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Abstract

Velocity of capillary flow in closed or open channels decreases as the flow proceeds down the 

length of the channel, varying as the inverse of the square root of time or as the inverse of travel 

distance. In order to increase the flow rate—and extend the duration of the flow—capillary pumps 

have been designed by mimicking the pumping principle of paper or cotton fibers. These designs 

provide a larger volume available for the wicking of the liquids.

In microsystems for biotechnology, different designs have been developed based on experimental 

observation. In the present manuscript, the mechanisms at the basis of capillary pumping are 

investigated using a theoretical model for the flow in an open-channel “capillary tree” (i.e., an 

ensemble of channels with bifurcations mimicking the shape of a tree). The model is checked 

against experiments. Rules for obtaining better designs of capillary pumps are proposed—

specifically we find: (1) when using a capillary tree with identical channel cross-sectional areas 

throughout, it is possible to maintain nearly constant flow rates throughout the channel network, 

(2) flow rate can be increased at each branch point of a capillary tree by slightly decreasing the 

areas of the channel cross-section and decreasing the channel lengths at each level of ramification 

within the tree, and (3) higher order branching (trifurcations vs. bifurcations) amplify the flow rate 

effect. This work lays the foundation for increasing the flow rate in open microfluidic channels 

driven by capillary flow; we expect this to have broad impact across open microfluidics for 

biological and chemical applications such as cell culture, sample preparation, separations, and on-

chip reactions.
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Introduction

Microfluidic capillary systems use passive capillary forces, rather than traditional active 

pumping methods, eliminating bulky peripheral equipment and enabling autonomous device 

operation for field-based applications.1–5 Open microfluidic capillary systems remove at 

least one ‘wall’ of the microfluidic channel, further extending usability and 

manufacturability;6,7 these systems have burgeoned in use in diverse fields including cell 

signaling, organotypic models, metabolomics, sample preparation, diagnostics and 

bioassays, chemical reactions, and space research.8–11 To extend the applications of 

capillary-driven microfluidics, it is necessary to overcome a fundamental limitation of 

capillary flow—the inherent decrease in flow rate as the flow advances in a microfluidic 

channel. In this manuscript, we build on prior capillary pumping systems,4,12 by developing 

the general theory for velocity (and flow rate) enhancements achievable in capillary 

pumping systems that mimic the branches of a tree, providing a physical solution that can be 

applied to wide-ranging biological and chemical applications in both open- and closed-

channel microfluidics.

After an evanescent initial inertial phase, a capillary flow is governed by the balance 

between capillary force and wall friction. This analysis was first done by Lucas, Washburn, 

and Rideal for cylindrical tubes in the 1920s.13–15 Shortly after, Bosanquet established the 

general equation of the motion of fluids in capillary channels.16 Capillary flow in open 

grooves is more recent, with the investigation of the capillary flow in V-grooves for solder 

flow for microelectronics17–20 and for space “plumbing”.21,22 Recently, it was shown that 

the Lucas-Washburn-Rideal (LWR) law should be modified to account for arbitrary shaped 

closed channels and open channels.23–27 It was shown that, for an arbitrary morphology, 

closed or open, provided that the cross-sectional area is uniform, the velocity of capillary 

flow decreases as the inverse of the square root of time or as the inverse of the travel 

distance, using an adapted generalized Lucas-Washburn law.6,7,28

This dependency indicates that the capillary flow rate decreases rapidly. In order to maintain 

an enough flow rate—and at the same time, extend the duration of the flow—capillary 

pumps have been conceived. Their design mimics the structure of paper or threads or the 

arborescence of a tree.29–31 These materials provide a large volume available for the wicking 

of the liquids and maintain a significant flow rate in the root channel.
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In microsystems for biotechnology, many different designs have been experimentally 

developed for closed systems.3,12 Figure 1 shows two designs having the shape of a tree.

