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Abstract

Compared to traditional experimental approaches, computational modeling is a promising strategy 

to efficiently prioritize new candidates with low cost. In this study, we developed a novel data 

mining and computational modeling workflow proven to be applicable by screening new analgesic 

opioids. To this end, a large opioid data set was used as the probe to automatically obtain bioassay 

data from the PubChem portal. There were 114 PubChem bioassays selected to build quantitative 

structure–activity relationship (QSAR) models based on the testing results across the probe 

compounds. The compounds tested in each bioassay were used to develop 12 models using the 

combination of three machine learning approaches and four types of chemical descriptors. The 

model performance was evaluated by the coefficient of determination (R2) obtained from 5-fold 

cross-validation. In total, 49 models developed for 14 bioassays were selected based on the criteria 

and were identified to be mainly associated with binding affinities to different opioid receptors. 

The models for these 14 bioassays were further used to fill data gaps in the probe opioids data set 
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and to predict general drug compounds in the DrugBank data set. This study provides a universal 

modeling strategy that can take advantage of large public data sets for computer-aided drug design 

(CADD).
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INTRODUCTION

Opioids are commonly used medicines for the treatment of severe acute and chronic pain.1–3 

However, opioid misuse may cause drug resistance,4 severe side effects,5 and opioid use 

disorder.6 In 2017, around two-thirds of the drug overdose deaths in the United States 

involved opioids and were mainly caused by opioid-induced respiratory depression.7 Opioid 

drugs mediate the analgesic effect through binding to opioid receptors, which are classified 

into four major subtypes: μ, δ, and κ opioid receptors (MOR, DOR, KOR) and a nociceptin 

receptor (NOR).8 Activations of different opioid receptors may display different 

pharmacological activities in vivo. MOR agonists inhibit severe acute pain by modulating 

thermal nociception.9 Although KOR agonists are potently analgesic, activation of KOR is 

associated with sedation and hallucinogenic effects.10,11 DOR activation weakly modulates 

acute nociception and has antidepressant effects,9 and NOR, while less understood, has been 

shown to be involved in pain response and development of tolerance to MOR agonists.12 

Among these receptors, MOR is the primary target for analgesics with its agonist morphine 

being a prototype for opioid analgesics. To minimize the side effects of morphine, including 

physical dependence and respiratory depression, and to produce more efficacious analgesics, 

many morphine-based semisynthetic (e.g., heroin, oxycodone) and fully synthesized opioids 

(e.g., fentanyl) have been developed; however, none of these opioids has been shown to be a 

safe and efficacious analgesic.13
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In recent years, many efforts have been made to reduce known opioid side effects by 

designing new opioid drugs.14–16 Developing a new drug is expensive and time-consuming. 

It costs nearly $2.7 billion and more than 10 years to bring a new drug to market,17 and the 

development of new opioid drugs is no exception. Computational modeling approaches, 

especially those used for computer-aided drug design (CADD), are promising to reduce the 

drug development cost by rapidly analyzing data and evaluating new compounds.18 The 

quantitative structure–activity relationship (QSAR) is a classic CADD modeling strategy 

used to identify the contributions of chemical structures to target biological activities.19 With 

the development of advanced machine learning algorithms and chemical descriptors, QSAR 

models have been widely used in the early stage of drug research and development to 

identify drug candidates with desired therapeutic activities and exclude compounds with 

potential side effects or toxicity before experimental testing.20–22 In previous studies, several 

QSAR models have been developed to predict the binding activity of compounds to various 

opioid receptors. For example, one 3D-QSAR model and two k nearest neighbor (kNN) 

models using ECFP6 and FCFP6 descriptors were developed for the prediction of MOR 

binding affinity using 115 fentanyl-like compounds.23 Pan et al. performed 3D-QSAR 

modeling based on a training set of 46 compounds to predict DOR binding activity.24 

However, these models were developed using small in-house congeneric data sets, which 

limit their applicability. Moreover, existing opioid QSAR models were developed to predict 

a single endpoint, so it is not feasible to make a comprehensive evaluation of the new 

compounds of interest as potential analgesics based on these models. Benefiting from the 

high-throughput screening (HTS) technique development and many associated data-sharing 

projects, modern drug discovery has stepped into a big data era.25 For example, PubChem is 

a publicly available big data resource with over 96 million compounds, including many 

drugs and drug-like compounds, tested against over 1 million bioassays.26,27 Thus data-

driven modeling studies, fueled by newly developed machine learning algorithms, have 

become popular in the current CADD procedure.

