophagy, and other stress
response pathways, such as the UPR™. a Excess ROS produced fol-
lowing inhibition of the electron transport chain (ETC) results in
escape of electrons (e”) primarily from complex I and complex III,
that react with oxygen and water to form superoxide and peroxides
that may be quenched by mitochondrial anti-oxidants or escape to
the matrix and cytosol. ROS is also induced in tumor cells by matrix
detachment and by mitophagy defects that cause dysfunctional mito-
chondria to accumulate. ROS activates transcription factors, includ-
ing HIF-1, FoxOs, NRF2, that induce stress responses, including
BNIP3-dependent mitophagy and NRF2 anti-oxidant responses.
b While ATF4 is a key component of the cellular integrated stress
response, and is activated by amino acid deprivation, it also plays a
unique role in sensing mitochondrial stress that is mediated via HRI
(heme-regulated elF2a kinase) that is activated by a cleaved cyto-
solic form of DELEL, released from damaged mitochondria following

Activation of mitophagy by AMPK

AMPK is activated by defects in respiration caused by
agents, such as Metformin [86, 87], that can lead to induc-
tion of general autophagy via ULK1 activation [60]. AMPK
promotes mitophagy specifically via phosphorylation of the
FIS1 and MFF receptors for DRP1 [88, 89] and AMPK
phosphorylation of glycolysis regulator PFKFB3 promoted
mitophagy and survival following extended mitotic arrest
[90]. AMPK also activates TFEB and TFE3 in response to
glucose deprivation to switch on the CLEAR network of
genes that includes many autophagy genes [91]. Inactivation
of AMPK caused unprocessed autophagosomes to accumu-
late in lung tumors driven by Ras and mutant p53 [91]. Loss
of LKB1, the regulatory kinase upstream of AMPK [87],
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autophagy gene transcription.

OMALI cleavage. ATF4 induces genes involved in amino acid biosyn-
thesis and transport, but also induces genes that promote autophagy,
OXPHOS and the UPRmt. ¢ NAD" is depleted by mitochondrial
dysfunction, particularly in response to defects in respiration and
lower complex I activity. NAD™ levels in cells are further decreased
by DNA damage although the extent to which the nuclear/cytosolic
pools of NAD +affect the mitochondrial pools and vice versa is
unclear. Decreased NAD* limits Sirtuin activity in the nucleus and
at the mitochondria, resulting in lower FoxO activity and reduced
mitophagy, which can be rescued by replenishing NAD* with NR
or by PARP inhibition. d Decreased ATP levels arising from lower
respiratory chain activity and increased AMP activates AMPK, that
can promote mitophagy by activitating FIS1 and MFF, or by activat-
ing the TFEB/TFE3 transcription factors, amongst other functions.
e Mitophagy plays a key role in preventing activation of the cGAS-
STING and NRLP3 inflammasome in response to release of mtDNA
from damaged mitochondria during innate immune responses and
inflammation

also caused mitochondrial dysfunction, including decreased
oxygen consumption, increased ROS, and altered mitochon-
drial metabolism [92-95], but it is unclear if this was due to
a failure to activate mitophagy [96, 97]. Nevertheless, the
LKBI1-AMPK signaling pathway has emerged as a key sens-
ing mechanism of mitochondrial dysfunction that activates
mitophagy.

ATF4 and the mitochondrial stress response

To obtain unbiased insight to how mitochondria respond
to different kinds of stress, including AY,, mitochondrial
protein translation inhibition, or respiratory chain inhibition,
Quiros and colleagues performed transcriptomic, proteomic,
and metabolomics profiling of HeLa cells exposed to agents
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that induce these stresses [98]. Genes involved in amino acid
biosynthesis and handling, including ASNS and ASS1, cor-
related most strongly with mitochondrial stress and many
of the induced genes were known ATF4 targets [98]. Con-
sistently, levels of many amino acids were also elevated in
response to mitochondrial stress. This ATF4 transcriptional
signature was also upregulated in HEK-293T cells depleted
for mtDNA or treated with oligomycin to repress respiration,
where serine biosynthetic enzymes (PSAT1, PHGDH etc.)
in particular were upregulated [99].

The ATF4 signature was also induced in muscle fol-
lowing OPA1 deletion where loss of OPA1 caused small,
disrupted mitochondria to accumulate [100]. Interestingly,
BNIP3 and LC3 were induced in Opal null muscle and dele-
tion of FoxO (known to induce BNIP3) rescued atrophy of
Opal null muscle fibers. The ATF4 signature has also been
seen in other myopathy models [101, 102] and deletion of
ATF4 protects muscle from fasting induced atrophy, where
again BNIP3 and LC3 were induced [103]. These findings
suggest that mitochondrial stress is a major factor in muscle
atrophy and myopathies.

Recent work has shed light on how ATF4 is activated
by mitochondrial stress (such as treatment with oligomy-
cin and inhibition of respiration) [104, 105]. Mitochondrial
stress activates the OMAL protease to cleave DELE] at the
mitochondria. DELE1 was previously identified in a yeast
two-hybrid system as a DAP3-interacting protein involved
in modulating rates of apoptosis [106], but until now, little
else has been reported about DELE1. Cleavage of DELE1
by OMALI1 releases the short form of DELEI to the cytosol
where it interacts directly with HRI (Heme Regulated elF2a
kinase), one of four kinases known to regulate ATF4 activity
[104, 105]. Knockdown of DELEI blocked ATF4 induction
by mitochondrial stress, but was not required for ATF4 acti-
vation by ER stress [104].