Here, the mechanisms at the basis of capillary pumping in open channels are investigated 

based on the analysis of the flow in a “capillary tree” (i.e., an ensemble of channels with 

bifurcations mimicking the shape of a tree). Shou et al. have theoretically studied closed 

cylindrical networks, however they did not include experiments).32 As Shou, we conclude 

that LWR law must be modified to account for the ramifications.

Velocity (and flow rate) decreases steadily in uniform cross section open channels. If one 

wants to avoid this decrease in the “root channel” i.e., the channel of interest for biological 

or chemical applications, a capillary pumping device should be added behind the root 

channel (Figure 2). We first show that a capillary tree with identical cross section provides a 

nearly constant flow rate in the root channel. It is assumed that the capillary tree is 

“symmetrical”, i.e., all branches at the same level of ramification are identical. Then, the 

travel distance is the same for each path, and is obtained by writing the balance between the 

capillary force on the advancing meniscus and the wall friction along the path. Second, we 

show that an improved capillary tree (with decreasing cross-sectional areas and small 

lengths) may even increase the flow rate in the root channel. The approach is done 

considering an open system, but readily applies to closed systems. The model is checked 

against experiments performed with nonanol flowing in open microfluidic channels (U-

grooves) milled in poly(methyl methacrylate). Our approach unveils a path for designing 

efficient capillary pumps with marked flow rate enhancements.

1. Materials and methods

Capillary tree channels.

The devices comprise a wide inlet port in which the liquid is fed from a pipette, and outlet 

ports at the extremity of the channels (see SI section 5 for the schematic of the devices). In 

this work, open rounded channels of different lengths, widths and depths have been used 

(dimensions given in Figures 6, 8, and SI. 4 and 5).

The use of winding channels is required due to the dimensions of the solid plate. Previous 

studies have shown that the turns do not affect the capillary flow in the absence of capillary 

filaments, as is the case in our study due to the U-shaped channel cross section.33 A typical 

channel cross section is shown in Figure 3. The cross section of the channel is a vertical 

groove with a rounded bottom, which avoids the formation of filaments observed in channels 

of rectangular cross section.

We investigate first the flow behavior in capillary trees with the same cross section as that of 

Figure 3 in the whole tree. The average friction length (we will see later the use of the 

friction length) was estimated to be λ− 200  μm (calculated using COMSOL34) for the 

homothetic channel of 0.80 mm of width, in our preceding study.35 The friction length was 

defined in an early publication35 (and included again here in SI section 6) Using an 

approximate homothetic ratio, an estimate of the friction length in the root channel of 1.06 

mm of width is 259 μm.
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Secondly, we investigate the case of capillary trees with homothetically decreasing channel 

cross sections.

The different characteristics of the cross sections are given in the Table 1.

The channels were designed using computer-aided design (CAD) software (Solidworks 

2017, Waltham, MA). The design files were converted to G-code using CAM (computer 

aided manufacturing) software (Fusion 350) for micromilling. Channels were milled in 

PMMA (poly(methyl methacrylate) plates of 3.175 mm thickness (#8560K239; McMaster-

Carr, Santa Fe Springs, CA) using a 2 flute ball endmill with cutter diameter of 1/32” 

(TR-2–0313-BN), or a 2 flute square endmill with cutter diameter of 1/16” (TR-0625-S) 

purchased from Performance Micro Tool, Janesville, WI. The devices were fabricated using 

a Datron Neo computer numerical control (CNC) mill (Datron, Germany). Roughness of the 

channel bottom is of the order of a few microns, one order of magnitude less than the values 

that would produce velocity fluctuations as observed by Lade.27

Materials.

Nonanol was used for the study as it is a low-volatility solvent (boiling point 213 °C), 

mitigating evaporation. The physical properties of nonanol are indicated in Table 2.36,37 

Nonanol has been colored with Solvent Green 3 from Sigma-Aldrich at concentrations of 

1.43 mg/mL. The volume of nonanol added to the inlet channel was ~ 1.2 mL. Additional 

nonanol was added, once fluid reached third branch in the bifurcation device. This is to 

maintain a flat meniscus in the inlet.