The challenge raised by big data is how to efficiently identify useful data for modeling 

purposes and develop numerous models using these data. In this study, we developed a novel 

data mining and computational modeling workflow that can be used to prioritize new opioid 

candidates with analgesic activities of interest for future experimental testing. The utility of 

this workflow was shown by automatically developing predictive models that can be used to 

identify new opioids. A large data set of human MOR ligands was used as a probe data set to 

search PubChem for all the available bioassay data. If a probe compound was tested against 

one or more PubChem assays, the associated responses obtained from these assays were 

extracted. Due to an enormous amount of data available for the probe data set in PubChem, 

an automatic data mining approach was used to extract and compile critical bioassay data 

relevant to opioid binding targets. Then, the curated PubChem data were used as training 

sets for combinatorial QSAR modeling using various machine learning approaches and 

molecular descriptors. This procedure resulted in thousands of QSAR models for various 

opioid-binding endpoints. These models were filtered by model performance and activity 

distribution. Finally, the selected models were used to fill the data gaps of all probe opioid 

compounds and prioritize untested compounds with the desired activities for safe pain 

treatments.
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METHODS

Data Sets and Profiling.

A large data set was used as a probe data set to search PubChem for all the available 

bioassay data. This probe data set consisting of 3656 active ligands of human MOR was 

retrieved from the ChEMBL database (https://www.ebi.ac.uk/chembl/target_report_card/

CHEMBL233, accessed April 14, 2020). Structures in the probe data set were curated and 

standardized using the CASE-Ultra DataKurator 1.8.0.0 software (MulitCASE Inc., 

Beachwood, OH). This includes the removal of duplicates, mixtures, and inorganics, and the 

correction of structural errors. The curated probe data set consisted of 3656 unique 

compounds, which were used for public bioactivity data curation and modeling.

Using an in-house automatic profiling tool,28,29 the public in vitro bioassay data of the 3656 

probe compounds were extracted from the PubChem portal. The hypothesis of public data 

profiling of the probe compounds is that the opioids were likely studied for their analgesic 

activities in previous studies, and thus, the extracted PubChem assays are likely somewhat 

associated with analgesic activities. The extracted data were selected based on (1) the 

number of probe compounds in a PubChem assay and (2) the distribution of activities in 

tested compounds to ensure the modelability for model developments. The resulting profile 

was first screened by removing those PubChem bioassays with limited activity data among 

probe compounds (i.e., less than 17 testing results across the compounds in the probe data 

set). The compounds tested by each of the selected bioassays were retrieved from PubChem. 

Duplicate compounds with different activity values were removed. Activity data that are 

shown as a range (e.g., Ki > 1000 nM) instead of exact activity values were excluded as 

well. We then further examined the activity distribution of the remaining compounds in each 

bioassay. Bioassays were excluded if their activity distributions had large gaps (i.e., any two 

consecutive activities with a difference larger than 20% of the entire activity range in the 

training set).30 After applying each of the above criteria, all compounds that remained in a 

bioassay were used as the training set of that bioassay for QSAR model development.

An external validation set that consisted of 20 approved opioid drugs, which were not in the 

training set for model development, was collected from ChEMBL.31 The opioid receptor 

binding activities of these compounds were collected from literatures to be compared to the 

model predictions.32–41 External general drugs were retrieved from the DrugBank 

database42 for prediction and comparison purposes. After removing overlap compounds in 

the probe data set and external validation set, the remaining 2042 DrugBank compounds 

were also used for external predictions. Details of compounds in each data set are given in 

the Supporting Information, Data sets.