ATF4 has been interrogated as a functional homolog
in mammalian systems of Azfs-1, the master regulator of
the UPR™ in worms [107, 108]. While ATF4 has not been
shown to localize to mitochondria like Atfs-1, both ATF4
and Atfs-1 are induced in response to inhibition of mito-
chondrial protein translation [109]. A#fs-1 accumulates in
the nucleus of cells in response to mitochondrial stresses
that block its import to the mitochondrial matrix, where it
would be degraded under non-stressed conditions [110].
Atfs-1 target genes include mitochondrial chaperones that
are activated by Atfs-1 and components of the ETC that are
repressed by Atfs-1 [111]. Atfs-1 was also required to acti-
vate the UPR™ in a worm model of Alzheimers Disease
(AD) in which amyloid-p was over-expressed [108]. In addi-
tion to activating the UPR™ in this model, Atfs-1 was also
required for mitophagy via induction of dct-1, the worm
homolog of BNIP3/BNIP3L [112]. In a mouse model of
AD, mitophagy, UPR™ and OXPHOS gene sets (Mitophagy:

Maplic3b/Lc3b, Bnip3, Sqstml/p62, Pinkl/Park6; UPR™:
Hspa9, Hsp60, YmelLl, Lonpl; OXPHOS: Cox5a, Cox2,
Nd1, Sdhc) were induced [108], although the extent to which
their expression was dependent on ATF4 was not examined.
The simultaneous induction of the UPR™ and mitophagy in
multiple systems in response to mitochondrial stress sug-
gests joint regulation of these survival mechanisms, but
there is much more to uncover about how these responses
are coordinated.

NAD* promotes mitophagy

Unresolved DNA damage occurring in cells mutated for
enzymes involved in DNA repair, such as the ATM kinase
in patients with Ataxia telangiectasia (AT), depletes NAD™*
due to constitutive activity of the DNA repair protein Poly-
ADP Ribose Polymerase (PARP) that consumes NAD™
[113]. Deficiency for atml in worms caused neuronal defects
that were rescued by replenishing NAD™ levels with nico-
tinamide riboside (NR) or via PARP inhibition (Olaprarib/
AZD2281) that promoted expression of dcz-1, mitophagy,
and mitochondrial function [114]. Boosting NAD™ levels
also induced mitophagy and the UPR™ in a worm model of
AD where amyloid-p was over-expressed, leading to mito-
chondrial proteostasis that both resolved degenerative dis-
ease and extended worm lifespan [108]. Dct-1, sgstml and
pinkl were among the mitophagy genes induced in response
to NR where their induction was dependent on At#fs-1, as
described above [108].

Depletion of nuclear NAD™* through elevated PARP activ-
ity inhibits NAD"-dependent Sirtuins [113, 115]. Sirtuins
modulate many metabolic processes in the cell, including
via NAD*-dependent de-acetylation of PGC-1a required for
expression of genes involved in mitochondrial biogenesis,
fatty acid oxidation, and oxidative phosphorylation [116].
Sirtuins also de-acetylate FoxO3a that is a known inducer
of autophagy genes, including BNIP3, LC3B, and Beclinl
[35]. The worm homolog of FoxOs, daf-16, is also activated
by sirtuins resulting in dct-1 upregulation that limited aging
and extended worm lifespan [112, 114]. Thus, both Atfs-1
and daf-16 induce mitophagy genes in worms in response to
nutrient and mitochondrial stress, in a manner modulated by
NAD™. Further characterization of these pathways linking
NAD" availability and mitophagy is necessary in mamma-
lian systems [35, 117-119].

Activation of mitophagy in response to cytosolic
mtDNA during inflammatory responses

Release of mtDNA to the cytosol following mitochondrial
damage or dysfunction activates the cGAS—STING path-
way and the NLRP3 inflammasome, and thus by eliminat-
ing dysfunctional mitochondria, mitophagy limits activation
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of cGAS-STING and inflammasomes [120, 121]. During
apoptosis, efflux of mtDNA from the mitochondria occurs
via IMM balloons that herniate out through BAX/BAK
macropores in the OMM [122], but how mtDNA escapes the
mitochondria during innate immune responses is not clear,
although unlike apoptosis, cytochrome c is not released
[123]. Newly synthesized mtDNA not yet packaged into
Tfam-positive nucleoids may be most susceptible to oxida-
tion, cleavage and release to activate either cGAS-STING
or the NLRP3 inflammasome [124].

Oxidized mtDNA binds directly to the NLRP3 inflamma-
some, inducing pro-caspase-1 activation at the mitochon-
dria and stimulating IL-1f release [125—-127]. Mitochondrial
caspase-1 activity causes further mitochondrial damage,
including mitochondrial membrane depolarization that
induces Parkin-dependent mitophagy [128], although since
Parkin is cleaved by caspase-1, mitophagy may be limited
depending on the scale of mitochondrial damage and onset
of pyroptosis [129].

Activation of cGAS-STING by cytosolic mtDNA induces
a Type I interferon response mediated by TANK-binding
kinase-1 (TBK1) and IRF3 [121]. Amongst other activities,
TBK1 promotes mitophagy by recruiting cargo receptors,
such as OPTN to the OMM of damaged mitochondria [130,
131]. STING trafficking also promotes autophagy independ-
ent of TBK1 by stimulating autophagosome biogenesis at the
ER-Golgi [132]. cGAS-STING and NLRP3 pathways com-
municate with each other during inflammatory responses,
via effects of STING on release of potassium from the lys-
osome that activates NLRP3 [133]. Thus, by eliminating
damaged mitochondria, mitophagy prevents further mtDNA
release and attenuates activation of both cGAS—-STING and
the NLRP3 inflammasome [120, 121, 129, 134].