Imaging.

Top-view images were recorded using a Nikon-D5300, ultra-high resolution SLR camera.

2. Theory

We first examine the case of a simple capillary network, which has the shape of a tree 

(Figure 4). In order to simplify the first algebraic developments, all the channels are 

assumed to have the same cross section. In such a case, the flow is “symmetrical”, i.e. the 

advancing menisci of the flow are theoretically located at the same place in all daughter 

channels of each level.

Starting with the root channel: The travel distance z0 in the root channel is given by the 

balance between friction and capillary force6

p z0τ− = p z0 μV 0
λ− = p γ cosθ* (1)

where τ−  is the average friction, p the channel perimeter in a cross section, V0 the average 

velocity (which is a function of time and/or travel distance), λ−  the average friction length,6 μ
the viscosity, γ the surface tension, and θ* the generalized Cassie angle (in order to take into 

account the free surface of the open channel6,9 and accommodate for the potential of non-

monolithic channels comprising different materials on the floor and walls; see SI section 1 
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for definition of generalized Cassie angle). Then we have the relation between travel 

distance and time

d z0
2

dt = 2 λ− γ cosθ*
μ , (2)

And finally

z0 = 2 λ− γ cosθ*
μ t . (3)

Note that the time at which the flow reaches the bifurcation at a distance L0 from entrance, is

t0 = μ
2 λ− γ cosθ* L0

2 = L0
2

C . (4)

where C = 2 λ− γ cosθ*/μ. After the first bifurcation, we must use a formulation that uses the 

pressures and write the pressure equilibrium along a fluidic path.35,38

p L0 μV 0
λ−

1
S + p z1 μV 1

λ−
1
S = p γ cosθ*

S , (5)

where z1 here is the travel distance in the first ramification, S the cross-sectional area and V1 

the velocity in the daughter branch (V 1 =
dz1
dt ). Note that because of the assumption that the 

daughter branches have the same cross section as the root channel, S simplifies in (5), and 

there is a unique friction length λ− and a unique Cassie angle θ*. Integrating (5) with the 

condition t=t0, z1=0, and considering the mass conservation S V 0 = 2 S V 1, yields

z1
2 + 4L0z1 − C t − t0 = 0 . (6)

And the solution is simply

z1 = − 2L0 + 4 L0
2 + C t − t0 . (7)

Note that the total travel distance is

Z = L0 + z1 = − L0 + 3 L0
2 + C t . (8)

The time t1 at which the flow reaches the end of the first branches (second bifurcations) 

along a distance L1, is
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t1 = t0 + L1
L1 + 4L0

C = L1 + L0
2 + 2L0L1
C . (9)

Let us proceed to the next level of ramification. The capillary pressure is still the same (since 

the channel cross section is uniform) but the wall friction increases.

p L0 μV 0
λ−

1
S + p L1 μV 1

λ−
1
S + p z2 μV 2

λ−
1
S = p γ cosθ*

S . (10)

Integration of (10) with the condition t = t1, z2 = 0, considering the mass conservation 

S V 0 = 2 S V 1 = 4 S V 2 yields

z2
2 + 2 4L0 + 2L1 z2 − C t − t1 = 0, (11)

and

z2 = − 4L0 + 2L1 + 4L0 + 2L1
2 + C t − t1 . (12)

Note that the total travel distance is

Z = L0 + L1 + z2 = − 3L0 − L1 + 4L0 + 2L1
2 + C t − t1 . (13)

The time t2 at which the flow reaches the end of the second branches (third bifurcations) is

t2 − t1 = L2
L2 + 4L1 + 8L0

C . (14)

An approach using recurrence leads to the general formula for the daughter branch number n

zn = − 2nL0 + 2n − 1L1 + … + 2 Ln − 1

+ 2nL0 + 2n − 1L1 + … + 2 Ln − 1
2 + C t − tn − 1

(15)

and

tn − tn − 1 = Ln
Ln + 22Ln − 1 + … + 2n + 1L0

C . (16)

In the following sections, we use the theoretical model to determine the travel distances and 

flow rates for three different capillary trees and compare the model with experimental 

results.
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3. Comparison with experiments

Figure 5 shows still images taken from a video of the open-channel capillary flow 

progressing in the capillary tree (See SI Video S1 and Figure SI.4. for the device design).

