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 2 

Abstract 1 

  2 

The COVID-19 pandemic caused by SARS-COV-2 has had a devastating impact on population 3 

health. We investigated global patterns of genetic variation and signatures of natural selection at 4 

host genes relevant to SARS-CoV-2 infection (ACE2, TMPRSS2, DPP4, and LY6E). We analyzed 5 

novel data from 2,012 ethnically diverse Africans, 15,997 individuals of European (7,061) and 6 

African (8,916) ancestry recruited by the Penn Medicine BioBank (PMBB), and comparative data 7 

from 2,504 individuals from the 1000 Genomes project. At ACE2 we identified 41 non-8 

synonymous variants, found to be at low frequency in most populations. However, three non-9 

synonymous variants were frequent among Central African hunter-gatherers (CAHG) from 10 

Cameroon, and signatures of positive selection could be detected on haplotypes encompassing 11 

those variants. We also detected signatures of positive selection for variants at regulatory regions 12 

upstream of ACE2 in diverse African populations. At TMPRSS2, we identified 48 non-13 

synonymous variants, several of which are common in global populations, and 13 amino acid 14 

changes that are fixed in the human lineage after divergence from Chimpanzee. At DPP4 and 15 

LY6E most variants were rare in global populations indicating that purifying selection is acting at 16 

these loci. At all four loci, we identified common non-coding variants associated with gene 17 

expression that vary in frequency across global populations. By analyzing electronic health records 18 

from the PMBB we discovered genetic associations with clinical phenotypes, such as respiratory 19 

failure with ACE2 and upper respiratory tract infection with DPP4. Our study provides new 20 

insights into global variation at genes potentially affecting susceptibility to SARS-CoV-2 21 

infection.  22 

 23 
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 3 

Introduction 1 

 2 

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome 3 

coronavirus 2 (SARS-CoV-2). Coronaviruses are enveloped, positive-sense, and single-stranded 4 

RNA viruses, many of which are zoonotic pathogens that crossed over into humans. Seven 5 

coronavirus species, including SARS-CoV-2, have been discovered that, depending on the virus 6 

and host physiological condition, may cause mild or lethal respiratory disease. The novel SARS-7 

CoV-2 virus was initially identified in Wuhan, China, in December 20191, and due to high 8 

transmission rates, including from asymptomatic subjects2, quickly spread globally causing a 9 

pandemic of historic proportions. In the US, the crude fatality rate of COVID-19 is ~ 1%, and 10 

mortality increases significantly with age, with 70% of deaths being among individuals 70 years 11 

old and above3; 4. As is the case with other infectious diseases, COVID-19 progression appears to 12 

exhibit sexual-dimorphism, with fatality rates 2-fold greater for men than women5. Patients with 13 

COVID-19 can be clinically subdivided into three categories: asymptomatic/mild, severe (with 14 

dyspnea, hypoxia), and critical (with respiratory failure, shock, or multiorgan dysfunction). The 15 

rate of asymptomatic infection of SARS-CoV-2 may be as high as 40-45% 6, and those who are 16 

asymptomatic are unlikely to convert to acute symptoms even though they may transmit virus for 17 

up to 2 weeks.  Symptomatic patients may present dry cough, followed by sputum, hyposmia, nasal 18 

congestion, nausea, diarrhea, fever and dyspnea, although initial presentation is known to be 19 

variable (for example fever or dyspnea may be absent at admission in hospital)7. There is 20 

considerable variation in disease prevalence and severity across populations and communities. For 21 

example, in Chicago, more than 50% of COVID-19 cases and nearly 70% of COVID-19 deaths 22 

are in African Americans (who make up 30% of the population of Chicago)8. More generally, 23 

minority populations in the US appear to have been disproportionally affected by COVID-19; 8; 9.  24 

In addition, adverse outcomes including death, have been associated with underlying 25 

cardiometabolic comorbidities (e.g., hypertension, diabetes, cardiovascular disease, chronic 26 

kidney disease)10-13. Liver impairment is common in patients with COVID-19, and elevated 27 

alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels are relatively 28 

frequent at presentation2. The extent to which pre-existing chronic liver conditions affect COVID-29 

19 related complications remains to be elucidated. Smell and taste sensations as well as increased 30 

incidence of ischemic stroke have been observed in individuals with COVID-1914-17.  31 
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 4 

Several host genes play a role in SARS-CoV-2 infection18. The ACE2 gene, encoding the 1 

angiotensin-converting enzyme-2 protein, was reported to be a main binding site for SARS-CoV 2 

during an outbreak in 2003, and evidence showed stronger binding affinity to SARS-CoV-2, which 3 

enters the target cells via ACE2 receptors18; 19.  The ACE2 gene is located on the X chromosome, 4 

its expression level varies among populations20, and it is ubiquitously expressed in the lung, blood 5 

vessels, gut, kidney, testis, and brain, all organs that appear to be affected as part of the COVID-6 

19 clinical spectrum. SARS-CoV-2 infects cells through a membrane fusion mechanism, which, 7 

in the case of SARS-CoV, is known to induce down-regulation of ACE221. Such down-regulation 8 

has been shown to cause inefficient counteraction of angiotensin II effects, leading to enhanced 9 

pulmonary inflammation and intravascular coagulation21. Additionally, altered expression of 10 

ACE2 has been associated with cardiovascular and cerebrovascular disease, which is highly 11 

relevant to COVID-19 as several cardiovascular conditions are associated with severe disease. 12 

Type II transmembrane serine protease (TMPRSS2), located on the outer membrane of host target 13 

cells, binds to and cleaves ACE2, resulting in activation of spike proteins on the viral envelope, 14 

and facilitating membrane fusion and endocytosis22. Two additional genes, dipeptidyl peptidase 15 

(DPP4), and lymphocyte antigen 6 complex locus E (LY6E), have been shown to play an important 16 

role in the entry of SARS-CoV2 virus into host cells. DPP4 is a known functional receptor for the 17 

Middle East Respiratory Syndrome coronavirus (MERS-CoV), causing a severe respiratory illness 18 

with high mortality23. Lastly, LY6E (lymphocyte antigen 6 complex, locus E) encodes a 19 

glycosylphosphatidylinositol (GPI)-anchored cell surface protein which is a critical antiviral 20 

immune effector that controls coronavirus infection and pathogenesis24. Mice lacking LY6E in 21 

hematopoietic cells were susceptible to murine coronavirus infection24. 22 

In this study, we characterized genetic variation at ACE2, TMPRSS2, DPP4, and LY6E in 23 

ethnically diverse human populations by analyzing 2,012 novel genomes from ethnically diverse 24 

Africans (referred to as the “African Diversity” dataset), 2,504 genomes from the 1000 Genomes 25 

project, and whole exome sequencing of 15,997 individuals of European and African ancestry 26 

from the Penn Medicine BioBank (PMBB) dataset. The African diversity dataset includes 27 

populations with diverse subsistence patterns (hunter-gatherers, pastoralists, agriculturalists) and 28 

speaking languages belonging to the four major language families in Africa (Khoesan, Niger-29 

Congo (of which Bantu is the largest subfamily), Afroasiatic, and Nilo-Saharan). We identify 30 

functionally relevant variation, compare the patterns of variation across global populations, and 31 
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 5 

provide insight into the evolutionary forces underlying these patterns of genetic variation. In 1 

addition, we perform an association study using the variants identified from whole-exome 2 

sequencing at the four genes (ACE2, TMPRSS2, DPP4, and LY6E) and clinical traits derived from 3 

electronic health record (EHR) data linked to the subjects enrolled in the Penn Medicine BioBank 4 

(PMBB). The EHR data includes diseases related to organ dysfunctions associated with severe 5 

COVID-19 such as respiratory, cardiovascular, liver and renal complications. Our study of genetic 6 

variation in SARS-CoV-2 receptors and their partners provides novel data to investigate infection 7 

susceptibility within and between populations and indicates that variants in these genes may play 8 

a role in comorbidities relevant to COVID-19 severity.  9 

Material and Methods 10 

 11 

Genomic data 12 

The genomic data used in this study were from three sources: the Africa 6K project 13 

(referred to as the the “African Diversity” dataset) which is part of the TopMed consortium25, the 14 

1000 Genomes project (1KG)26, and the Penn Medicine BioBank (PMBB). From the Africa 6K 15 

project, a subset of 2012 high coverage (>30X) whole genome sequences of ethnically diverse 16 

African populations (Figure S1) were included. The African samples were collected from 17 

individuals from five countries (Cameroon, Ethiopia, Kenya, Botswana and Tanzania), speak 18 

languages belonging to four different language families spoken in Africa (Afroasiatic, Nilo-19 

Saharan, Niger-Congo, and Khoesan) and have diverse subsistence practices (e.g., hunter-20 

gatherers, agriculturalists, and pastoralists). IRB approval was obtained from the University of 21 

Maryland and the University of Pennsylvania.  Written informed consent was obtained from all 22 

participants and research/ethics approval and permits were obtained from the following institutions 23 

prior to sample collection: COSTECH, NIMR and Muhimbili University of Health and Allied 24 

Sciences in Dar es Salaam, Tanzania; the University of Botswana and the Ministry of Health in 25 

Gaborone, Botswana; the University of Addis Ababa and the Federal Democratic Republic of 26 

Ethiopia Ministry of Science and Technology National Health Research Ethics Review Committee; 27 

and the Cameroonian National Ethics Committee and the Cameroonian Ministry of Public Health. 28 

Whole genome sequencing (WGS) was performed to a median depth of 30X using DNA isolated 29 

from blood, PCR-free library construction and Illumina HiSeq X technology, as described 30 
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 6 

elsewhere25. In the 1KG data set, 2504 genome sequences from phase 326 were included in our 1 

analysis. 2 

The PMBB participants were recruited through the University of Pennsylvania Health 3 