Chemical Descriptors.

Four types of chemical descriptors, including chemical fingerprints and molecular 

descriptors, were used in this study. Extended-connectivity fingerprints (ECFPs) and 

functional-class fingerprints (FCFPs), which both contain 1024 fragments, have been used 

successfully in similarity search and QSAR modeling.43 Additionally, Molecular ACCess 

system (MACCS) keys consisting of 166 substructure fingerprints were used in this study.44 
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These three types of fingerprints were calculated using the RDKit (www.rdkit.org) package. 

Furthermore, 200 RDKit molecular descriptors, including topological, compositional, and 

electro-topological states, were calculated for the training set compounds using the RDKit 

package. All the molecular descriptor values were normalized to the range from zero to one 

for the training set compounds before model development.

QSAR Modeling.

Three machine learning approaches implemented by scikit-learn were used to develop 

QSAR models for each bioassay endpoint: k-nearest neighbors (kNN), random forest (RF), 

and support vector machines (SVM). kNN uses the average of its k chemical nearest 

neighbors in the training set as its prediction and employs the variable selection procedure to 

define neighbors.45 RF is an ensemble algorithm that constructs several randomized decision 

trees and outputs the mean prediction of forest trees to improve the prediction accuracy and 

avoid overfitting.46 SVM regression models try to find a function of descriptor–activity 

space that has a limited deviation from the actual activity value for all the training data and 

at the same time is as flat as possible.47 These machine learning approaches were tuned to 

identify the optimal parameters for model performance, as described previously.48,49

Individual regression models for each bioassay endpoint were developed using the 

combination of one type of descriptors (ECFP6, FCFP6, MACCS, rdkit) and one of the 

modeling approaches (kNN, RF, SVM), resulting in 12 individual models. The consensus 

QSAR model, which was generated by averaging predictions of various individual models, 

was also used in this study.19,20,48 All models were evaluated using a standard 5-fold cross-

validation procedure, with 20% of the training set compounds left out for testing purposes 

during each iteration, as described in previous studies.20,48,50 Each bioassay training set was 

randomly split into five equal subsets. Four subsets (80% of the total compounds) were used 

for model training, and the remaining 20% was used to test the resulted model. This 

procedure was repeated five times so that every compound was used for prediction once.

Model Selections.

Two criteria were used to select models and corresponding bioassays: (1) model 

performance and (2) prediction distribution. First, models were selected based on the 5-fold 

cross-validation procedure with satisfactory predictivity (R2 ≥ 0.5). Then, each remaining 

model was used to predict the remaining probe compounds that were not experimentally 

tested against the corresponding assays and were therefore not also in the training set of that 

model. The distribution of the resulted predictions was evaluated by a Kurtosis parameter. 

Kurtosis is a measurement of the combined weight of the tails relative to the rest of the 

prediction distribution. Kurtosis of the standard normal distribution is equal to zero, and 

values between −2 and +2 are considered acceptable to prove normal univariate distribution.
51,52 In this study, models with poor prediction distributions, such as heavy tails and/or 

uniform distribution, were excluded if their predictions for new opioids had |Kurtosis| ≥ 

2.51,52
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Applicability Domain.

Two different ways of implementing applicability domains (ADs) were defined for chemical 

fingerprints and molecular descriptors. For the RDKit molecular descriptors, the AD was 

calculated based on the distribution of Euclidean distances between each test set compound 

and its nearest neighbor in the training set. The threshold value to define the AD for a QSAR 

model using RDKit descriptors was set as the mean plus one-half of the standard deviation 

of the distribution of distances between each training set compound and its nearest neighbor 

in the training set, as described in previous studies.53,54 If the Euclidean distance of the test 

compound from its nearest neighbor in the training set exceeded this threshold, the 

prediction was considered unreliable. For ECFP6, FCFP6, and MACCS fingerprints, a 

similarity-based approach was used to define AD, and the threshold was set at a Jaccard 

similarity of 0.5.48 If the Jaccard similarity of the test compound and its nearest neighbor in 

the training set was less than 0.5, it was considered to be out of AD.