Mitophagy in cancer
PINK1/Parkin-dependent mitophagy in cancer

PINK1 and Parkin are encoded by genetic loci (PARK6 and
PARK2, respectively) that are mutated in human Parkinson’s
disease (PD), and also disrupted in various human cancers
[135]. The PARK? locus at 6q25-q26 is frequently deleted in
bladder, breast, lung, ovarian, and other cancers [136], while
PARK?2 mutations have been linked to glioblastoma, colon
cancer, and lung cancer [137]. Similarly, PARK6 expres-
sion (PINK1) is down-regulated in glioblastoma and ovarian
cancer, with rare mutations found in neuroblastoma [138].
Analysis of tumor phenotypes in mouse models of cancer
showed Parkin null mice to be susceptible to spontaneous
hepatocellular carcinoma (HCC) and sensitized to irradia-
tion-induced lymphomagenesis [139, 140]. Loss of either
Parkin or PINK1 increased tumor burden and metastasis in
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KRas-driven PDAC [45, 141]. Parkin also suppressed the
growth and metastatic progression of breast cancer cells
[44]. Taken together, these findings indicate that Parkin and
PINK1 play tumor suppressor functions in both mouse and
human.

Given their canonical function in mitophagy, the tumor
suppressor functions of Parkin and PINK1 have largely been
attributed to their role in maintaining mitochondrial func-
tion and metabolic homeostasis by clearing depolarized
mitochondria to prevent Warburg metabolism and excess
ROS [45, 140, 142]. However, Parkin and PINK1 also sup-
press HIF-1a stabilization [44, 45, 138]; Parkin ubiquitinates
HIF-1a0 on K477 to promote its degradation and low Parkin
levels correlated with high HIF-1a levels and reduced metas-
tasis-free survival in human breast cancer [44]. Deletion
of HIF-1a (or iron chelation) rescued elevated glycolysis
and ROS detected in PDAC following deletion of Parkin or
PINK1 [45]. These observations indicate that Parkin/PINK1
may suppress tumorigenesis in part by promoting HIF-1a
turnover (Fig. 4).

Mitochondrial damage blocked G2-to-M-phase cell cycle
transition in a PINK1/Parkin-dependent manner, while loss
of Parkin or PINKI1 increased rates of cell division [143].
Parkin’s E3 Ub ligase activity modulates cyclin levels and
the mitotic checkpoint independently of the Anaphase-
Promoting Complex (APC) and its E3 Ub ligase activity,
via direct interaction of Parkin with Cdc20 and Cdh1 [144,
145]. This mitotic function for Parkin was independent of
PINK1 and required activation of Parkin via phosphoryla-
tion on S378 by Polo-like kinase-1 [145]. Thus, Parkin has
dual roles in mitophagy and in control of cell cycle. More
recently, PINK1-dependent Parkin activity has been reported
to modulate mitosis indirectly by sequestering TBK1 at dam-
aged mitochondria [143]. In addition to its role in recruit-
ing OPTN and other cargo receptors to damaged mitochon-
dria [130, 131], TBKI is a centrosome-associated protein
required for microtubule dynamics and mitosis [146]. By
sequestering TBK1 at damaged mitochondria and away from
centrosomes, PINK1/Parkin activity caused a cell cycle
arrest and failure to enter mitosis [143]. Artificially tether-
ing TBK1 to mitochondria blocked cell cycle progression
into mitosis, while deletion of Parkin rescued cell cycle pro-
gression defects in Drosophila lacking ik2, the fly homop-
log of TBK1 [143]. Thus, negative control of cell cycle and
de-stabilization of HIF-1a are added aspects to the tumor
suppressor functions of PINK1/Parkin, although, arguably,
these functions are secondary to their function in eliminat-
ing dysfunctional mitochondria (Fig. 4). How the PINK1-
independent function of Parkin in promoting anaphase tran-
sition via interaction with Cdc20 [145] is coordinated with
its PINK1-dependent function in blocking mitosis via TBK1
sequestration [143] may depend on whether mitochondria
are functional or not.
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Fig.4 PINKI1/Parkin functions relevant to tumor cell growth and
tumorigenesis. In addition to their canonical role in promoting
mitophagy of depolarized mitochondria, Pinkl/Parkin also promote
turnover of the HIF-1a transcriptional sub-unit that is known to pro-
mote tumorigenesis via induction of HIF target genes that enhance
glycolysis, angiogenesis, and metastasis. Loss of Parkin or Pinkl
could thus promote tumorigenesis as a result of increased HIF-1a lev-

There is a growing appreciation that E3 Ub ligases, other
than Parkin, play a role in mitophagy and can substitute for
Parkin [147]. For example, the MUL1 E3 ubiquitin ligase
can compensate for Parkin loss in Drosophila and is required
for elimination of paternal mitochondria during embryogen-
esis [14, 15]. While Parkin is poorly expressed in most can-
cers and cancer cell lines, ARIH]1 is an E3 ubiquitin ligase
recruited by PINK1 to mitochondria to promote mitophagy
in response to chemotherapeutic agents and in doing so pro-
tects cancer cells and causes drug resistance [16]. ARIH1
thus represents a valid therapeutic target. Interestingly, while
ARIH1 functions similarly to Parkin in requiring PINK1

els. Furthermore, Parkin Pink1/Parkin-induced mitophagy modulates
cell cycle checkpoints by sequestering TBK1 away from centrosomes
where it promotes spindle assembly and mitosis. Thus increased
mitophagy can inhibit cell cycle progression. Parkin also has Pink1-
independent roles in regulating cell cycle by promoting Cdc20 and
Cdhl activity

and ubiquitinating mitochondrial proteins, its substrates
at the mitochondria are different, but remain uncharacter-
ized [147]. The extent to which other mitochondrial E3 Ub
ligases perform Parkin-like functions in mitophagy that are
relevant to cancer is an area of growing interest.