System by enrolling at the time of clinic visit. Patients participate by donating either blood or a 4 

tissue sample and allowing researchers access to their EHR information. This academic biobank 5 

has DNA extracted from blood that has been genotyped using an Illumina Infinium Global 6 

Screening Array-24 Kit version 2 and whole exome sequencing (WES) using the IDT xgen exome 7 

research panel v1.0. The study cohort consisted of 15,977 individuals total, with 7,061 of European 8 

ancestry (EA) and 8,916 of African ancestry (AA) (Table S1). Genetic ancestry of these samples 9 

was determined by performing quantitative discriminant analyses (QDA) on eigenvectors.  The 10 

1000 Genomes datasets with super population ancestry labels (EUR, AFR, EAS, SAS, Other) were 11 

used as QDA training datasets to determine the genetic ancestry labels for the PMBB population. 12 

We identified and removed 117 related individuals using a kinship coefficient of 0.25.  13 

 14 

Variant annotations 15 

We used Ensembl Variant Effect Predictor (VEP) for variant annotations27. VEP classifies 16 

variants into 36 types including non-synonymous, synonymous, and stop loss variants. For 17 

pathogenicity predictions, we used CADD28, SIFT29, PolyPhen30 , Condel31, and  REVEL scores 18 

in Ensembl. For whole-genome sequencing datasets (African Diversity and 1KG), we annotated 19 

genetic variants at ACE2 (chrX:15,561,033-15,602,158), TMPRSS2 (chr21:41,464,305-20 

41,531,116), DPP4 (chr2:161,992,245-162,074,215) and LY6E (chr8:143,017,982-143,023,832), 21 

and 10 Mb flanking these genes (Table S2). For whole-exome genomes from the PMBB dataset, 22 

annotations were restricted to coding regions only. For gene-based association analysis using the 23 

PMBB dataset, we collapsed all the predicted non-synonymous variants with REVEL score > 0.5 24 

and putative loss of function variants (pLOFs) with MAF < 0.01. We assigned variants as pLoFs 25 

if the variant was annotated as stop_lost, missense_variant, start_lost, splice_donor_variant, 26 

inframe_deletion, frameshift_variant, splice_acceptor_variant, stop_gained, or inframe_insertion. 27 

All genome coordinates followed the GRCh38 assembly.  28 

 29 

Characterization of putative regulatory variation 30 
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 7 

We identified regulatory variants likely to impact the target genes. For all four genes (ACE2, 1 

TMPRSS2, DPP4 or LY6E), we extracted the variants located within ±10kb distance to their TSS 2 

as well as enhancers supported by RNA Pol2 ChIA-PET data from ENCODE32. These variants 3 

were further filtered by overlapping with DNase-seq and ChIP-seq peaks from Roadmap33, 4 

ENCODE32, Remap2 34; or overlapping with significant single-tissue expression quantitative trait 5 

locus (eQTLs) (P-value<0.001) from the GTEx V8 database 35. We visualized the location of these 6 

regulatory and eQTL variants using the UCSC genome browser and highlighted the variants using 7 

Adobe Illustrator.  8 

 9 

Electronic Health Record Phenotypes 10 

In this analysis, we focused on the phenotypes characterized as primary organ dysfunctions 11 

in the early studies on COVID-19. Broadly, we centered our analyses on these four broad clinical 12 

conditions/phenotypes: respiratory injury/failure, acute liver injury/failure, acute cardiac 13 

injury/failure, and acute kidney injury/failure. These disease classes are well characterized in 14 

human disease ontologies such as Monarch Disease Ontology (MONDO). MONDO merges 15 

multiple disease resources such as SNOMED, ICD-9, and ICD-10. We leveraged the existing 16 

mappings between ICD-9/10 codes (which are how the data are coded in the EHR) and the 17 

MONDO disease classes for the conditions described above. We identified 12 MONDO classes 18 

that are closely related to four conditions of interest (Table S1).  By using ICD-9 and ICD-10 data 19 

from the EHR of the PMBB participants, we mapped the ICD codes to 12 MONDO disease classes. 20 

Details on the ICD code mapping to MONDO disease classes are provided in Table S3. Individuals 21 

were defined as cases if they had at least one instance of any ICD code mapped to a MONDO 22 

disease class or as controls if they had no instance of the code in that disease class. A clinical 23 

expert on our team manually reviewed the MONDO and ICD-9/10 mappings.  24 

We also used EHR phenotypes defined by groupings of ICD-9 and ICD-10 codes into 25 

clinically relevant groups, called phecodes, used in prior PheWAS studies36.  Individuals with two 26 

or more instances of a phecode were defined as cases, whereas those with no instance of a phecode 27 

were defined as controls. Individuals with only one instance were excluded for that phecode. A 28 

total of 1860 phecodes were included in the study. 29 

Additionally, we extracted data on 34 clinical laboratory measures for PMBB participants 30 

from the EHRs. We derived a median value for each laboratory measure based on all clinical tests 31 
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 8 

ever done within the Penn Medicine health system. Any measurement value that falls more than 1 

three standard deviations from the normal were labeled as outliers and removed. 2 

 3 

Association Testing 4 

We used the R SKAT package for conducting a gene-based dispersion test and Biobin37; 38 5 

for gene burden analysis. Here, multiple genetic variations in a gene region were collapsed to 6 

generate a gene burden/dispersion score and regression methods were used to test for association 7 

between the genetic score and a phenotype or trait. We performed three separate burden analysis 8 

for 12 MONDO disease classes (Table S3), 1860 phecode, and 34 clinical lab measures. Briefly, 9 

the variants annotated as non-synonymous (REVEL score >= 0.5) and pLoFs within each of the 10 

four candidate genes were collapsed into their respective gene regions (ACE2, TMPRSS2, DPP4 11 

and LY6E). For both statistical dispersion and burden tests, models were adjusted by the first four 12 

principal components of ancestry, sex, and decade of birth. For multiple hypothesis correction, a 13 

conservative Bonferroni adjustment was used to derive a significant p-value threshold (p-value < 14 

0.0001). We also performed a univariate statistical test for each of the rare variants from these four 15 

candidate gene regions to study the effects of each single nucleotide variant (SNV) on the disease 16 

phenotype.   17 

 18 

Structural analysis of nonsynonymous variations on ACE2-S protein binding interface 19 

The fast response from the structural biology community to the COVID-19 pandemic led 20 

to the exceptionally fast determination and publication of over 900 as of Jan. 2021 21 

(https://www.rcsb.org/news?year=2020&article=5e74d55d2d410731e9944f52&feature=true) 22 

protein structures related to SARS-Cov-2. Using experimentally determined structures of the 23 

ACE2 protein complexed with the receptor binding domain (RBD) of SARS-CoV-2 spike 24 

glycoprotein, we assessed possible impacts of nonsynonymous coding variants on the ACE2- 25 

binding interface with SARS-CoV-2-RBD. Among the multiple entries available in the Protein 26 

Data Bank (PDB), we chose to focus on the structure of the full-length human ACE2 bound to 27 

RBD (PDB ID 6M17 39) determined with Cryo-Electron Microscopy (cryo-EM), as it presented 28 

multiple advantages to our study. Unlike other PDB entries that only feature sections of ACE2, 29 

usually focusing on the part of the enzymatic domain responsible for RBD binding, 6M17 presents 30 

the full length ACE2 in its dimeric form. This allowed us to identify the 3D protein location of all 31 
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 9 

nonsynonymous coding variants identified in this study. Moreover, ACE2 was expressed in a 1 

human cell line, maintaining important glycosylation sites and allowing the cryo-EM structure to 2 

be used to identify their positions and compositions 39. All structural analysis and figures were 3 

prepared using VMD 40. 4 

 5 

Detecting signatures of natural selection 6 

We used two methods (the McDonald–Kreitman test 41 and the Dn/Ds test 42) to test for 7 

signals of selection acting on the four candidate genes over long time scales, and two methods 8 

(EHH and iHS) to detect recent (e.g. last ~10,000 years before present) signatures of positive 9 

selection .  10 

For the McDonald–Kreitman test (MK-test) 41, we set up a two-way contingency table to 11 

statistically compare the number of nonsynonymous (Dn) and synonymous (Ds) fixed differences 12 

between humans and chimpanzees with the number of nonsynonymous (Pn) and synonymous (Ps) 13 

polymorphisms among individuals within a population. Based on neutral theory, the ratio of 14 

nonsynonymous to synonymous changes should be constant throughout evolutionary time, i.e. the 15 

ratio observed among individuals within species (Pn/Ps) should be equal to the ratio observed 16 

between species (Dn/Ds). Under a hypothesis of positive selection in the hominin lineage after 17 

divergence from our closest ancestor, the chimpanzee, the ratio of nonsynonymous to synonymous 18 

variation within species is expected be larger than the ratio of nonsynonymous to synonymous 19 

variation between species (i.e. Dn/Ds > Pn/Ps).  If there is positive diversifying selection among 20 

human populations but conservation of fixed differences between species, the ratio of 21 

nonsynonymous to synonymous variation between species should be lower than the ratio of 22 

nonsynonymous to synonymous variation within species (i.e. Dn/Ds < Pn/Ps).  The chimpanzee 23 

sequence (Clint_PTRv2/panTro6) used in the analysis was obtained from the UCSC genome 24 

browser. We used Fisher’s exact test to detect significance of the MK-test. We used transcripts 25 

ENST00000252519.8, ENST00000398585.7, ENST00000360534.8, ENST00000521003.5 to 26 

calculate Dn, Ds, Pn and Ps for ACE2, TMPRSS2, DPP4 and LY6E, respectively. 27 

We also used the ratio of substitution rates at non-synonymous and synonymous sites 28 