Statistical Analysis.

In this study, the coefficient of determination (R2) and mean absolute error (MAE) were 

used to evaluate model performance. The coefficient of determination represents the 

proportion of variance in responses that have been explained by the feature variables in a 

regression model, and MAE measures the average prediction error in the same units of the 

variable.55 R2 and MAE are defined as follows

R2(y, Y ) = 1 −
∑i = 1

n yi − Y i
2

∑i = 1
n yi − Y 2 (1)

MAE(y, Y ) = 1
n ∑

i = 1

n
yi − Y i (2)

where n is the total number of compounds, yi is the prediction value of the ith compound, Yi 

is the corresponding experimental value of the ith compound, and Y  is the averaged 

experimental value of all compounds.

Another parameter, Kurtosis, was used to assess the distribution of predictions. In Fisher’s 

definition, Kurtosis is zero for normal distribution.51,52 The equation for calculating Kurtosis 

is as follows

Kurtosis(y) = n(n + 1)
(n − 1)(n − 2)(n − 3) ∑

yi − y 4

s4 − 3(n − 1)2

(n − 2)(n − 3) (3)

where n is the total number of compounds, yi is the prediction value of the ith compound, y
is the mean value, and s is the standard deviation of all the predictions.
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RESULTS AND DISCUSSION

Workflow in This Study.

The workflow designed for this study is summarized in Figure 1. The curated probe 

compounds were first profiled against PubChem for all the bioactivity data. Critical 

bioassays were then automatically identified using several criteria based on the testing 

results across the probe compounds. Automatic QSAR modeling was performed for the 

selected bioassays using all PubChem compounds and their associated bioactivity data, 

including both probe compounds and other compounds being tested. The resulted models 

were then selected based on model performance and prediction distributions. The final 

selected models were used to predict new compounds, including approved opioid drugs, 

probe compounds without experimental data, and nonopioid drugs obtained from the 

DrugBank data set.

Profiling and Resulted Training Sets.

The probe data set consisted of the ligands of MOR, which is the primary site of action for 

most analgesic opioids.56 After removing duplicates, and chemicals that could not be 

processed by our descriptor generator (salts, mixtures, and inorganics), 3656 unique 

compounds remained in the final probe data set. The probe data set was then searched 

against the PubChem portal to extract all the biological data, generating the profiles of their 

bioactivities. In PubChem, compounds’ responses in bioassays were classified into active, 

inactive, and inconclusive. Most of the actives also showed quantitative response results such 

as Ki, KD, EC50, and IC50. The initial bioprofile for probe compounds consisted of 19,256 

PubChem bioassays, most of which were sparse, consisted of little data, and needed further 

curations.

It is important to select critical bioassays based on their relationships to probe compounds. 

First, a bioassay was selected if it had quantitative testing results for at least 17 probe 

compounds. This criterion is to ensure the modelability of the training set with enough 

compounds and was based on previous studies.54 This effort resulted in 200 critical 

bioassays from the originally extracted 19,256 PubChem assays. After examining the 

activity distributions of these 200 bioassays, 114 bioassays were selected by removing 

bioassays that had large gaps in the activity distribution.30 All the compounds tested in these 

bioassays, including probe compounds and the other PubChem compounds, were used as the 

training sets for automatic QSAR model development. There was a total of 2152 unique 

compounds included in the training sets for these 114 bioassays, and the training set size 

ranged from 17 to 223. Here, all compounds with testing results against individual assays 

were included to expand the chemical space of the training set and to ensure the coverage of 

the resulted models. Some compounds were tested multiple times in these assays. For 

example, morphine (PubChem Compound ID (CID) 5288826) was the most frequently 

tested compound and showed activities in 15 bioassays. A total of 1609 training set 

compounds were also in the 3656 probe opioid compounds, indicating the potential 

relationships of these bioassays to opioid receptors. Details of the 114 bioassays and all the 

training set compounds are listed in the Supporting Information, Training sets and models.