BNIP3/BNIP3L in cancer

BNIP3 protein levels are induced at early pre-malignant
stages of various human solid cancers as tumors become
hypoxic, including breast cancer and pancreatic cancer,
but frequently down-regulated as these tumors progress to
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becoming invasive [148—150]. Hyper-methylation of the
BNIP3 promoter is a common mechanism of BNIP3 inac-
tivation in human cancers, including in gastric, pancreatic,
liver, lung, and hematological malignancies [149, 151]. Epi-
genetic silencing of BNIP3 in human pancreatic cancer was
linked to chemoresistance and poor prognosis [150, 152],
consistent with tumor-suppressive functions for BNIP3. In
contrast to BNIP3, elevated BNIP3L expression in a cohort
of PDAC patients was linked to worse prognosis and loss
of BNIP3L in the KPC model of PDAC (LSL-KRas®'?P;
p53R172H: pdx1-Cre) delayed tumor progression from the
PanIN stage to malignant PDAC [153]. These findings sug-
gest that BNIP3 and BNIP3L may play different roles in
PDAC, possibly due to their expression in different cell types
or at different stages of disease progression, although this
requires further analysis.

The BNIP3 locus at the end of chromosome 10
(chr.10g26.3) is also subject to deletion in a number of can-
cers including in breast and prostate cancer [154]. BNIP3
is most frequently deleted in triple-negative breast cancer
(TNBC) [155, 156]. TNBC is the sub-type of breast cancer
that exhibits the strongest HIF signature and Warburg metab-
olism [157] and loss of BNIP3 combined with high HIF-1
expression predicted poor metastasis-free survival specifi-
cally for TNBC patients [156]. TNBC is also the breast
cancer sub-type with the highest degree of mitochondrial
dysfunction, possibly due to loss of BNIP3 and defective
mitophagy, and this could potentially be exploited therapeu-
tically to target mitochondrial function in TNBC and bring
a novel treatment option to this deadly form of breast can-
cer [158, 159]. Supporting data from human studies, BNip3
knockdown promoted tumor growth and metastasis in the
4T1 orthotopic model of mammary tumorigenesis [160].
Similarly, loss of BNip3 in the MMTV-PyMT mouse model
of breast cancer increased tumor burden and accelerated pro-
gression to invasive carcinoma and lung metastasis [156].
Increased tumor burden and invasiveness of BNip3 null
mammary tumors were associated with reduced mitophagy,
increased ROS, and elevated HIF-1 levels, contributing to
increased glycolysis and angiogenesis [156]. Quenching
ROS attenuated HIF-1 levels and reduced metastasis in the
BNip3 null mice, indicating that BNIP3 suppressed tumo-
rigenesis in this model by reducing mitochondrial mass and
limiting ROS production and explaining why there is selec-
tive pressure to inactivate BNIP3 downstream of HIF-1, as
tumors progress to becoming invasive [156].

BNIP3 has also been shown in other tumor types to pro-
mote tumor cell survival following detachment from extra-
cellular matrix (ECM) and high BNIP3 correlated in these
primary human cancers (kidney, sarcoma) with worse patient
outcomes [161]. These dichotomies may be explained by
differential roles for BNIP3 depending on tumor type or in
different cell types within a tumor (cancer stem cell versus
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non-stem cell, for example). As we have discussed previ-
ously, mitophagy plays an important role in maintaining the
cancer stem cell phenotype [162]. For example, mitophagy
limited p53 levels in HCC stem cells via PINK1-mediated
phosphorylation of mitochondrial p53 that gets turned over
by mitophagy resulting in de-repression of the stem cell
factor, Nanog [163]. Mitophagy also enhances stemness by
promoting glycolysis and limiting oxidative metabolism,
thus engendering the low energy state required for stemness
[162] and is required for segregation of young mitochondria
to daughter stem cells that is required to maintain stem cell
fitness [164]. Consistently, autophagy reduced replication
stress and aging in hematopoietic stem cells [165-167]. Spe-
cifically, stimulating mitophagy with nicotinamide riboside
(NR) that increases the cellular NADT/NADH ratio and
stimulates Sirtuin activity promoted hematopoietic stem cell
self-renewal [168]. The extent to which BNIP3/BNIP3L or
other mitophagy pathways promote cancer stemness remains
an open area of research.

FUNDC1 in tumor cell proliferation and migration/
invasion

The interaction of FUNDC1 with LC3 is inhibited by SRC-
mediated phosphorylation on Y18 within the LIR motif
of FUNDCI1 [62], suggesting that FUNDC1-dependent
mitophagy is antagonistic to SRC-driven effects on tumor
cell migration and invasion. FUNDCI also recently emerged
from an shRNA screen for genes that modulate tumor cell
migration and invasion in response to mitochondrial pro-
teotoxic stress [169]. Silencing FUNDCI increased rates
of focal adhesion assembly and disassembly, and increased
cellular motility and invasion in a DRP1-dependent manner
through Matrigel of both prostate and glioblastoma cell lines
[169]. Conversely, over-expressing FUNDCI1 limited cell
migration and invasion. The increased migration and inva-
sion caused by decreased FUNDCI1 expression was asso-
ciated with increased liver metastasis in vivo in xenograft
models, but conversely also resulted in decreased tumor cell
proliferation. RNA-Seq analysis of 33 different tumor types
in the TCGA database showed increased FUNDCI levels
to be associated with high levels of expression of genes
involved in mitochondrial bioenergetics, while low levels
of FUNDC1 were associated with increased ROS signaling
and metastasis, particularly in lung cancer. These findings
are at odds with previous work in which elevated FUNDC1
in human breast cancer was associated with increased tumor
cell proliferation, migration, and invasion and with worse
prognosis for breast cancer patients [170], and additional
work will be needed to explain these divergent findings.
Nevertheless, it has been suggested that the role of
FUNDCI1 in tumor cell proliferation and motility is
mitophagy-independent and reflects a more significant role
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for FUNDCI in mitochondrial bioenergetics [169]. Knock-
down of FUNDCI decreased levels of TCA cycle interme-
diates, lowered respiration rates, and increased ROS pro-
duction in tumor cells that was associated with increased
degradation of electron transport chain complexes. This
was rescued by exogenous expression of the LonP protease
that is known to maintain the integrity of electron transport
chain complexes and was misfolded as a result of FUNDC1
loss, possibly related to its role in resolving mitochondrial
proteostatic stress via interaction with HSC70 [66]. Interest-
ingly, exogenous LonP also rescued the effect of FUNDCI1
loss on tumor cell proliferation and invasion, suggesting that
FUNDC1 modulates tumor cell behavior independent of its
function in mitophagy [169].