(dN/dS) to infer selection pressures on the four candidate genes, as the dN/dS ratio has more power 29 

to detect recurrent positive selection43. This measure quantifies selection pressures by comparing 30 

the rate of substitutions at synonymous sites (dS), which are neutral or close to neutral, to the rate 31 
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 10 

of substitutions at non-synonymous sites (dN), which are more likely to experience selection. The 1 

dN/dS estimation used here follows Nei et al42. The number of synonymous sites, s, for codon i in 2 

one protein is given by 3 

 4 

where fi is defined as the proportion of synonymous changes at the ith position of a codon. For a 5 

sequence of r codons, the total number of synonymous sites, S is given by     6 

 7 

where sj is the value of s at the jth codon, and the total number of non-synonymous sites, N = 3r - 8 

S. The total number of synonymous and non-synonymous differences between two sequences, Sd 9 

and Nd respectively, are given by 10 

  11 

and 12 

 13 

where sdj and ndj are the numbers of synonymous and non-synonymous differences between two 14 

sequences for the jth codon, and r is the number of codons compared. The proportions of 15 

synonymous (pS) and non-synonymous (pN) differences are estimated by the equations pS = Sd / 16 

S and pN = Nd / N. The numbers of synonymous (dS) and non- synonymous (dN) substitutions per 17 

site are estimated using the Jukes-Cantor formula as below: 18 

 19 

and 20 

 21 

In our analysis, for each population, we estimated the total number of synonymous (Sd) and non-22 

synonymous (Nd) differences, and then calculated dN/dS. If dN/dS is larger than one, it suggests 23 

s = fi
i=1

i=3

∑

S = s j
j=1

r

∑

Sd = sdj
j=1

r

∑

Nd = ndj
j=1

r

∑

dS =
−3ln(1− 4pS3 )

4

dN =
−3ln(1− 4pN3 )

4
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 11 

positive diversifying selection influencing variation at the gene. If dN/dS is less than one it suggests 1 

the gene is evolutionary conserved.    2 

Genomic regions that have undergone recent positive selection are characterized by 3 

extensive linkage disequilibrium (LD) on haplotypes containing the mutation under selection. We 4 

used the extended haplotype homozygosity (EHH)44 and the integrated Haplotype Score (iHS) 5 

methods45 to identify regions with extended haplotype homozygosity greater than expected under 6 

a neutral model. iHS is based on the differential levels of LD surrounding a positively selected 7 

allele compared to the ancestral allele at the same position. For the iHS analyses, we normalized 8 

scores with respect to all values observed at sites with a similar derived allele frequency within 9 

40Mb regions flanking the four target genes. SNPs with absolute values larger than 2 are within 10 

the top 1% of observed values and are marked as extreme SNPs or candidate SNPs under positive 11 

selection. An extreme positive iHS score (iHS > 2) means that haplotypes on the ancestral allele 12 

background are longer compared to the derived allele background. An extreme negative iHS score 13 

(iHS < -2) means that the haplotypes on the derived allele background are longer compared to the 14 

haplotypes associated with the ancestral allele. All of the above processes were performed with  15 

selscan46. SNPs with predicted functional effects on protein structure that are identified as potential 16 

targets of selection (stop_lost, missense_variant, start_lost, splice_donor_variant, 17 

inframe_deletion, frameshift_variant, splice_acceptor_variant, stop_gained, or inframe_insertion) 18 

are highlighted. Haplotypes were phased by Eagle V2.4.147.  The ancestral state of alleles was 19 

obtained from Ensembl. 20 

To identify potential regulatory variants under selection, we overlapped SNPs showing 21 

signatures of selection using iHS with DNase I hypersensitivity peak clusters from ENCODE 32 22 

and eQTLs from GTEx v8. 35.  The overlapped SNPs were uploaded to the UCSC browser for 23 

visualization. The ChIP-seq density dataset was obtained from http://remap.univ-amu.fr/ 33. 24 

DNase-seq and ChIP-seq clusters, layered H3K4Me3 (often found near Promoters), H3K4Me1 25 

and H3K27Ac (often found near Regulatory Elements) data are from ENCODE32. The DNase-seq 26 

tracks of large intestine, small intestine, lung, kidney, heart, stomach, pancreas and skeletal muscle 27 

were from ENCODE 48.  28 

We used di statistics to identify SNPs that are highly differentiated in allele frequency 29 

between populations based on unbiased estimates of pairwise FST49. The di statistics were 30 

performed cross the 40Mb regions. If the candidate SNP was within the top 5% of the 40Mb 31 
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 12 

regions in a specific population, the SNP was considered as a variant showing significant 1 

differentiation between the target population and other populations. These variants are candidate 2 

SNPs that show signals of local adaptation. 3 

Haplotype networks were constructed by PopART50 using the built-in minimum spanning 4 

algorithm.  5 

 6 

Results 7 

 8 

Coding variation at ACE2 among global populations 9 

 10 

SARS-CoV-2 employs ACE2 as a receptor for cellular entry18. To systematically 11 

characterize genetic variation in the coding region of ACE2 across global populations, we analyzed 12 

whole-genome sequence data from 2,012 individuals from diverse African ethnic groups (referred 13 

to as “African diversity panel (ADP)”), 2,504 samples from the 1KG project 26, and whole exome 14 

sequence data from 15,977 individuals of European and African ancestry from the Penn Medicine 15 

Biobank (PMBB) (Figure S1). In total, we identified 41 amino acid changing variants (Figure 1A, 16 

and Table S4). Twenty-eight (69%), twenty (49%), eighteen (44%), and sixteen (40%) of the 17 

nonsynonymous variants were predicted to be deleterious or likely deleterious by the CADD28, 18 

SIFT 29, PolyPhen 30 and Condel prediction 31 methods (Table S4).   19 

Among the 41 coding variants identified at ACE2, the majority are rare (minor allele 20 

frequency, MAF < 0.05) in the pooled global population dataset (Figure 1A and Table S4). 21 

However, there are variants that are common (MAFs >= 0.05) in the Central African Hunter 22 

Gatherer (CAHG) population from Cameroon (often referred to as “pygmies”) (Figure 1B). One 23 

of these variants, rs138390800 (Lys341Arg), is a deleterious non-synonymous variant, and present 24 

at high frequency (MAF = 0.164) in the CAHG, while it is rare in other African populations and 25 

absent in non-African populations (Figure 1C).  Two other nonsynonymous variants, rs147311723 26 

(Leu731Phe) (MAF = 0.083) and rs145437639 (Asp597Glu) (MAF = 0.083), are also common 27 

only in the CAHG population (Figures 1B and Table S4). These three non-synonymous variants 28 

are the only common coding variants found at ACE2 in any of the populations examined. 29 

 We then investigated the potential role of these 41 coding variants in the conformation of 30 

the ACE2 protein. The 41 coding variants are distributed across the entire ACE2 protein (Figure 31 

1D and Table S4), including its receptor-binding domain (RBD) region which binds to the SARS-32 

CoV-2 spike protein, dimerization interface, and transmembrane helix. In particular, two novel 33 
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 13 

non-synonymous variants Gly354Asp (chrX:15581230) and Ser43Asn (chrX:15600784) are both 1 

found directly in the RBD binding region of ACE2 (Figure 1D and Table S4); the former is only 2 

found in low frequency in one population, the Fulani from Cameroon (MAF = 0.008), and the 3 

latter is also an African specific variant that is at low frequency in only three East African 4 

populations, two of which are Afroasiatic speaking populations from Kenya (MAF = 0.031) and 5 

Ethiopia (MAF = 0.012) (Table S4). The variant Arg708Trp (rs776995986) occurs in the region 6 

identified as the TMPRSS2 cleavage site in ACE251 and is found only in the Afroasiatic speaking 7 

populations from Ethiopia (MAF = 0.004). Importantly, the presence of Arginine residues has been 8 

shown to be important in “multibasic” cleavage sites18. Therefore, due to the drastic change in 9 

physicochemical properties of the residue, this variation could be expected to interfere in 10 

TMPRSS2 cleavage efficiency, though it warrants experimental validation. Finally, two variants 11 

are located at glycosylation sites. Variant Asn546Ser (rs756905974, chrX:15572228), which 12 

causes the loss of a conserved glycosylation site on the ACE2 protein, is found only in the SAS 13 

populations (MAF = 0.001). Variant Lys26Arg (rs4646116), found in individuals from the 14 

European (EUR) (MAF = 0.005), African (AFR) (MAF = 0.001) and South Asian (SAS) (MAF = 15 

0.002) populations from the 1KG dataset (Table S4), occurs near both the conserved ACE2 16 

glycosylation site Asn90 and the RBD binding site. The modification to a similarly positively 17 

charged positive residue could suggest a role for electrostatic interactions, though no direct 18 

interference with RBD binding could be deduced without further studies. 19 

 20 

Regulatory variation at ACE2 among global populations 21 

In contrast to coding variants which have direct effects on protein structure in all cells 22 

expressing a gene, the effects of regulatory genetic variants are relatively difficult to determine52. 23 

Expression quantitative trait locus (eQTL) analysis has been used to identify genetic variants 24 

associated with gene expression. We first extracted 2,053 eQTLs significantly associated with 25 

ACE2 gene expression (P < 0.001) from the GTEx database 35 (Table S5). To narrow down 26 

candidate functional variants, we focus on the eQTLs located in the promoter regions of target 27 

genes or in enhancers supported by chromatin interaction data53.   28 

We identified six eQTLs (rs4830977, rs4830978, rs5936010, rs4830979, rs4830980 and 29 

rs5934263) located in a strong DNase peak at 73.3 kb upstream of ACE2 that have direct 30 

interactions with ACE2 based on RNA Pol2 ChIA-PET data (Figure 1E, S2 and Table S5). All six 31 
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SNPs are eQTLs of ACE2 and all of them have positive normalized effect sizes (NES > 0.2) and 1 

significant p-values (P < 0.00008) in brain, tibial nerve, tibial artery, pituitary and prostate cells 2 