Jia et al. Page 7

ACS Sustain Chem Eng. Author manuscript; available in PMC 2022 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



QSAR Modeling and Model Selections.

For each bioassay, 12 combinatorial QSAR models were developed using the combination of 

three machine learning approaches (kNN, RF, SVM) and four types of chemical descriptors 

(ECFP6, FCFP6, MACCS, and RDKit). In total, 1368 models were developed for the 

selected 114 PubChem bioassays. All the models were evaluated by the 5-fold cross-

validation process, which was described previously.57 The resulting models were selected if 

they (1) had an acceptable model performance for 5-fold cross-validation and (2) were able 

to predict the remaining probe opioid compounds within a reasonable prediction range. 

Among the 1368 models generated by automatic QSAR modeling, 184 models showed 

acceptable predictivity for 5-fold cross-validation (R2 ≥ 0.5), which were developed for 47 

bioassays (Figure 2A). The number of acceptable models for a specific bioassay ranged from 

1 to 12. Models for the 47 bioassays were then used to predict the remaining probe 

compounds that were not included in the training set for modeling. Models with poor 

prediction distributions (|Kurtosis| ≥ 2) of these probe compounds were removed. If two 

bioassays had the same target and endpoint type, the one that has fewer predicted probe 

compounds within the AD was removed. This process resulted in 49 models, which were 

developed for 14 unique bioassays. The R2 and MAE values of the best performing models 

(model with the highest R2) for the 14 selected bioassays are shown in Figure 2B, and the 

details of these models are provided in the Supporting Information, Training sets and 

models. The combination of different types of descriptors (e.g., combining ECFP6 and 

MACCS as a new descriptor set) was also used to model selected assays, but the resulting 

models did not show improvement (results not shown here). Therefore, when the diversity of 

descriptors is high enough, simply increasing the number of descriptors used for modeling 

will not improve the resulting models in this study.

As listed in Table 1, 12 selected bioassays were related to four types of opioid receptors, 

including MOR, DOR, KOR, and NOR. The other two bioassays (PubChem Assay ID 

(AID) 625217 and 625253) were related to a serotonin receptor (5-HT2B) and dopamine 

receptor (D2L), respectively. These bioassays can be classified into two types: binding 

affinity assays and functional assays. Among the five functional assays, three assays tested 

GTPγS signaling as an assay of opioid agonism/antagonism at MOR (AID 1344502), KOR 

(AID 1344503), and DOR (AID 273143). The other two functional assays (AID 779594, 

779596) tested the opioids’ activation of MOR downstream intracellular signaling pathways.

External Validation Using Approved Opioid Drugs.

External validation was performed to evaluate the predictivity of the selected QSAR models. 

A total of 20 approved opioid drugs that were not in the training set were collected as an 

external validation set.20,48 Since the experimental data of NOR, serotonin 5-HT2B and the 

dopamine D2L receptor binding, as well as some functional bioassays were not available for 

most opioid drugs, only nine opioid drugs with experimental data could be used for 

validation purposes. In Table 2, we listed nine representative opioid drugs that had binding 

affinity data (Ki) to three opioid receptors (MOR, DOR, KOR), which were compared to the 

model predictions.
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The AD was implemented to evaluate whether the new compounds were confidently 

predicted. If the similarity between a new compound and its nearest neighbor in the training 

set exceeded the AD threshold, the prediction was considered to be unreliable.48 As shown 

in Table 2, most of the in-AD predictions were accurate, compared to the literature-reported 

Ki values (i.e., the difference of predicted and experimental log Ki values is less than one 

unit). Several poor predictions may be caused by the factor of “activity cliffs”, (i.e., 

structurally similar compounds exhibit vastly different activities).58 For example, nalorphine 