Mitophagy defects in XP, AT, and FA cancer
predisposition syndromes

Mitophagy defects have emerged as a feature of the cancer
predisposition syndromes Xeroderma pigmentosum (XP),
Ataxia telangiectasia (AT), and Fanconi Anemia (FA) that
arise due to defects in nucleotide excision repair (XP) and
double-strand break repair (AT, FA) [114, 115, 171-174].

Work from the lab of Beth Levine identified FANC-C and
other Fanconi complex components (FANC-A, FANC-D2,
FANC-F, FANC-L, BRCA1, and BRCA?2) as required for
Parkin-mediated mitophagy as well as virophagy of Sindbis
virus [174, 175]. FANC-C co-localized with Parkin at depo-
larized mitochondria and loss of FANC-C caused dysfunc-
tional mitochondria to accumulate and elevated mitochon-
drial ROS production, as a result of defective mitophagy.
This role of FANC-C in mitophagy was genetically separa-
ble from its function in DNA repair [174]. Possibly due to
the defect in mitophagy, there was also increased inflamma-
some activation in FA cells that, along with elevated ROS
levels, contributed to bone marrow failure and increased
incidence of hematological pathologies in FA individuals,
while defective virophagy could explain why FA patients
are more prone to infection than others [174]. The FANC-
C c.67delG mutation is common in Dutch FA patients and
is associated with a milder form of the disease, including
older age at diagnosis, lower rate of bone marrow failure,
and reduced incidence of malignancy [176]. Intriguingly,
this mutant form of FANC-C retained its mitophagy func-
tion, but had lost its ability to promote DNA repair, indicat-
ing that the loss of mitophagy does contribute significantly
to disease pathology [174].

Loss of ATM kinase increased mitochondrial ROS and
caused mtDNA depletion [177-179] and neurons lacking
ATM exhibited reduced mitophagy [114]. Replenishing
NAD? levels with NR or via PARP inhibition promoted
mitophagy, rescued cell death, and stimulated neuronal
differentiation of ATM-deficient neurons [114]. Similarly,

PARP inhibition rescued mitophagy and neurodegeneration
in XPA patients [115]. Boosting NAD* levels also induced
mitophagy in long-term repopulating hematopoietic stem
cells and promoted long-term hematopoiesis in mice fed NR,
consistent with a role for mitophagy in promoting stemness
and longevity [162, 168]. The extent to which NAD* deple-
tion contributes to the mitophagy defect in FA and whether
it also can be rescued by NR or PARP inhibition has not
been examined.

From a therapeutic angle, inducing mitophagy with NR
or PARP inhibition could be beneficial if it prevents accu-
mulation of DNA mutations arising from mitochondrial dys-
function, but could be detrimental if it promotes tumor cell
survival. For example, DNA-damaging agents by depleting
NAD* would be predicted to cause mitochondrial defects
and loss of survival if mitophagy gene induction is inhibited.
Mitophagy induced via replenishment of NAD* (via NR or
PARP inhibition) may thus limit the efficacy of genotoxic
agents, such as cisplatin, or 5-fluorouracil.

Intersection of mitophagy
with mitochondrial dynamics

Mitochondrial fission is required for mitophagy in response
to certain stresses [ 180—182] and knocking out DRP1 in the
liver resulted in unopposed mitochondrial fusion and caused
p62-positive mitophagy intermediates to accumulate [182].
This was rescued by liver-specific knockout of OPA1 [182],
consistent with previous work, showing that healthy mito-
chondria are protected from turnover during nutrient depri-
vation by OPA1-dependent fusion [180, 181].

Mitophagy may require mitochondrial fission due to the
limiting size constraints on autophagosomal cargo that can
be engulfed successfully, and since mitochondrial fusion
requires membrane polarization, this would also selectively
target depolarized mitochondria for turnover [180, 181].
Indeed, DRP1 is activated by loss of MMP (AVY,,) and
recruited to the OMM via the MFF receptor [183, 184].

While FIS1 is now considered redundant for recruitment
of DRP1 to mitochondria [185], FIS1 is required for PINK1
recruitment to mitochondria, acts downstream of Parkin
to promote mitophagy and FIS1-dependent mitophagy in
leukemia stem cells (LSCs) promoted responses to chemo-
therapy [89]. FIS1 promotes mitophagy mainly via recruit-
ment of Rab-GAPs TBC1D15 and TBC1D17 that dimerize
to modulate Rab7 GTPase activity and also interact with
LC3/GABARAP family members ensuring the complete
encapsulation of mitochondria by autophagosomes [186].
In this way, FIS1 is less of a fission factor and more a direct
mitophagy regulator. Indeed, mutation of FIS1 led to accu-
mulation of large LC3-positive aggregates [187].
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At the OMM, DRP1 interacts with ZIP1 to modulate
MMP via uptake of Zn>* through the mitochondrial calcium
uniporter (MCU) [188]. DRP1 interacts with ZIP1 at sites
of mitochondrial fission, although GTPase-deficient DRP1
retains ability to interact with ZIP1 and to induce AY,,,,
indicating two separable functions for DRP1 in mitophagy
[188]. The DRP1-ZIP1 interaction was required for Parkin
recruitment to mitochondria in response to hyperglycemia,
and chelating Zn* or blocking the DRP1-ZIP1 interaction
inhibited Parkin recruitment and mitophagy [188]. As a
result, fragmented mitochondria with reduced MMP accu-
mulated as “damaged” mitochondria that could not be turned
over by mitophagy. BNIP3 and FUNDCI also interact with
DRPI and may function as alternative receptors for DRP1,
since DRP1 is required for hypoxia-induced mitophagy [65,
189]. These findings highlight how control of mitochondrial
dynamics is coordinated to promote mitophagy.