(Figure S3 and Table S5).  In non-African populations, these six eQTLs are in high LD (R2  =  0.91 3 

– 1.0) (Figure S4) and, thus there are two common haplotypes: “CCGGAT” and “ATCATC”. The 4 

frequency for the “ATCATC” haplotype ranges from 0.31 - 0.47 in all populations except the East 5 

Asian population, which has a frequency of 0.068 at all 6 SNPs (Figure S5).  In African 6 

populations, LD is lower (R2 > 0.5; Figure S4), and there are three common haplotypes: 7 

“CCGGAT” (0.564), “ATCATC” (0.308), and “CCCGAC” (0.116). Of note, every allele in the 8 

haplotype “CCGGAT” is correlated with higher expression of ACE2 in the cortex of the brain 9 

while alleles in haplotype “ATCATC” are correlated with lower expression of ACE2; other 10 

haplotypes have alleles with both positive and negative effect sizes in different tissues (Table S5). 11 

Haplotype “CCCGAC” is only present in populations with African ancestry and its frequency is 12 

highest in the Botswana Khoesan (0.38) and Cameroon CAHG (0.38) populations. We also 13 

identified one variant (rs186029035) located in strong TF and DNase clusters (ENCODE) in the 14 

16th intron of ACE2. This variant is only common in the Cameroon CAHG population and, 15 

therefore, there is no eQTL data for this SNP in the GTEx database (MAF = 0.153, Table S2). 16 

 17 

Signatures of natural selection at ACE2 18 

 19 

As indicated above, most of the non-synonymous variants at ACE2 are rare in global 20 

populations and many of them are predicted to be deleterious, indicating that this gene is under 21 

strong purifying selection. To formally test for signatures of natural selection at ACE2, we first 22 

examined the ratio of non-synonymous and synonymous variants at each gene using the dN/dS 23 

test42. The dN/dS for all pooled samples was 0.77, indicating that ACE2 is under purifying selection 24 

globally (Table S6 and Figure S6). However, in the East Asian population, we observed seven 25 

non-synonymous variants (all of them are rare) and only one synonymous variant, and the dN/dS 26 

value is 1.85, indicating an excess of non-synonymous variation. In other populations, the dN/dS 27 

ratio ranges from 0 to 0.79 (Table S6 and Figure S6).  Thus, ACE2 appears to be under strong 28 

purifying selection in most populations but may be under weak purifying selection in the East 29 

Asian population. We next applied the MK-test41 which compares the ratio of fixed non-30 

synonymous sites between humans and chimpanzee (Dn = 8) and fixed synonymous sites (Ds = 6) 31 

to the ratio of polymorphic nonsynonymous sites among populations (Pn = 41) relative to 32 
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polymorphic synonymous sites (Ps =14) and found that it is not significant (odds ratio (OR) = 0.45, 1 

P = 0.94, two-sided Fisher’s exact test, Table S7 and Figure S7, S8).  2 

Because the above-mentioned methods are more suitable for detecting signals of natural 3 

selection acting over long time scales54; 55, we then tested for signatures of recent positive selection 4 

at ACE2 in global populations using the iHS test45 to detect extended haplotype homozygosity 5 

(EHH)44, which identifies regions of extended linkage disequilibrium (LD) surrounding a 6 

positively selected locus. We first focused on the three common non-synonymous variants in the 7 

CAHG population from Cameroon (rs138390800, rs147311723 and rs145437639; MAF: 0.083 8 

- .164), and a common putative regulatory variant (rs186029035, located in TF and DNase clusters 9 

in the 16th intron of ACE2, MAF = 0.153).  The derived alleles of these variants exist on three 10 

different haplotype backgrounds: rs147311723 and rs145437639 are on the same haplotype 11 

backgrounds, while rs138390800 and rs186029035 are on similar, but distinct, haplotype 12 

background (Figure 2A). The derived alleles of the corresponding SNPs on each haplotype 13 

background show EHH extending longer than 2 Mb, while the ancestral alleles of these SNPs 14 

harbor haplotypes extending less than 0.3 Mb (Figure 2B). We then calculated the integrated 15 

haplotype score (iHS) of each of these variants, to determine whether these extended haplotypes 16 

are unusually long compared to other SNPs with a similar allele frequency; the iHS values were 17 

not significant for any of these variants (Figure S9 and Table S8). However, if selection were 18 

acting on multiple haplotypes simultaneously (as shown above), the EHH and iHS tests would not 19 

be well powered to detect selection56. We also used the di statistic49 to measure if allele frequencies 20 

at these candidate SNPs were strongly differentiated between Cameroon CAHG and other 21 

populations. The di values of SNPs rs138390800 and rs186029035 were in the top 1.4% and 1.7%, 22 

respectively, of di values for all SNPs examined, indicating that that allele frequencies at these 23 

variants are amongst the most highly differentiated in the CAHG population.  However, it should 24 

be noted that in the CAHG these four variants (rs138390800, rs147311723, rs145437639 and 25 

rs186029035) are in complete LD based on D’ (D’ = 1) with the 6 eQTLs described above (Figure 26 

S10, S11), indicating that the alleles are on the same haplotype background. Thus, it is not possible 27 

to distinguish if the non-synonymous variants are targets of selection or if they are “hitchhiking” 28 

to high frequency due to selection on flanking regulatory variants.  Given the high LD in the region, 29 

it is possible that multiple functional variants on the same haplotype backgrounds have been under 30 

selection. 31 
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 We then investigated signatures of recent positive selection at candidate regulatory variants 1 

near ACE2 in the global datasets.  In total, there are 234 variants that had high iHS scores (|iHS| > 2 

2) in at least one population extending over an ~200 kb region (Table S9), and 48% (n=113) of 3 

these variants are either eQTLs or located at DNase hypersensitive regions which are in high LD 4 

based on D’ (Figure S10, S11, and Table S9). Among the region near the TSS (<10kb from ACE2), 5 

there are two variants in high LD (D’ = 1) that had high iHS scores in the San population from 6 

Botswana (Figure 3A); rs150147953 is located in a DNase peak in multiple tissues including lung, 7 

intestine and heart and rs2097723 is an eQTL of ACE2 in the brain (Figure 1E, S12; Table S9).  8 

We also identified strong selection signals at the region 50 – 120 kb upstream of ACE2 (chrX: 9 

15650000-15720000) in the AFR, San from Botswana, and Niger-Congo-speaking populations 10 

from Cameroon, as well as Afroasiatic- and Nilo-Saharan-speaking populations from Kenya 11 

(Figure 3A and S9). Two SNPs in this region (rs5936010 and rs5934263) have elevated iHS scores 12 

(|iHS| > 2) in the San population from Botswana and the Afroasiatic population from Kenya 13 

(Figure 3A) and are part of the 6 eQTLs described above, located within a strong enhancer 14 

interacting with the promoter of ACE2 (Figure 1E). Two additional eQTLs, that are in complete 15 

LD with the 6 eQTLs (D’ = 1; Figure S11), rs4830984 and rs4830986, had high iHS scores in four 16 

of the five African populations listed above (all but the Kenya Afroasiatic; Figure 3A).  17 

We performed haplotype network analysis to examine phylogenetic relationships among 18 

haplotypes at ACE2 in global populations derived for SNPs showing signatures of natural selection 19 

(Figure 3B and 3C). We identified two haplotype clades:  one (clade 1) is nearly specific to 20 

Africans and the other (clade 2) encompasses global populations (Figure 3B). In the CAHG, 21 

haplotypes containing the rs138390800 (Lys341Arg) non-synonymous variant and the 22 

rs186029035 regulatory variant are in clade 1, whereas haplotypes containing the rs147311723 23 

(Leu731Phe) and rs145437639 (Asp597Glu) non-synonymous variants are located in clade 2 24 

(Figure 3B). Haplotypes containing the two regulatory variants (rs5936010 and rs5934263) located 25 

50 – 120 kb upstream of ACE2 are shared in global populations, and the nearby regulatory variants 26 

rs4830984 and rs4830986 are sub-lineages on those haplotype backgrounds (Figure 3B and 3C).   27 

 28 

Associations between genetic variations in ACE2 and clinical disease phenotypes 29 

 30 
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We examined associations of genetic variation at ACE2 with clinical phenotypes using the 1 

PMBB cohort that consists of exome-sequencing data from 15,977 participants between the ages 2 

of 19 and 89 years (52% female) with extensive clinical data available through their electronic 3 

health records (EHR). Of these, 7061 individuals were of European ancestry (42%) and 8916 were 4 

of African ancestry (55%) (Table S1).  5 

 To test for association between rare coding variants and clinical phenotypes, we applied a 6 

gene-based approach37; 57 and single variant analysis. First, we performed a gene-based analysis 7 

by collapsing the coding region variants with MAF < 0.01 that are annotated as non-synonymous 8 

or putative loss-of-function (pLOF) variants. We tested for association with 12 phenotypes, 9 

encompassing COVID-relevant disease classes affecting different organ systems, defined by EHR 10 

based diagnosis codes (Table S10). For the gene-based approach, we applied two statistical tests: 11 

a) a burden test (i.e. the cumulative effect of rare variants in a gene) that uses logistic regression 12 

and b) a sequence kernel association test (SKAT)58. Thus, it can compute effect estimates but may 13 

suffer from loss of power when gene variants have effects in opposite directions (i.e., protective 14 

and higher risk variants). This limitation can be overcome by parallel analysis with SKAT, a 15 

powerful approach to model mixed effect variants.  However, this approach does not provide effect 16 

estimates. Therefore, we reported outcomes using both methods. Ancestry specific analysis of 17 

gene-based tests identified seven associations in African ancestry (AA) and three associations in 18 