The plot of the travel distances versus time is shown in Figure 6a. The travel distance – 

theoretically identical in all subchannels due to the symmetry of the tree – is calculated from 

equation (15) using Excel software. Elapsed time is incremented stepwise starting at time 0 

seconds where the flow enters the root channel. First, using equation (3) for the root channel, 

the time t0 when the flow exits the root channel is determined. Then, using equation (15) for 

n = 1, the time t1 where the flow exits the first daughter branches, is determined, and so on, 

until the last ramifications. Derivation of the travel distance versus time then yields the 

velocities in the capillary tree. Note that after the first bifurcation, the velocities are nearly 

constant in the device. The analytical form of the velocity in the capillary tree is given by 

derivation of (15)

V n = 1
2

C
An

2 + C t − tn − 1
, (17)

where An is a constant depending on the daughter channels lengths and ramification level.

At each bifurcation, there is a negative jump of velocity. It is similar to what is observed 

with a widening of a unique channel.39–41 On the other hand, the total flow rate is nearly 

constant after the second level of bifurcations, as shown in Figure 6b. Using (17), flow rates 

are given by

Qn = C
An

2 + C t − tn − 1
2 n − 1 S . (18)

The velocity of the tip of the flow is the time derivative of the travel distance given by 

equation (15) where Vn = dzn/dt. Denoting An = 2nL0 + ⋯ + 2 n−1Ln-1, we obtain equation 

(17) for the velocity at the tip of the flow. The flow rate at the tip of the flow is obtained by 

multiplying the velocity by the cross-sectional area. Finally, the total flow rate (in the root 

channel) is obtained by adding the contribution of all the flow tips, resulting in equation 

(18). The term 2n−1 accounts for the summation for the bifurcating trees. For trifurcating 

trees, this would be 3n-1.

In the following section, we investigate the effect of a progressive decrease of the cross-

sectional areas of the channels.

4. Decreasing cross-sectional areas and capillary pumping.

Let us now consider a capillary tree where the cross sections decrease by a homothetic ratio 

(i.e., channel width and height decrease by the same factor) from one level to the next.
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4.1 Bifurcating capillary trees.

In a first step, we investigate capillary trees where channels divisions are bifurcations (two 

daughter channels for one mother channel), as shown in Figure 7. In such a case the cross-

sectional perimeters are

pn = αpn − 1 = … = αn − 1p1 = αnp0, (19)

and the cross-sectional areas are

Sn = α2Sn − 1 = … = α2 n − 1 S1 = α2nS0 . (20)

Moreover, the friction lengths are homothetic because they are proportional to the hydraulic 

diameter of the channel

λ−n = αλ−n − 1 = … = αn − 1λ−1 = αnλ−0 . (21)

Hence the ratio p/ λ− is constant, equal to p0/ λ−0. Moreover, the Cassie angles are everywhere 

the same, i.e., θ* = θ1* = … = θn*. Generalizing (10), considering the change of the cross 

section at each ramification level, we obtain

α2nL0 V 0 + α2 n − 1 L1 V 1 + . . + α2Ln − 1V n − 1 + zn V n = pn
p0

γ
μ λ−0 cosθ*

= αn γ
μ λ−0 cosθ* = αn C

2 .
(22)

The mass conservation equation yields

V 0 = 2 α2 V 1 = 2 α2 2 V 2 = … = 2 α2 n V n, (23)

We then can integrate (22) under the form of a quadratic polynomial in zn

z n2 + 2 2nα4nL0 + 2n − 1 α4 n − 1 L1 + … + 2α4Ln − 1 zn = αnC t − tn − 1 , (24)

And the solution is

zn = − 2nα4nL0 + 2n − 1 α4 n − 1 L1 + … + 2α4Ln − 1

+ 2nα4nL0 + 2n − 1 α4 n − 1 L1 + … + 2α4Ln − 1
2
+αnC t − tn − 1

1
2 .