Mitochondrial fission and DRP1 phosphorylation on
S616 by ERK2 are required for oncogenic RAS transforma-
tion [190, 191]. DRP1-dependent fission was also required
for B-RAFV®E (ransformation in melanoma [192, 193].
Inhibition of DRP1 phosphorylation on S616 induced mito-
chondrial fusion and blocked tumor cell growth in xeno-
grafts, while pancreas-specific deletion of Drpl inhibited
progression from PanIN to pancreatic ductal adenocarci-
noma (PDAC) in KPC mice [190, 194]. At this time, it is
not understood why mitochondrial fission is required for Ras
transformation, but this is clearly of major interest, since
ERK inhibitors are used therapeutically against Ras-driven
cancers, including human PDAC [195]. Intriguingly, inhibi-
tion of Ras or ERK1/2 inhibition induces autophagy that was
associated with reduced mitochondrial mass [196], and thus,
one could speculate that mitochondrial fission is required for
Ras transformation to promote mitophagy and mitochon-
drial homeostasis. Ras transformation induces expression of
BNIP3 and BNIP3L [153, 197] and loss of BNip3L attenu-
ates PDAC formation in KPC mice [153], but studies to
demonstrate a requirement for BNIP3/BNIP3L downstream
of DRP1 in Ras transformation have not been performed.
The combination of ERK1/2 inhibition with autophagy inhi-
bition was shown to be strikingly effective at blocking tumor
cell growth in vitro [195, 196], and in patients where the
combination of Trametinib with hydroxychloroquine sig-
nificantly reduced PDAC tumor burden [195]; these studies
are now being expanded in clinical trials (NCT03825289).

Mitophagy, ROS, and metastasis

Mitochondrial dysfunction has been linked to metastasis
most frequently as a result of increased ROS production,
for example arising due to mtDNA mutation [198] or ETC
inhibition [199]. Indeed, mitochondrial ROS generation fol-
lowing recovery of host mtDNA in mitochondria-depleted
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tumor cells was required for metastatic progression in both
the 4T1 and B16-F10 orthotopic mouse models of metasta-
sis [200, 201]. Increased ROS has been shown to drive the
progression to metastasis in a number of other tumor models
also, including in PDAC where loss of TIGAR promoted
ROS-driven EMT, invasiveness, and metastasis to the lungs,
which was mitigated by treatment with N-acetyl cysteine
(NAC) [202]. ROS drives metastasis in part by activating
HIF-1 and NF-«B to induce EMT and tumor cell invasion,
respectively [203, 204]. ROS also inactivates protein phos-
phatases and activates key signaling kinases, such as ERK,
JNK, and p38 that stimulate various pro-metastatic pathways
[205, 206]. However, it has also been argued that ROS lim-
its metastasis in melanoma where circulating tumor cells
showed higher levels of oxidative stress than primary tumor
cells, and treatment of mice with NAC increased metas-
tasis without affecting primary tumor burden, suggesting
that many circulating metastatic cells were not surviving in
the circulation due to excess ROS [207, 208]. Successfully
metastasizing tumor cells had upregulated pathways (such
as folate metabolism to produce more NADPH) to manage
ROS and survive [207]. Taken together, this suggests that
while ROS is required for metastasis, too much ROS is del-
eterious to the disseminated tumor cell and limits metastasis
(Fig. 5).

This is consistent with data, showing that mitochondrial
ROS needs to be within the hormetic zone to promote metas-
tasis [209], as shown in studies reporting how high ROS lev-
els promote breast cancer invasiveness in vitro and in vivo,
in part by inducing the UPR™ [210]. ROS-induced UPR™
consisted of a transcriptional response involving CHOP,
ATF5, NRF2, FOXO3A, and SIRT3, which activated genes
that restored mitochondrial function [209]. Kenny et al.
showed that the UPR™ is upregulated in metastatic tumors
relative to primary tumors, consistent with the UPR™ con-
ferring a metastatic advantage and high UPR™ in primary
human cancer correlated with poor prognosis [210]. Thus,
ROS at non-lethal levels may promote mitochondrial fitness,
tumor cell viability, and metastasis in part by activating the
UPR™.

Mitophagy genes are induced as part of the UPR™ in
response to ROS and nutrient deprivation, including induc-
tion of p62/Sqstm1 by NRF2 and BNIP3 by FOXO3A. As
discussed above, loss of BNip3 promoted more rapid pro-
gression to metastasis in both the autochtonous MMT V-
PyMT mammary tumor model and in the 4T1 orthotopic
model of breast cancer [156, 160]. Significantly, mammary
tumors forming in MMTV-PyMT;BNip3—/— mice had
higher mitochondrial mass and higher ROS levels than wild-
type control tumors, and expressed elevated nuclear HIF-1
and HIF target genes [156]. Treatment of MMTV-PyMT
mice with anti-oxidant attenuated mammary tumor metasta-
sis to the lungs in BNip3 null mice to that seen in wild-type
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Fig.5 ROS, mitophagy, and metastasis. Extensive evidence shows
that ROS is required for tumor cell migration and metastasis. How-
ever, other data shows that excess ROS can limit metastasis, which
has lead to a model in which levels of ROS need to be maintained
within a range, the so-called hormetic zone, to promote metastasis.
ROS induces mitohormetic responses, including the UPR™ that pro-
mote mitochondrial fitness and limit ROS allowing tumor cells to
survive and progress to metastasis. By limiting ROS, mitophagy may
inhibit these adaptive responses and work suggests there is selection