European ancestry (EA) populations that reached statistical significance levels after multiple 19 

hypothesis correction (p < 1 x 10-04) for the SKAT model. None of the gene burden models reached 20 

a significance level of p < 1 x 10-04. The effect size from the logistic regression model was used to 21 

indicate a protective or increased risk effect on disease phenotype. In the AA population, the most 22 

significant associations were with hepatic encephalopathy and respiratory failure (Figure 1F and 23 

Table 1). The association with respiratory failure is interesting as it is one of the key severe clinical 24 

features reported for COVID-1910; 59-62. However, the same association was not significant in the 25 

EA population, which could be explained by lack of power due to lower number of coding variants 26 

at ACE2 in EA. Within the EA population, the most significant associations included hepatic coma, 27 

respiratory syncytial virus infectious disease, and cirrhosis of the liver (Table 1).    28 

We also examined an extended list of ~1800 phecodes derived from the EHR and 33 EHR-29 

based quantitative lab measurements and performed a phenome-wide association study 30 

(PheWAS)37;57;63. After multiple testing correction, we identified one association in the AA and 31 
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five associations in the EA populations reaching study-wide significance (p < 1 x 10-5) (Table S10 1 

and S5). Myocarditis, a rare cardiovascular disease caused by viral infection, was the top PheWAS 2 

association in the AA population but not significant in the EA population. Although the population 3 

difference for this specific association is unclear, recent studies have reported a link between 4 

SARS-CoV-2 induced cardiac injury among COVID-19 patients64, which it was suggested might 5 

be mediated by ACE2. This observation would be consistent with ACE2 expression in heart tissue, 6 

and its upregulation in cardiomyocytes64-66. Among respiratory diseases, cough and allergic rhinitis 7 

reached nominal significance (p < 0.01) in the AA population (Table S10). In the EA population, 8 

we identified a nominal association with influenza, asthma, emphysema, cough, and painful 9 

respiration (p-value<0.01). Our findings in the EA cohort are consistent with other studies of ACE2 10 

in subjects derived from the UK biobank67. Among the median measure of 33 EHR-based 11 

quantitative lab measurements that we investigated (see Methods), only the internationalized 12 

normalized ratio (INR) derived from the prothrombin time test showed a nominal association with 13 

increase in INR above 1.11, potentially relevant to blood clotting abnormalities observed in 14 

COVID patients (Table 2).  15 

 To further evaluate the individual effect of each rare coding variant in ACE2, we performed 16 

a single variant association analysis on the rare variants in the genes identified from gene-based 17 

tests. A Fishers exact test was used to account for the small sample size when testing the impact 18 

of rare single variants on phenotypes. The ACE2 variant rs147311723, which is only present in 19 

African populations, was most significantly associated with respiratory infection (p <0.05, 20 

OR=1.95 [1.06 - 3.6]). Another African specific ACE2 variant rs138390800 did not reach 21 

statistical significance but showed modestly increased risk of respiratory failure (p=0.1; OR=2.29 22 

[0.83 - 6.33]).  23 

 For the six eQTLs identified near ACE2 (rs4830977, rs4830978, rs5936010, rs4830979, 24 

rs4830980 and rs5934263), we performed a PheWAS with clinical data by ancestry. We found 25 

that two of the six eQTLs (rs5936010 and rs5934263) (targets of positive selection in both 26 

Afroasiatic populations from Kenya and Khoesan populations from Botswana) are significantly 27 

associated with type 2 diabetes (p=1.23 x 10-4, OR=1.1) and hypertension (p=8.8 x 10-4, OR=1.13), 28 

respectively, in the AA population (Figure 1G, and Table S11). Among the respiratory disorders, 29 

all six eQTLs had nominal associations (p < 0.01) with acute sinusitis and dypnea (shortness of 30 

breath) in AA and bronchiectasis in EA. Further, we noticed a difference in the effect of association 31 
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among the six eQTLs with respiratory disorders examined in AA. Variants rs5936010 (OR=1.11) 1 

and rs5934263 (OR = 1.19) were associated with increased risk of respiratory disorder, whereas 2 

the rest of the four eQTL variants were associated with decreased risk. 3 

 4 

Genetic variation at TMPRSS2 and its potential role in SARS-COV-s2 infection 5 

susceptibility 6 

 7 

The trans-membrane protease serine 2 (TMPRSS2) protein enhances the spike protein-8 

driven viral entry of SARS-CoV-2 into cells18. At this gene, we identified forty-eight 9 

nonsynonymous variants.  Among the non-synonymous variants, only two (rs12329760 10 

[Val197Met] and rs75603675 [Gly8Val]) have high MAF (> 0.05) in the pooled global dataset 11 

(Figure 4A, and Table S12). While rs75603675 is highly variable in non-East-Asian populations 12 

(AFR = 0.3, AMR = 0.27, EUR = 0.4, and SAS = 0.2), it is not highly variable in East Asians 13 

(MAF = 0.02) (Figure 4B and 4C, and Table S12). In addition, some non-synonymous variants 14 

were common and specific to African populations. Notably, the non-synonymous variant 15 

rs61735795 (Pro375Ser) had a high MAF in the Khoesan-speaking population from Botswana 16 

(MAF = 0.18).  This variant is present at low frequency in populations from Cameroon (MAF < 17 

0.01) and Ethiopia (MAF < 0.03) and was absent in non-African populations. The non-18 

synonymous variant rs367866934 (Leu403Phe) is common in the Cameroonian CAHG population 19 

(MAF = 0.15) and has low frequency (MAF = 0.02) in other populations from Cameroon, but it is 20 

absent from non-Cameroonian populations (Figure 4B and Table S12). Another non-synonymous 21 

variant rs61735790 (His18Arg) is common in the CAHG populations from Cameroon (MAF = 22 

0.12) and the Nilo-Saharan populations from Ethiopia (MAF = 0.12) but is rare in other 23 

populations (Figure 4B and Table S12). 24 

 We identified two regulatory SNPs (rs76833541 and rs4283504) in the promoter region of 25 

the TMPRSS2 gene that have been identified as eQTLs of TMPRSS2 in testis (Figure 4D, S13, and 26 

Table S5). The MAF of rs76833541 is higher in EUR (MAF = 0.16) than other populations (EAS 27 

= 0.002, AFR = 0.006, AMR = 0.06 and SAS = 0.05) and the MAF of rs4283504 is more common 28 

in EAS (MAF = 0.21) than other populations (EUR = 0.11, AFR = 0. 04, AMR = 0.12 and SAS = 29 

0.14) (Figure S14 and Table S2). 30 

  31 

Signatures of natural selection at TMPRSS2 32 

 33 
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We applied the MK test at TMPRSS2 and observed that Dn/Ds (13/2) is significantly larger 1 

than Pn/Ps (48/45) among pooled human samples (OR = 6.1, P-val = 0.009, Fisher’s exact test) 2 

(Figure 5A, and Table S7) as well as in individual ethnic groups (OR ranged from 5.0 - 17), 3 

indicating positive selection in the hominin lineage after divergence from chimpanzee.  Notably, 4 

there are 13 non-synonymous and 2 synonymous variants at TMPRSS2 (ENST00000398585.7, see 5 

Figure S15 for ENST00000332149.10) that were fixed in human populations. The non-6 

synonymous variants are located in different structural domains of TMPRSS2: amino acid A3P, 7 

N10S, T46P, A70V, R103C, and M104T are located in the cytoplasmic region which may function 8 

in intracellular signal transduction68; L124I is located in the transmembrane region; N144K is 9 

located in the extracellular region; S165N and S178G are located in the LDL-receptor class A 10 

domain; E441Q and T515M are located in the Peptidase S1 domain which is involved in the 11 

interaction with the SARS-CoV-2 spike protein18; S529G is located in the last amino acid position 12 

of the protein (Figure 5B).  In contrast to the MK test, the dN/dS ratio test was not significant in 13 

any population, indicating no excess of non-synonymous to synonymous variation within 14 

populations. (Table S6 and Figure S6). 15 

We also tested for recent positive selection at TMPRSS2 in all ethnic groups using iHS 16 

(Figure S16 and Table S8). We found many SNPs (n = 153) with high iHS scores (|iHS| > 2) in 17 

different ethnic groups in a 78 kb region encompassing the TMPRSS2 gene which show high levels 18 

of LD (ChrX:41454000-41541000; Figure S16, S17). We identified a non-synonymous variant 19 

(rs150969307) that shows a signature of positive selection (iHS = 2.01) and is common only in the 20 

Chabu hunter gatherer population from Ethiopia (MAF = 0.079) (Table S12). We found that more 21 

than one third of SNPs with |iHS| scores >2.0 (62 of 153) are located in putative regulatory regions 22 

(Figure S18 and Table S9).  23 

 24 

Associations between genetic variations in TMPRSS2 and clinical disease phenotypes 25 

 26 

In the PMBB, gene-based analysis with 12 severe disease classes identified nominal 27 

associations with respiratory failure, respiratory syncytial virus infectious disease, lower 28 

respiratory tract infection and pneumonia in the AA population but no statistically significant 29 

association in the EA population (Table 1, Figure 4E). As with ACE2, the clinical phenotype 30 

associations with TMPRSS2 in AA may be driven by an excess of rare variants in that population 31 

and, hence, more carriers in comparison to EA. Among the diseases in the respiratory disorder 32 
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category, we identified a nominal association (p<0.01) with allergic rhinitis in AA and with 1 

obstructive bronchitis in EA populations (Table S10). Previously, a gene-based PheWAS with 2 