(25)

It is easily verified that, for α = 1, equation (25) reduces to equation (15). Figure 8 shows the 

results for the device shown in Figure 7 (α = 0.85).
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4.2. Trifurcating capillary trees

In this section, the flow behavior in a trifurcating capillary tree is investigated. Figure 9 

shows the device used for performing the experiments. Here, the capillary flow first divides 

in the two “exterior” channels because of the immediate presence of the walls, but the flow 

equilibrates somewhat later (sometimes a small delay in the middle channel can be 

observed). In the case of trifurcating devices, the approach is like that of the preceding 

section. However, the mass conservation equation (23) becomes

V 0 = 3α2 V 1 = 3α2 2 V 2 = … = 3α2 n V n . (26)

Then, in a similar integration as for equation (22), we obtain the solution

zn = − 3nα4nL0 + 3n − 1 α4 n − 1 L1 + … + 3α4Ln − 1

+ 3nα4nL0 + 3n − 1 α4 n − 1 L1 + … + 3α4Ln − 1
2
+αnC t − tn − 1

1
2 .

(27)

Using the geometrical data of Figure 9, we obtain the travel distances vs. time shown in 

Figure 10.

5. Discussion

In the preceding sections, we have shown that the theoretical model reproduces well 

experimental travel distances in capillary trees. Moreover, it has been shown that the travel 

distances in the different branches of the tree are not of the form z = A t , but of the form 

z = A + B + Ct. A similar relation was also obtained in the case of networks.35

Let us now consider the flow rates. A comparison between all the cases studied here is 

shown in Figure 11. As expected, the trifurcating capillary tree with decreasing cross 

sections produces the highest flow rates.

Let us now consider the question: what morphology of the capillary tree produces the 

highest flow rate? In other words, what morphology corresponds to the best pumping 

efficiency? In the following, we do not consider the feasibility of the fabrication, but only 

the theoretical optimum.

The parameters of the geometry of the capillary tree are (1) the number of divisions at each 

ramification, (2) the lengths of the flow channels, and (3) the homothetic ratio for the cross 

sections of the flow channels between each ramification. Note that relations (25) and (27) 

can be generalized to a higher number of divisions at each ramification. In such case, the 

coefficients 2 in (25) and 3 in (27) are replaced by the number of divisions. The number of 

parameters is large, making it difficult to detail the influence of each parameters. In the 

simplified case of daughter channels of equal length, a mathematical approach can be done 

and is presented in SI section 2–4. The approach concludes that short channels lengths, large 

number of sub-channels at a division (node) and homothetic ratios of the order of 0.7 – 0.8 
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produce the highest flow rate. In the following, we use our model to analyze more concretely 

the influence of the parameters.

In order to answer these questions, let us consider a two capillary trees with 4 ramification 

levels and a homothetic ratio α = 0.8 between each level. These capillary trees have flow 

segments of much shorter lengths than that considered before, of the order of 10 to 20 mm 

only. The different lengths and cross sections are listed in Table 3.

The calculated travel distances and flow rates are shown in Figure 12 and 13 for cases #1 

and #2 respectively.

Clearly, the shorter channels lengths associated to the progressive reduction of the cross-

sectional areas have the effect to bring the travel distances closer with that of the 

generalized/modified LWR (Lucas-Washburn-Rideal) law for the case of the single channel. 

Homothetically decreasing the channel cross-sectional areas increases the total flow rate, as 

shown in Figure 13. Even if the flow velocity suddenly decreases at each bifurcation, the 

total flow rate increases because of the contribution of the additional daughter branches. 

Hence, an important increase of flow rates is obtained by the reduction of the channel 

lengths and of the cross-sections at each bifurcation, when the length of the branches is 

sufficiently small.