(CID 5284595) is a derivative of morphine (CID 5288826) in which the n-methyl group was 

replaced by an allyl group. Nalorphine was the nearest neighbor of morphine in the training 

set of the KOR binding bioassay; however, their binding affinities to KOR were significantly 

different (i.e., log Ki values of nalorphine and morphine are −0.42 and 1.53, respectively) 

(Supporting Information, Table S1). Similarly, oxycodone (CID 5284603) and its nearest 

neighbor naloxone (CID 5284596) also had a large difference in binding affinities to KOR 

(i.e., log Ki values of oxycodone and naloxone are 2.83 and 0.08, respectively). The model 

for the KOR binding bioassay (AID 410720) was based on a limited number of compounds 

(27 compounds), so this issue is expected to be addressed when there are more compounds 

to be tested to increase the size of the training set in the future.

Potential Applications of the Resulting Models.

For each of the 14 selected bioassays, including nine binding assays and five functional 

assays, the model with the highest R2 was used to fill the data gaps for the probe opioid 

compounds and, as a comparison, to predict DrugBank compounds.42 DrugBank compounds 

consist of thousands of common drug molecules. Most of these are not likely to be opioids 

and thus can be used as negative controls of the external prediction. After removing overlaps 

with the probe and external validation sets, the final DrugBank data set of 2042 drug 

compounds was used for prediction and comparison purposes. Figure 3 shows the prediction 

results of opioids and normal drug compounds using the models of the nine binding assays. 

Opioids and general drug molecules from the DrugBank showed different prediction results. 

The opioids were predicted to have significantly higher binding affinities than DrugBank 

molecules (Supporting Information, Table S2). The average binding affinity predictions of 

each compound against four opioid receptors in these two data sets are shown in Figure 4. 

Most opioids showed higher predicted binding affinities than the DrugBank compounds, 

especially for MOR and NOR receptors.

Several strategies have been proposed for the development of safer opioids.15,59–61 For 

example, the development of the biased MOR agonist showed an improved therapeutic index 

(analgesia vs adverse effects), which preferentially stimulates G protein-dependent signaling 

over the β-arrestin2 recruitment pathway.15,59 In this way, the model results we identify here 

have important implications for prioritizing the development of potential alternative opioids. 

Potentially biased compounds can be identified by calculating the difference of the activities 

between the bioassays that test the activation of G protein-dependent signaling (AID 

779596) and the β-arrestin2 recruitment pathway (AID 779594).62 In the Supporting 

Information, Table S3, we prioritize five opioids that are predicted to preferentially activate 

the G protein-dependent signaling pathway (i.e., cAMP activation potential is larger than 

that of β-arrestin2). Of these five candidates, the best compound (CID 24822630) is a high-
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affinity MOR agonist that showed a potent analgesic effect,63 and its predicted log EC50 

values for β-arrestin2 recruitment versus the G protein-dependent signaling pathway are 

4.30 and 0.84, respectively. Our model results could also exclude some opioids with 

undesired activities. For example, potent activation of KOR can produce critical side effects.
11 Nalorphine can antagonize morphine, but its potent activation of KOR can cause anxiety 

and hallucinations. Thus, this molecule is no longer being used medically.64–66 A similar 

approach to that described above could be used to identify candidates with unacceptably 

high actions at KOR, thus minimizing the risk of KOR-mediated off-target effects.

As shown in Figures 3 and 4, a small number of nonopioid compounds showed modest 

binding to opioid receptors. These molecules may represent potential nonopioid drugs that 

can bind to the opioid receptors. To select potential nonopioid drugs from DrugBank 

molecules, a consensus model was applied based on the resulting models to extend 

predictions to a larger chemical diversity. The individual models developed using different 

chemical descriptors could provide multiple diverse chemical spaces. The consensus 

prediction was generated by averaging the predictions within the AD of individual models, 

which can merge their chemical spaces. The advantage of using consensus predictions was 

described in previous studies.19,20,48 On the basis of consensus predictions, we identified 

eight drugs as being in the top five compounds in models of more than one bioassay 

(Supporting Information, Table S4). Somewhat surprisingly, these eight drugs were reported 

to mainly target two types of receptors: dopamine receptors and muscarinic acetylcholine 

receptors (mAChR).67,68 Similar to opioid receptors, they all belong to G protein-coupled 

receptors.