EHR-derived disease codes in the UK biobank population, which consists of mostly individuals 3 

of European descent, showed no statistically significant associations with TMPRSS269. Among 4 

clinical lab measures, we identified nominal association with urine bilirubin levels (p = 0.001). 5 

The PheWAS of the two regulatory eQTLs (rs76833541 and rs4283504) of TMPRSS2 described 6 

above identified association of rs76833541 with abnormal glucose (p=8.9 x 10-4, OR=1.5) in EA 7 

and rs4283504 with glucocorticoid deficiency (p= 0.001, OR=2.7) in AA (Figure 4F). We did not 8 

identify any association between these two eQTLs and respiratory conditions (Figure 4F, and 9 

Table S11). 10 

 11 

Patterns of variation at DPP4 and LY6E 12 

 13 

DPP4 14 

DPP4 is a receptor for the Middle East Respiratory Coronavirus (MERS-Cov) and was 15 

reported to interact with SARS-CoV-270. At this gene, we identified 47 non-synonymous variants 16 

and one loss-of-function variant (Table S13).  Among them, no variant was common in the pooled 17 

global dataset (Figure 6A), suggesting this gene is extremely conserved during human evolutionary 18 

history. Only one non-synonymous variant (rs1129599, Ser437Thr) was common in the Fulani 19 

pastoralists from Cameroon (MAF = 0.081), was present at low frequency in other African 20 

populations, and was absent in non-African populations (Figure 6B and 6C). In addition to the 21 

nonsynonymous variants, one loss-of-function variant was identified at DPP4. The variant 22 

rs149291595 (Q170*) has low MAF in some African populations (MAF < 0.05) but is absent in 23 

non-African populations.  24 

We identified four eQTLs (rs1861978, rs35128070, rs17574 and rs13015258) in the 25 

promoter region of the DPP4 gene (Figure 6D). Three of the variants (rs1861978, rs35128070 and 26 

rs17574) are significant eQTLs in the transverse colon and rs13015258 is an eQTL in the lung (P 27 

< 5.9e-6, Figure S20 and Table S5). The minor alleles of these three variants are rare in EAS (MAF 28 

< 0.05) but common in all other populations (MAF > 0.15, Figure S21, and Table S2). The fourth 29 

SNP, rs13015258, resides in the center of a cluster of DNase peaks identified in ENCODE (Figure 30 

6D) with MAF ranging from 0.38 in the AMR population to 0.6 in other populations (Figure S21 31 

and Table S2).  32 
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 1 

Signatures of natural selection at DPP4 2 

The MK-test result was not significant in either the pooled samples (Dn = 3, Ds = 5, Pn = 3 

45, Ps = 33 OR = 0.44, P = 0.9, two-sided Fisher’s exact test) nor in each population separately 4 

(Table S7 and Figure S8). For the the dN/dS test, we observed ratios ranging from 0 to 0.52 in 5 

individual populations, indicating that DPP4 is highly conserved (Table S6 and Figure S6) within 6 

human populations.  Using the iHS test, we identified 8 SNPs that had extreme high iHS scores 7 

(|iHS| > 2) in the Khoesan populations from Botswana (Figure S22 and Table S8). Five of these 8 

SNPs (rs10166124, rs2284872, rs2284870, rs7608798 and rs2160927) are in LD (D’ > 0.95) with 9 

each other (Figure S23). The SNP rs2284870 is located in a strong DNase peak in heart tissue 10 

(Figure S24 and Table S9).  11 

 12 

Associations between genetic variations in DPP4 and clinical disease phenotypes 13 

In the gene-based analysis among AA PMBB participants, we identified significant 14 

associations (only in the SKAT model) with respiratory syncytial virus infectious disease and 15 

upper respiratory tract disease (Figure 6E, Table 1 and S10). None of the gene-based models were 16 

significant in the EA population. The PheWAS of four regulatory eQTLs identified the most 17 

significant association with malignant neoplasm of the rectum (commonly referred as colon cancer) 18 

for rs17574 (p = 4.49 x 10-04, OR = 1.8) and rs13015258 (p = 0.002, OR = 0.54) in AFR only. 19 

Among respiratory disorders, rs35128070 had the most significant association with “abnormal 20 

results of function study of pulmonary system” (p=0.002, OR=1.6) in the AFR population and we 21 

observed a nominal association between rs17574 and “acute respiratory infections” (p<0.01, 22 

OR=1.22) in the EA population (Figure 6F, and Table S11).  23 

 24 

LY6E 25 

Studies show that mice lacking LY6E were highly susceptible to a usually nonlethal mouse 26 

coronavirus24. At LY6E we observed twenty-eight non-synonymous variants and all of them, 27 

except rs11547127 (MAF = 0.057), have MAF that are rare in the pooled global dataset (Figure 28 

7A, and Table S14). However, some of the non-synonymous variants are common in specific 29 

populations (Figure 7B). For instance, the non-synonymous variant rs111560737 (Asp104Asn) 30 

was common in the southern African Khoesan population from Botswana (MAF = 0.36) and the 31 

Chabu population from Ethiopia (MAF = 0.17) (Figure 7C). Three loss-of-function variants 32 
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(rs200177123 [stop gained, Ser59*], chr8:143020941, and chr8:143020946) were also identified 1 

at LY6E, and all of them are rare. In the PMBB, only four pathogenic and likely pathogenic variants 2 

were identified, and all were rare in both AA and European EA populations.  3 

We identified three regulatory eQTLs (rs13252864, rs17061979 and rs114909654) located 4 

within 2 kb of the transcription start site of LY6E (Figure 7D), all of which are significant in 5 

esophageal mucosa (P < 1e-5, Figure S25 and Table S5), which has a high expression level of 6 

LY6E (TPM=108, GTEx). The minor alleles of rs13252864 and rs114909654 are common in 7 

African populations (MAF > 0.15) while very rare in other populations (MAF < 0.02, Figure S26), 8 

whereas the MAF of rs17061979 is relatively high in EAS (0.18) and SAS (0.13) and rare in other 9 

populations (MAF < 0.05, Figure S26).  10 

Signatures of natural selection at LY6E 11 

The MK-test result was not significant in either the pooled samples (Dn = 0, Ds = 4, Pn = 12 

9, Ps =9, OR = 0, P = 0.9, two-sided Fisher’s exact test) nor in each population separately (OR 13 

ranging from 0 to 0.52; Table S7 and Figure S8), indicating that LY6E is highly conserved.  We 14 

identified 19 variants that that had extreme high iHS scores (|iHS| > 2) (Table S8, Figure S27), 15 

some of which are in LD in specific populations (Figure S28). One variant (rs867069115) shows 16 

an extreme iHS score in the Hadza hunter-gatherer population from Tanzania (iHS = -2.94). This 17 

variant is located in a regulatory region ~1.9kb downstream of LY6E, within DNase and TF peaks 18 

in the lung, intestine, kidney, heart, stomach, pancreas and skeletal muscle from ENCODE (Figure 19 

S29) and is common only in the Hadza population (MAF = 0.14), is rare in other African 20 

population (MAF < 0.05) and is absent in all non-African populations (Table S2).  SNP 21 

rs10283236, which shows an extreme iHS value in the CEU population, is an eQTL of LY6E 22 

located within DNase and TF clusters identified in ENCODE (~4.14kb downstream of 23 

LY6E) active in many tissues including lung, kidney and small intestine.  24 

 25 

Associations between genetic variations in LY6E and clinical disease phenotypes 26 

We identified a nominal association between LY6E with pneumonia in the AA population 27 

only (p= 0.01, Figure 7E, Table 2 and Table S10). LY6E also has nominal association (p<0.01, 28 

Table 2) with total cholesterol, prothrombin, and eosinophil levels among the AA population. 29 

Association with prothrombin is not statistically significant in the EA population. The association 30 

analysis of regulatory variants identified most significant association with “severe protein-calorie 31 
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malnutrition” (p = 2.35 x 10-05, OR = 1.9) and “acute post hemorrhagic anemia” (p = 6.4 x 10-04, 1 

OR = 1.6) in the AA population. In the EA population, “chronic ulcer of skin” with rs13252864 2 

(p=0.001, OR=2.2) was the most significant association (Figure 7F, and Table S11).  3 

 4 

Discussion 5 

Investigating global patterns of genetic variation at genes that play a role in SARS-CoV-2 6 

infection could provide insights into potential differences in susceptibility to COVID-19 among 7 

diverse human populations. However, African populations are under-represented in the majority 8 

of current genetic studies of COVID-19 susceptibility and severity, despite the fact that they have 9 

the highest genetic diversity among human populations71;72. In this study, we present a 10 

comprehensive analysis of human genes which play a key role in SARS-CoV-2 host receptor 11 

binding and cellular invasion, i.e., ACE2, TMPRSS2, DPP4, and LY6E. We characterized the 12 

coding and non-coding variants in these candidate genes to examine population differences in 13 

allele frequencies and signatures of natural selection in diverse ethnic populations. This included 14 

novel sequence data from 2012 ethnically diverse African populations from five countries 15 

(Cameroon, Ethiopia, Kenya, Botswana and Tanzania) in Africa practicing different lifestyles (e.g. 16 

hunter-gatherers, agriculturalists, and pastoralists). Additionally, we analyzed the correlation of 17 

common and rare genetic variants in these four genes with clinical traits derived from the dataset 18 

of 15,997 individuals from the Penn Medicine BioBank (PMBB) with African and European 19 

ancestry. We included 12 “organ dysfunction” categories defined by phenotype algorithms (see 20 