6. Conclusion

The present analysis demonstrates the possibility of obtaining nearly constant flow rates by 

using a capillary tree of same cross-sectional areas. Once the flow has invaded the root 

channel and is divided in the daughter branches, the fluid velocity is nearly constant in the 

wetted channels. This solves a significant problem in capillary-driven microfluidics: 

decrease in fluid flow rate along the length of the channel that is observed in simple non-

bifurcating channels.

Moreover, it is shown that decreasing the channel lengths and slightly decreasing the areas 

of the channel cross-section at each level of the tree has the effect to stepwise increase the 

flow rate each time that the tip of the flow passes a bifurcation. A more pronounced effect is 

obtained with trifurcations. Hence, this work provides insight into the physics of capillary 

pumping: in order to obtain efficient pumping, the capillary network should be constituted of 

channels of small lengths and of (slightly) decreasing cross sections. We expect this insight 

to be useful when designing capillary-driven microfluidic systems for applications requiring 

efficient flow of a volume of fluid that would be challenging to deliver with non-bifurcating 

channels. Potential applications include sample preparation, cell culture, assay workflows 

(reagent delivery, washing, etc.), and chemical reactions.

A limitation to flow rate amplification stems from geometrical and fabrication 

considerations. For example, the reduction of the dimensions of the cross section with a 

homothetic factor of 0.8 results in channel widths of 1000, 800, 640, 512, 410, 328 and 262 

μm for a six-level capillary tree. One reaches quickly the limits of milling channels in a 

plastic plate, first because of the smaller dimensions of the endmill, and second, because of 

the steric arrangement of the tree in the substrate (the overall device footprint).
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However, methods other than milling are commonly used in microfluidic device fabrication, 

and our work here provides a general framework for evaluating flow rate gain in capillary 

trees with channels of any dimension.

Finally, we remark that the most efficient pumping—obtained by using very short channels 

with many divisions—has a morphology resembling that of fibrous media. In order to have a 

pumping efficiency similar to that of a fibrous media, the characteristic length of the 

capillary tree should be of the same order of the characteristic dimension of the fibrous 

media. We assume this is the reason why it is found impossible to extract by capillary means 

liquid from a fibrous media towards open channels provided that the open cannel has a 

radius larger than the effective capillary radius in the pore space.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Tree-line capillary pump designs from Zimmermann et al.12
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Figure 2. 
Schematic showing a capillary pump (in the form of a tree-like structure). Capillary pump 

can be placed downstream of any channel of interest. We included a small winding channel 

labelled root channel as an example channel of interest where biological or chemical 

applications could take place.
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Figure 3. 
(a) Detail of the cross section.

(b) Perspective view of the rounded channel.
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Figure 4. 
Schematic of the capillary tree with the inlet port (left) and the four outlet ports.
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Figure 5. 
Progression of the nonanol (dyed blue for visualization) in the capillary tree at (a) the first 

bifurcation, (b) the second bifurcation, (c) the third bifurcation and in (d) almost reaching 

the end of the channel. Scale bar = 1 cm.
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Figure 6. 
(a) Travel distances in the bifurcating capillary tree vs. time (corresponding to the design 

shown in Figure 5). The green dots correspond to the experimental travel distances (average 

of three replicates and error bars are standard deviation of the mean), and the black line to 

the theoretical model (equation 15). (b) Comparison between the flow rate in the root 

channel in the bifurcating capillary tree (black line) and in a single channel (red line) based 

on the theoretical model (equation18). The shading in the figure only applies to the black 

line and indicates the position of the fluid front within the capillary tree corresponding to the 

flow rate in the root channel (black line).

Lee et al. Page 19

Langmuir. Author manuscript; available in PMC 2021 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
View of the capillary tree with homothetically decreasing cross sections. The homothetic 

ratio is α = 0.85. Units in mm, and L is length of the respective channel part in the device 

(see SI Figure SI.4 for additional dimensions).