It is possible that opioids could interact with other G protein-coupled receptors, indicating 

potential drug interactions.69,70 Knowing such information could help us comprehensively 

evaluate the activity profile and prioritize optimal compounds with desired activities. In 

Figure 3, some probe opioids were predicted to potentially bind to serotonin receptors. 

Previous studies showed that opioids like methadone and tramadol could target the serotonin 

receptor and provoke serotonin toxicity when combined with certain serotonergic drugs, e.g., 

anti-depressants.71–73 Tramadol can also inhibit a mAChR-induced response.74,75 Several 

dopamine receptor ligands (e.g., haloperidol) were predicted to bind to opioid receptors 

MOR and KOR (Supporting Information, Table S4). Haloperidol is a high affinity dopamine 

D2 receptor antagonist that is used as an antipsychotic drug, which was reported to bind 

MOR (Ki = 633 nM) and inhibit the development of morphine tolerance and dependence 

following chronic administration.76–78 The interaction between brain opioid and dopamine 

systems is important in the addictive effects of opioids, although the exact molecular 

mechanism is still unknown.79 In Figure 3, some probe opioids also predicted to bind 

dopamine D2 receptors, potentially reflecting a functional similarity between these two 

types of ligands, although this possibility should be tested further.

CONCLUSIONS

In this study, a large data set of 3656 opioids was used as the probe to profile all the public 

bioactivity data from PubChem, and 114 critical bioassays were selected for automatic 

QSAR modeling. A total of 12 QSAR models were developed for each bioassay and 
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sufficiently explored the chemical space and modeling ability of the training set compounds. 

Finally, 14 bioassays were further selected for profiling and prediction purposes by 

examining the model performance and prediction distributions. The resulting models of 

these bioassays not only showed good model performance but were also shown to make 

reasonable predictions to differentiate opioids and nonopioid drug compounds. These 

models can generate a comprehensive bioprofile for unknown compounds that can make it 

feasible to extensively study the binding mechanisms to opioid receptors and other relevant 

receptors, leading to safer analgesic medicine design. The computational modeling 

workflow developed in this study can automatically retrieve useful biological data from 

publicly available resources and perform predictive model development. This effort thus 

contributes to a universal data mining and modeling strategy that can take advantage of large 

public data sets to accelerate drug discovery and other related fields.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Diagrammatic depiction of the workflow in this study, including (1) profiling probe 

compounds against PubChem bioassays, (2) identifying critical bioassays, (3) automatic 

QSAR modeling, (4) model selection, and (5) external prediction.
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Figure 2. 
Performance of QSAR models. (A) Heatmap of 5-fold cross-validation R2 values of models 

developed for 47 bioassays. (B) R2 and MAE values of the best performance models (model 

with highest R2) for the 14 selected bioassays.
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Figure 3. 
Virtual bioprofile of nine PubChem binding assays for the opioids and DrugBank 

compounds. The probe compound bioprofile is circled with red dots. For each bioassay, the 

predicted pKi (−log Ki) or pIC50 (−log IC50) values were normalized to [0,1] so that a higher 

value means a higher binding affinity.
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Figure 4. 
Distribution of the predicted averaged affinities of opioids and DrugBank molecules to four 

opioid receptors: (A) MOR, (B) KOR, (C) DOR, and (D) NOR. For compounds in the probe 

data set and DrugBank data set, the predicted pKi or pIC50 range was normalized to [0,1]. 

Normalized predictions for the same receptor were averaged, and their distributions are 

shown. Red and blue dashed lines indicate the mean prediction values of opioids and 

DrugBank molecules, respectively.
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