mice, without affecting primary tumor growth [156]. This
work indicated that BNIP3 was suppressing metastasis by
promoting mitochondrial turnover and limiting ROS that
would otherwise cause HIF-1a stabilization [211].
However, BNIP3 and BNIP3L are induced in tumor cells
following detachment from the extracellular matrix (ECM)
[212] and required for mitophagy and tumor cell survival
following detachment [161] suggesting a pro-metastatic
function for BNIP3 and BNIP3L. The induction of BNIP3
and BNIP3L in response to detachment was HIF-1 depend-
ent due to hypoxia within tumor cell clusters and associated
with a switch to glycolysis and reductive carboxylation of
glutamine [161]. Preventing cell clustering, knocking down
HIF-1a, or knocking down BNIP3 and BNIP3L inhibited
mitophagy and increased mitochondrial mass and ROS lev-
els leading to cell death [161]. BNIP3 has also been shown to
promote the migration of B16-F10 melanoma cells through
effects on the actin cytoskeleton [213]. Similarly, BNIP3
is induced in the skin by hypoxia where BNIP3-depend-
ent mitophagy is required for keratinocyte migration dur-
ing wound healing [214]. It is not yet clear how mitophagy
modulates the actin cytoskeleton or is otherwise modulating
cell migration and this is an avenue for future investigation.
Thus, similar to the impact of ROS on metastasis, these
results indicate that BNIP3 (or BNIP3L) may be pro- or
anti-metastatic depending on context and whether BNIP3 (or
BNIP3L) is lost acutely, or is stably deleted in systems where

for BNIP3 loss during progression to invasiveness in breast cancer.
However, the ensuing higher levels of ROS that occur once BNIP3
or other mitophagy genes are lost, would not be expected to restrict
metastasis due to upregulation of other components of the UPR™.
Selection for tumor cells that survive, possibly by upregulating stress
response pathways that manage ROS, such as the NRF2 anti-oxidant
response, or ATF4 that promotes amino acid biosynthesis as part of
the UPR™, would promote cell survival and be permissive for metas-
tasis again

tumor cells are then able to adapt by upregulating other path-
ways that may compensate for BNIP3/BNIP3L loss, such as
increasing NRF2 target gene expression to mitigate against
ROS (Fig. 5). Recent work has identified NRF2 activation as
a mechanism by which tumor cells survive autophagy inhibi-
tion [215, 216]. NRF2 is upregulated in autophagy-deficient
cells due to elevated p62/Sqstm?2 levels [215, 217] and may
contribute to ATF4 induction in autophagy-deficient cells
both due to depletion of amino acids but also by interacting
directly with ATF4 [215]. Whether mitophagy inhibition is
as effective as inhibition of general autophagy at inducing
NRF2, through increased p62/Sqstm1 levels, has not been
examined but if not, may indicate that specific mitophagy
inhibition would be more effective than autophagy inhibition
in cancer therapy.

Mitophagy and cancer cachexia

Another debilitating aspect to terminal cancer is the devel-
opment of cancer cachexia that is found most commonly
in lung, pancreas, and colorectal cancer patients [218,
219]. Cancer cachexia entails rapid body weight loss due
to peripheral tissue wasting that negatively affects the long-
term survival of cancer patients, partly due to reduced toler-
ance of and response to therapy [218, 220, 221]. There are
many factors playing into cachexia, including release of pro-
inflammatory cytokines that affect brain, liver, and immune
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cell function that feed into breakdown of lipid in adipose
tissue and protein mass in skeletal muscle [222]. Previous
work identified BNIP3 as a transcriptional target of FoxO3A
during skeletal muscle atrophy [35]. It was also shown that
FoxO transcriptional activity was required for muscle atro-
phy in C57/B6 mice implanted with Lewis lung carcinoma
(LLC) and that BNIP3 mRNA was elevated in an FoxO-
dependent manner in the muscle of these tumor-bearing
mice [36, 37]. BNIP3 upregulation has also been detected
in cachectic muscle from PDAC patients [223]. Muscle atro-
phy in cancer cachexia has been linked to reduced oxidative
capacity and mitochondrial dysfunction in skeletal muscle
[37, 224, 225]. Taken together, this may suggest that BNIP3-
dependent mitophagy and lower mitochondrial mass pro-
motes muscle atrophy during cancer cachexia by facilitating
the switch away from oxidative metabolism to glycolysis.
This awaits further testing in the laboratory, but is clearly
an avenue of high significance given its relevance to disease
and patient suffering.

Targeting mitophagy as a therapeutic approach

Inhibiting general autophagy is advancing in clinical trials
for many different human cancers, primarily in combina-
tion with other drug regimens [226]. As mentioned above,
autophagy inhibition (with chloroquine) in combination
with Trametinib to inhibit ERK signaling showed significant
efficacy in reducing tumor burden in KRas-driven PDAC
[195]. Autophagy is induced by many therapeutic agents,
and by promoting survival elicits drug resistance [227].
This has provided the rationale for combining autophagy
inhibitors, such as chloroquine with drugs like temozolo-
mide in the treatment of glioblastoma, where the combined
therapy more than doubled patient survival times [228-230].
To what extent these effects are mediated via inhibition of
mitophagy versus inhibition of other autophagy functions
is not clear.

