Skip to main content
. 2021 Jun 22;15:656578. doi: 10.3389/fnhum.2021.656578

Table 1.

Handcrafted features used for autism spectrum disorder/typically developing (ASD/TD) classification.

Features Formulation
1. Peak-Peak Mean (PPM) PPM =1Hi=1H(x(Pi)-x(Ti))
Where, Pi and Ti are the time indexes of peak and trough, respectively.
2. Mean Square Value (MSV) MSV =1Nn=0N-1x(n)2
3. Variance (VAR) VAR =σ2=1Nn=0N-1[x(n)-x¯]2,
x¯=1Nn=0N-1x(n)
DFT (Discrete Fourier Transform): X(k)=n=0N-1x(n)e-j2πnkN k=0,,N-1
4. Power Spectral Sum (PSS) PSS =k=0N-11N|X(k)|2
5. Maximum Power Spectral Frequency (MPSF) MPSF =argmaxk1N|X(k)|2
6. Maximum Power Spectral Density (MPSD) MPSD =maxk1N|X(k)|2
mn=-ωnX(ω)dω
7. Hjorth Parameter: Activity Activity = m0
8. Hjorth Parameter: Mobility Mobility =(m2m0)1/2
9. Hjorth Parameter: Complexity Complexity =(m4m2)1/2(m2m0)1/2
Y =[ξi,,ξN]T ξi=(x(ti),x(ti+τ),,x(ti+(- 1)τ))
10. Correlation Dimension (CD) CD =limr0logC(m,r)logr 
C(m,r)=1m2i,j=1mθ(r-|ξi-ξj|)
Where, θ is a Heaviside step function; r is threshold of similarity.
11. Kolmogorov Entropy (KE) KE =1τlnC(m,r)C(m+1,r)
12. Approximate Entropy (AE) AE = Φm(r)−Φm+1(r)
Φm(r)=1N-m+1i=1N-m+ 1InCim(r)
Cim(r)=No. of ξj|maxj|ξi-ξj|rN-m+1 
j ∈ [1, Nm + 1]
13. Sample Entropy (SaE) SaE = −ln(Ψm+1(r)/Ψm(r))
Ψm(r)=1N-m+1i=1N-m+ 1Cim(r)
Cim(r)=No. of ξj|maxj|ξi-ξj|rN-m 
j ∈ [1, Nm + 1], ji
14. Lyapunov Exponent (LE) LE(i)=limz1zlog2||δξi(z)||||δξi(0)|| 
Where, ||δξi(z)|| is the distance of two neighboring points in the i-th direction at time z.
15. Singular Spectrum Entropy (SSE) SSE =- jpj(s)log(pj(s))
Where, {pj(s)} is the probability distribution of singular spectrum value smmsm; sm is the eigenvalue of Y.
16. Permutation Entropy (PE) PE =-i=1m!pi(π)ln(pi(π))/ln(m!)
Where, π is the order pattern; {pi(π)} is the probability distribution of π.
17. C0 Complexity C0 =n=0N-1|x(n)-y(n)|2n=0N-1|x(n)|2,
y(n)=1Nk=0N-1Y(k)ej2kπnN Y(k)={X(k), |X(k)|2 > PSS0,         |X(k)|2  PSS}
18. Shannon Entropy (SE) SE =-ipi(x(n))log(pi(x(n))) 
Where, {pi(x(n))} is the probability distribution of x(n).
19. Power Spectral Entropy (PSE) PSE =-ipi(PS)log(pi(PSS)) 
Where, {pi(PSS)} is the probability distribution of power spectral sum.
20. Differential Entropy (DE) DE =12log(2πeσ2) 
Where, σ is the standard deviation of x(n).