Methods), ~1800 ICD diagnosis codes, and 33 laboratory test measures from the EHR. Our results 21 

highlight the importance of including genomes from diverse ethnic groups in human genetic 22 

studies.  23 

At ACE2 we identified 41 non-synonymous variants, most of which are rare, suggesting 24 

that they are under purifying selection. Tests based on dN/dS indicate that East Asians have an 25 

excess of non-synonymous variation at ACE2, indicating weak purifying selection has influenced 26 

patterns of variation in that population. However, there are some variants that are common in 27 

specific ancestry groups. Notably, we identified three common non-synonymous variants 28 

(rs138390800, rs147311723, and rs145437639) at ACE2 with MAF ranging from 0.083 to 0.164 29 

in Central African hunter-gatherers (CAHG), which were the only common coding variants 30 

(defined here as MAF > 0.05) found in global populations studied here and by others20;67;73;74.  We 31 
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observed that the derived alleles of the common non-synonymous SNPs (rs138390800, 1 

rs147311723, rs145437639) and one putative regulatory variant (rs186029035) at ACE2 in CAHG 2 

show evidence of EHH, with the extended haplotypes extending longer than 2 Mb, though they 3 

did not show deviation from neutrality based on the iHS test.  However, we do not have much 4 

power to detect a selection signal using this test because the SNPs are on three different haplotype 5 

backgrounds in CAHG, possibly due to selection on existing variation (e.g.“soft selection”) which 6 

decreases the power to detect significant iHS scores75. Moreover, each haplotype is at a relatively 7 

low frequency (0.083 to 0.164), which further reduces the power of the iHS test.  The CAHG are 8 

traditionally hunter-gatherers living in a rainforest ecosystem who consume wild animals.  They 9 

have high exposure to animal viruses and were reported to have relative resistance to viral 10 

infection76. Thus, it is possible that this locus is adaptive for protection from infectious diseases in 11 

this population. Future in vitro or in vivo studies will be needed to determine the functional 12 

significance of these variants.  13 

At TMPRSS2, we identified forty-eight nonsynonymous variants, only two of which had a 14 

high MAF (>.05) in the pooled global dataset (rs12329760 and rs75603675). However, some 15 

variants have high MAF in two African hunter-gatherer populations. Notably, the non-16 

synonymous variant rs61735795 (Pro375Se) is only common in the Khoesan-speaking San 17 

population from Botswana (MAF = 0.18) and the non-synonymous variant rs367866934 18 

(Leu403Phe) is only common in the Cameroonian CAHG populations (MAF = 0.15). At TMPRSS2 19 

we observed a strong signature of adaptive evolution in the human lineage after divergence from 20 

Chimpanzee ~ 6 MYA77. In total, 13 non-synonymous variants located on different structural 21 

domains of TMPRSS2 were fixed in human populations. Among them, E441Q and T515M are 22 

located in the Peptidase S1 domain that plays an important role in acute respiratory syndrome 23 

(SARS)-like coronavirus (SARS-CoV-2) infection78 and six (A3P, N10S, T46P, A70V, R103C, 24 

and M104T) are at the cytoplasmic amino terminal domains of TMPRSS2 which plays an important 25 

role in signal transduction. These variants at TMPRSS2 could be potential candidates for future 26 

studies to investigate their functional impact on susceptibility to pathogens in humans compared 27 

to non-human primates. 28 

SARS-CoV replication is significantly reduced in ACE2 knockout mice79 and cells with 29 

low expression of ACE2 were resistant to SARS-CoV2 infection80. It has also been shown that 30 

both SARS-CoV and SARS-CoV2 infection could down regulate ACE2 expression22;79; 81. The 31 
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expression of ACE2 and TMPRSS2 in nasal and bronchial epithelial cells is higher in adults than 1 

children, and in healthy individuals compared with smokers or patients with chronic obstructive 2 

pulmonary disease51. Therefore, differences in expression levels of ACE2 and TMPRSS2 could 3 

influence the susceptibility and host reactions to SARS-CoV-2. Regulatory eQTLs that differ in 4 

frequency across ethnically diverse populations may play a role in local adaptation and disease 5 

susceptibility82. eQTL mapping has been used to identify population-specific regulatory variation 6 

and revealed the association of regulatory alleles with complex traits such as multiple sclerosis83, 7 

malaria54 and immune response to infection84. We identified regulatory eQTLs associated with 8 

ACE2, TMPRSS2, DPP4, and LY6E gene expression and highlighted the eQTLs showing highly 9 

differentiated MAF among populations and/or signatures of natural selection. These eQTLs are 10 

located in ChIP-seq and DNase peaks and have the potential to influence transcription factor 11 

binding and, thus, change the promoter or enhancer activities in specific tissues85; 86.  Interestingly, 12 

some of the eQTLs in the upstream regions of ACE2 were under selection in African populations. 13 

For example, rs5936010 and rs5934263, which are located within a strong enhancer interacting 14 

with the promoter of ACE2 as suggested by ChIA-PET, harbored significant iHS scores (|iHS| > 15 

2) in both Afroasiatic populations from Kenya and the San population from Botswana. Further, 16 

PheWAS of these eQTLs in the PMBB populations identified association of eQTLs at ACE2 with 17 

type 2 diabetes (rs5936010) and hypertension (rs5934263). These are known pre-existing 18 

conditions that increases risk of severe illness due to COVID-1911; 87; 88. Among respiratory 19 

diseases, only one eQTL at ACE2 had nominal association (rs4830977) with acute sinusitis. The 20 

association was only identified in the AA population and had a protective effect (OR = 0.78 [0.66-21 

0.95]).  The eQTLs we analyzed are from GTEx V8 database89, and 84.6% of the donors are people 22 

of European and Western Eurasian descent. Therefore, it is possible that we are missing some 23 

regulatory variants that are only present in specific ancestry groups due to the lack of sample 24 

diversity. Further experimental testing of predicted regulatory variants will provide insights into 25 

differences in gene expression regulation at ACE2, TMPRSS2, DPP4, and LY6E among different 26 

populations. In the future, eQTL mapping in diverse populations will be informative for identifying 27 

novel trait associations that may differ in prevalence across ethnic groups90.    28 

  The gene-based genetic association analyses of non-synonymous variants at ACE2, 29 

TMPRSS2, DPP4 and LY6E identified several associations with clinical phenotypes. We observed 30 

that respiratory failure has significant association with ACE2 and TMPRSS2 among the PMBB AA 31 
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population. That is a particularly interesting finding as respiratory failure is one of the clinical 1 

outcomes observed in some patients with COVID-1910; 59-62. However, this association was not 2 

significant in the EA population. This observation could be explained by the low number of coding 3 

variants and carriers at ACE2 and TMPRSS2 among EA and, hence, low power to detect an 4 

association. An association with myocarditis, a rare cardiovascular disease caused by viral 5 

infection, was also observed in the AA population. Recent studies have reported a link between 6 

SARS-CoV-2 induced cardiac injury such as myocarditis among COVID-19 patients91.  Further, 7 

ACE2 has known expression in heart tissue, and it plays an important role in transcriptional 8 

dysregulation in cardiomyocytes – cells that make up cardiac muscles64-66.  We observed 9 

association between ACE2 and myocarditis only in the AA population but as noted above, we may 10 

not have as much power to detect and association in EA. Blood clotting abnormalities in lungs and 11 

other organs in COVID-19 patients have been reported by several studies92. In autopsies of 12 

COVID-19 patients, thrombosis was found to be a prominent finding across multiple organs, even 13 

in spite of extensive anticoagulation treatment and regardless of timing of clinical progression, 14 

indicating that thrombosis might be at play in the early stages of disease92. One hypothesis to 15 

explain this observation is that the dysfunction of endothelial cells may play an important role in 16 

increased risk of thrombosis93. We observed associations between the internationalized normalized 17 

ratio (INR) derived from the prothrombin time test (PT) with ACE2 and LY6E in a gene-based 18 

association test. The INR test measures the time it takes blood to clot and is an important measure 19 

for individuals with blood clotting disorders or on blood thinners.  20 

 Characterizing the genetic variation and clinical phenotype associations at these four genes 21 

that play a key role in SARS-CoV-2 infection could be relevant for understanding individual and 22 

population differences in infection susceptibility. We performed evolutionary analyses to dissect 23 

the forces underlying global patterns of genetic variation and identified variants that may be targets 24 

of selection.  It will be important to determine the functional effects of these candidate adaptive 25 

variants using in vitro and in vivo approaches in future studies.  Additional studies will be needed 26 

to investigate the impact of genetic variation in modulating susceptibility/resistance to SARS-27 

CoV-2 infection and other coronaviruses across ethnically diverse populations. 28 

 29 

 30 

Description of Supplemental Data 31 

Supplemental file 1: Supplemental figures S1-S29. 32 
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Table S1. Penn Medicine Biobank (PMBB) participant characteristics 1 

Table S2. Genetic variants identified around the four genes. “N” denotes variants were not 2 

identified or called in the corresponding dataset. “0” denotes variants were identified in the 3 

corresponding dataset, but the minor allele frequency is 0.  4 

Table S3. ICD code mapping to MONDO disease classes. 5 

Table S4. Coding variants identified at ACE2. “N” denotes variants were not identified or called 6 

in the corresponding dataset. “0” denotes variants were identified in the corresponding dataset, but 7 

the minor allele frequency is 0.  8 

Table S5. Regulatory variants identified at the four candidate genes. eQTLs are extracted from 9 

GTEx V8. 10 

Table S6. Result of the dN/dS for four genes in both the pooled dataset and specific ethnic 11 

groups.  12 

Table S7. Results of the MK-test for four genes in both the pooled dataset and specific ethnic 13 

groups.  14 

Table S8. SNPs with significant selection signals in each ethnic group based on each method.  15 

Table S9. Regulatory SNPs that overlap with significant selection signals at the four genes. 16 

Table S10. Summary statistics from gene-based association results 17 

Table S11. Summary statistics from PheWAS of eQTL variants 18 

Table S12. Coding variants identified at TMPRSS2. “N” denotes variants were not identified or 19 

called in the corresponding dataset. “0” denotes variants were identified in the corresponding 20 

dataset, but the minor allele frequency is 0.  21 

Table S13. Coding variants identified at DPP4. “N” denotes variants were not identified or called 22 

in the corresponding dataset. “0” denotes variants were identified in the corresponding dataset, but 23 

the minor allele frequency is 0.  24 

Table S14. Coding variants identified at LY6E. “N” denotes variants were not identified or called 25 

in the corresponding dataset. “0” denotes variants were identified in the corresponding dataset, but 26 

the minor allele frequency is 0.  27 
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Tables 
 
Table 1. Associations of ACE2, DPP4, TMPRSS2, and LY6E with 12 disease classes derived from EHR data. 
 