Functional mitochondria are required for the biosynthesis
of certain amino acids, such as aspartate that is required
for nucleotide biosynthesis, upon which tumor cells rely for
growth, and recent studies showed that inhibiting autophagy
with chloroquine synergized with agents that induce replica-
tion stress that depletes reserves of nucleotides that rely on
amino acids for their synthesis [231]. Furthermore, ferrop-
tosis is a necrosis-like cell death that is activated by oxidized
mitochondrial lipids and preceded by AWmt, mitochondrial
fragmentation, and disrupted cristae formation, that can be
prevented by activating mitophagy through over-expres-
sion of Parkin [232]. These studies suggest that inhibiting
mitophagy may promote ferroptosis, although it is important
to note that mitochondria were only required for ferroptosis
induced by cysteine deprivation and not in response to glu-
tathione peroxidase-4 (GPX4) inhibition. Findings such as
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these provide rationale for developing drugs that specifically
inhibit mitophagy to achieve a more targeted effect than with
targeting autophagy in general [233] (Fig. 6).

The use of such drugs to inhibit mitophagy would be
expected to cause excess dysfunctional mitochondria to
accumulate and thus would be expected to generate high lev-
els of ROS as seen when mitophagy is inhibited genetically
[156, 161]. This could promote cell killing, but could also
induce progression to metastasis depending on the level of
ROS generated. As we discussed previously [234], the com-
bination of a drug to inhibit mitophagy with compounds that
induce mitochondrial dysfunction and elevated ROS pro-
duction, such as Metformin or Mitoquinone, may push the
tumor cell further in the direction of cell death rather than
adaptation [234], although activation of NRF2 in response
to some of these agents [235] remains a challenge.

There is also an argument that promoting mitophagy
could be beneficial. For example, there was selection for
silencing of BNIP3 in drug-resistant PDAC, while re-
expression of BNIP3 promoted drug sensitivity [150, 152],
although the mechanistic underpinnings of this were not fur-
ther pursued. The cotton seed derived compound AT-101
induces BNIP3/BNIP3L-dependent mitophagy leading to
autophagic cell death in apoptosis-deficient tumor cells
[236]. Mitophagy is elicited in response to AT-101 follow-
ing rapid loss of membrane potential and marked induction
of heme oxygenase (HMOX1) [236]. HMOXI1 has been
shown to induce mitophagy in other systems and the con-
cern here would be the effect of AT-101 on normal tissues
with high redox potential, such as the brain and red blood
cells. Most of the drugs identified as inducing mitophagy,
like AT-101, do so indirectly by depolarizing mitochondria
[236] or modulating levels of ROS or NAD™ that activate
NRF2 and Sirtuins, respectively [233]. For example, PMI
is a Keap! inhibitor that induces mitophagy through activa-
tion of NRF2, and thus, mitophagy is unlikely to be the only
effect of such a drug [237]. Compounds that directly activate
or modulate MCRs for example are lacking. However, as dis-
cussed above by maintaining mitochondrial fitness, stresses
that induce mitophagy promote survival [53], which may be
a useful approach in the treatment of myopathies and other
diseases, but would not be a good outcome in cancer therapy.
Overall, acute inhibition of mitophagy in combination with
other drugs/stresses that depend on mitophagy for survival
remains the approach most likely to yield efficacy in cancer
treatment (Fig. 6).

Summary and future directions

Mitophagy is a core component of the mitochondrial qual-
ity control system in the cell alongside the UPR™ and
other mitochondrial surveillance mechanisms that limit
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Fig.6 Targeting mitophagy in cancer therapy. Mitophagy is induced
physiologically in response to hypoxia and nutrient deprivation or can
be activated with drugs that induce mitochondrial stress (see Fig. 3),
such as Metformin or PARP inhibitors. Alternatively, mitophagy can
be inhibited using generic autophagy inhibitors such as chloroquine
since as yet specific mitophagy inhibitors remain to be developed.
Activating mitophagy promotes mitochondrial homeostasis and cell
survival while inhibiting mitophagy, by causing mitochondrial dys-
function, elevated ROS production, metabolite deficiencies, including
deficiency for key amino acids, such as cysteine, frequently results in

mitochondrial ROS production, ensure metabolic homeo-
stasis, and prevent apoptosis. There are numerous mitophagy
pathways in the cell and how each of these different path-
ways interact with each other, are redundant versus over-
lapping or are activated by oncogenic signaling specifically
remains to be determined in most instances. Furthermore,
how mitophagy pathways interact with the UPR™ and other
mitochondrial surveillance processes also requires con-
tinued investigation. In cancer, various mitophagy path-
ways appear to be tumor-promoting or tumor-suppressive
depending on tumor type or indeed stage of progression,
or importantly, in cancer stem cells versus non-stem cells.
Teasing these nuanced roles apart will require further study
through use of relevant pre-clinical cancer models that target
these pathways in appropriate spatial and temporal ways.
The role of mitophagy in cancer cachexia is emerging as
an area of significant interest given the debilitating effect
of tissue wasting on a cancer patient’s long-term survival.
Finally, work is on-going to determine how mitophagy might
be manipulated therapeutically to better treat cancer, but
again, this may depend on tumor type and stage of progres-
sion, and this is where the development and use of improved
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cell death. Based on this rationale, inhibiting mitophagy seems more
likely to elicit a clinical benefit in cancer therapy, while activating
mitophagy would likely promote cell survival and therefore not be
advisable as a cancer therapy, although possibly useful for treatments
of myopathies where mitophagy has been shown to promote tissue
homeostasis. However, it is likely not a simple as this, since cancer
cells may adapt to mitophagy inhibition, for example by upregulating
NRF?2 signaling to allow cancer cell survival. These studies require
much more extensive analysis in the lab and clinic before conclusions
can be made

pre-clinical cancer models targeting mitophagy pathways
will be essential.
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