Lee et al. Page 20

Langmuir. Author manuscript; available in PMC 2021 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
(a) Travel distances in the homothetic bifurcating capillary tree vs. time (corresponding to 

equation 25 and to the design shown in Figure 7). The green dots correspond to the 

experimental travel distances (average of three replicates and error bars are standard 

deviation of the mean), and the black line to the theoretical model (equation 25). (b) 

Comparison between the flow rate in the root channel in the homothetic bifurcating capillary 

tree (black line) and in a single channel (red line) based on the theoretical model (equation 

18 modified for 25). The shading in the figure only applies to the black line and indicates the 

position of the fluid front within the capillary tree corresponding to the flow rate in the root 

channel (black line). Jumps in the flow rate are due to the crossing of the flow through 

bifurcations. These jumps are nearly instantaneous, but the time step of the calculation 

smears somewhat the jumps.
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Figure 9. 
Trifurcating capillary tree with homothetically decreasing cross sections. The homothetic 

ratio is α = 0.85. Units in mm, and L is length of the respective channel part in the device 

(see SI Figure SI.5 for additional dimensions).
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Figure 10. 
(a) Travel distances in the homothetic trifurcating capillary tree vs. time (corresponding to 

equation 27 and to the design shown in Figure 9). The green dots correspond to the 

experimental travel distances (average of three replicates and error bars are standard 

deviation of the mean), and the black line to the theoretical model (equation 27). (b) 

Comparison between the flow rate in the root channel in the homothetic trifurcating 

capillary tree (black line) and in a single channel (red line) based on the theoretical model 

(equation 18 modified for 27). The shading in the figure only applies to the black line and 

indicates the position of the fluid front within the capillary tree corresponding to the flow 

rate in the root channel (black line). Jumps in the flow rate are due to the crossing of the 

flow through bifurcations. These jumps are nearly instantaneous, but the time step of the 

calculation smears somewhat the jumps.
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Figure 11. 
Comparison of the flow rates in the capillary trees: Flow rates vs. travel distance. The largest 

flow rates are associated to the trifurcating devices with decreasing cross-sections. Flow 

rates are calculated with LW equation (single channel), equation 18 (bifurcating, identical), 

equation 25 (bifurcating, homothetic), and equation 27 (trifurcating, homothetic).
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Figure 12. 
Case #1. The case of the single channel (red line) is compared to that of the bifurcating and 

trifurcating capillary trees. “Identical” refers to a capillary tree of uniform cross sections, 

while “homothetic” refers to a capillary tree with homothetically decreasing cross sections. 

(a) Travel distance in the successive channels (with the homothetic ratio 0.8) as a function of 

time calculated using equations (25) and (27). (b) Flow rate vs. travel distance.
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Figure 13. 
Case #2. The case of the single channel (red line) is compared to that of the bifurcating and 

trifurcating capillary trees. The flow rate increases when the channel cross sections are 

homothetically reduced (green and orange line), resulting in a pumping effect.
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Table 1.

Characteristic dimensions of the channels

Level 0 Level 1 Level 2 Level 3

Width[mm] 1.06 0.90 0.77 0.65

Depth[mm] 1.76 1.50 1.28 1.08

Wetted perimeter[mm] 4.13 3.51 3.00 2.53

Friction length[μm] 259 220 187 159

Cross sectional area[mm2] 1.75 1.26 0.92 0.66

Langmuir. Author manuscript; available in PMC 2021 November 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lee et al. Page 28

Table 2.

Physical properties of nonanol (in the PMMA channel) at 20°C.

Physical properties Value

Viscosity μ 11.2 Pa.s

Surface tension γ 28.5 mN/m

Young contact angle θ 13°

Cassie contact angle θ* 53°

Coefficient C (relation (4)) 794 mm2/s
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Table 3.

Geometrical characteristics of the tree

Length Case #1 [mm] Length Case #2 [mm] Cross section [mm2] Friction length [μm]

Root 100 100 1 200

Level #1 50 20 0.8 160

Level #2 20 10 0.64 128

Level #3 20 10 0.51 102.4

Level #4 20 10 0.41 81.9
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