Disease Phenotype Gene Cases Controls Carrier 
Controls 

Carrier 
Cases 

SKAT P Burden P Burden 
OR 

Burden 
SE 

95% CI Dataset 

Hepatic 
Encephalopathy 

ACE2 97 8045 441 5 1.1E-12 0.0043 5.73 0.61 0.55 - 2.94 AA 

Respiratory 
Syncytial Virus 
Infectious Disease 

DPP4 56 6392 85 1 6.8E-07 0.1221 6.06 1.17 -0.48 - 4.09 AA 

Respiratory Failure TMPRSS2 199 6392 11 2 2.3E-06 0.0124 7.31 0.80 0.43 - 3.55 AA 
Respiratory Failure ACE2 199 6392 351 12 9.0E-05 0.0509 3.10 0.58 0 - 2.26 AA 
Upper Respiratory 
Tract Disease 

DPP4 144 6392 85 3 2.5E-04 0.0978 4.16 0.86 -0.26 - 3.11 AA 

Respiratory 
Syncytial Virus 
Infectious Disease 

TMPRSS2 56 6392 11 1 3.9E-04 0.0217 11.63 1.07 0.36 - 4.55 AA 

Pneumonia LY6E 1120 6392 7 5 1.0E-02 0.0108 6.09 0.71 0.42 - 3.19 AA 
Respiratory 
Syncytial Virus 
Infectious Disease 

ACE2 56 6392 351 7 1.3E-02 0.1857 3.85 1.02 -0.65 - 3.34 AA 

Lower Respiratory 
Tract Disease 

TMPRSS2 693 6392 7 1 3.4E-02 0.1541 2.59 0.67 -0.36 - 2.26 AA 

Pneumonia TMPRSS2 1120 6392 11 4 4.8E-02 0.2029 2.23 0.63 -0.43 - 2.04 AA 
Hepatic Coma ACE2 16 6817 318 1 4.3E-31 0.0019 10.45 0.76 0.87 - 3.83 EA 
Respiratory 
Syncytial Virus 
Infectious Disease 

ACE2 40 5859 274 3 2.3E-07 0.1650 3.61 0.92 -0.53 - 3.1 EA 

Cirrhosis Of Liver ACE2 10 6817 43 1 1.8E-04 0.0837 9.40 1.30 -0.3 - 4.78 EA 
Acute Myocardial 
Infarction 

LY6E 396 6494 8 1 1.8E-02 0.2936 3.65 1.23 -1.12 - 3.71 EA 
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Table 2. Association of ACE2, DPP4, TMPRSS2, and LY6Ewith clinical laboratory 
measures derived from the EHR. 
 

Lab Name Gene Sample 
Size 

Carriers Beta SE P Dataset 

Urine Bilirubin TMPRSS2 1410 2 3.13 0.95 0.001 EA 
Total Cholesterol LY6E 5800 8 41.11 15.29 0.007 AA 
Prothrombin LY6E 6220 10 3.47 1.31 0.008 AA 
Eosinophil (%) LY6E 7697 12 -1.34 0.56 0.016 AA 
Eosinophil (THO/uL) LY6E 7678 12 -0.09 0.04 0.022 AA 
Prothrombin LY6E 5944 7 5.17 2.52 0.040 EA 
Prothrombin ACE2 6220 330 1.11 0.55 0.045 AA 

 
 

 
 
 
Figures 
 
Figure 1. Genetic variation at ACE2 and its disease association.  
(A) Location of coding variants and their minor allele frequency (MAF) at ACE2 identified from the pooled 
dataset. (B) MAF of coding variants in diverse global ethnic groups. (C) The geographic distribution of the 
MAF for variants within rs138390800 at ACE2 in diverse global ethnic groups is highlighted. Each pie 
denotes frequencies of alleles in the corresponding population. (D) Locations of identified non-synonymous 
variants within the secondary structure of the ACE2 protein. (E) Six regulatory eQTLs located in an 
upstream enhancer of ACE2. RNA Pol2 ChIA-PET data and DNase-seq data of large intestine, small 
intestine, lung, kidney and heart are from ENCODE 32. (F) Gene-based association result between coding 
variants at ACE2 and 12 disease classes. The disease severity is shown on the x-axis and the y-axis 
represents the p-values. EA, European Ancestry; AA, African American ancestry. (G) PheWAS plot of six 
eQTL associated with ACE2 and ~1800 disease codes across 17 disease categories. The disease categories 
are shown on the x-axis and the y-axis represents the -log10 of the p-values. The colored dot represents an 
eQTL and the direction of effect of the association. The red dashed line denotes the 0.0001 cutoff, and the 
blue dashed line represent the 0.001 cutoff. 
 
Figure 2. Natural selection signatures at ACE2 in the Cameroon CAHG populations.  
(A) Haplotypes over 150kb flanking ACE2 in CAHG populations. The X-axis denotes genetic variant 
position, and the y-axis represents haplotypes. Each haplotype (one horizontal line) is composed of the 
genetic variants (columns). Red dots indicate the derived allele, while green dots indicate the ancestral 
allele. Haplotypes surrounded by a top-left vertical black line suggest these haplotypes carry derived allele(s) 
of the labeled variant near the corresponding black line. For example, the first black line denotes all the 
haplotypes that have the derived allele at rs138390800 (dark red line). Haplotypes carrying rs138390800, 
rs147311723, rs145437639, and rs186029035 show more homozygosity than other haplotypes. 1, 2, 3, 4 at 
the top of the plot denotes positions for rs147311723, rs186029035, rs145437639 and rs138390800, 
respectively. (B) Extended haplotype homozygosity (EHH) of rs138390800, rs186029035 and 
rs147311723 (rs145437639 is in strong LD with rs147311723) at ACE2 in CAHG populations.  
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Figure 3. Natural selection signatures at the upstream region of ACE2 in African populations 
(A) iHS signals at the upstream region of ACE2 (chrX:15650000-15720000) in African populations. Each 
dot represents a SNP. Red dots denote SNPs that are significant (|iHS|>2). The gray solid line denotes the 
gene body region of ACE2. Putatively causal tag SNPs were annotated in the plots. (B) Haplotype network 
over 150kb flanking ACE2 in diverse ethnic populations. The network was constructed with SNPs that 
showed iHS signals in all populations and overlapped with DNase regions or eQTLs. The four functional 
candidates identified in Cameroon CAHG were also included in the networks.  Each pie represents a 
haplotype, each color represents a geographical population, and the size of the pie is proportional to that 
haplotype frequency. In the left panel, dashed line denotes the boundary of clade 1 and clade 2. Black oval 
denotes haplotypes containing the corresponding variants. (C) Haplotype containing variants (rs5936010, 
rs5934263, rs4830984 and rs4830986) are highlighted. Red pie denotes haplotypes containing the derived 
allele of the corresponding variants, while green pie denotes haplotypes containing the ancestral allele of 
the corresponding variants 
 
Figure 4. Genetic variation at TMPRSS2 and its disease association. 
(A) Location of coding variants and their minor allele frequency (MAF) at TMPRSS2 identified from the 
pooled dataset. (B) MAF of coding variants in diverse global ethnic groups. (C) The geographic distribution 
of MAF of variant within rs75603675 at TMPRSS2 in diverse global ethnic groups. (D) Two regulatory 
eQTLs located in the promoter region of the TMPRSS2 gene. RNA Pol2 ChIA-PET data and DNase-seq 
data of large intestine, small intestine, lung, kidney and heart are from ENCODE32. (E) Gene-based 
association result between coding variants at TMPRSS2 and 12 disease classes. The disease classes are 
shown on the x-axis and the y-axis represents the p-values. EA, European Ancestry; AA, African American 
ancestry. (F) PheWAS plot of the two eQTLs associated with TMPRSS2 and ~1800 disease codes across 
17 disease categories. The disease categories are shown on the x-axis and the y-axis represents the -log10 
of the p-values. The colored dot represents an eQTL and the direction of effect of the association. The red 
dashed line denotes the 0.0001 cutoff, and the blue dashed line represents the 0.001 cutoff. 
 
 
Figure 5. Natural selection signatures of TMPRSS2.  
(A) The result of the MK-test for TMPRSS2 in the pooled dataset. Non-syn indicates non-synonymous 
variants; Syn indicates synonymous variants. “Fixed” denotes variants that were fixed between the human 
and the Chimpanzee; “Poly” represents polymorphic variants within human populations. OR, odds ratio. 
The transcript ENST00000398585.7 was used for calculation. (B) Illustration of locations of variants that 
are divergent between the human and Chimpanzee lineages on the TMPRSS2 protein domains. Boxes 
denote the protein domains of TMPRSS2. Red lines represent non-synonymous variants that occurred in the 
corresponding domains of TMPRSS2, with the amino acids and positions of the Human and the Chimpanzee 
annotated at the bottom of the lines. Blue lines denote synonymous variants. TM, transmembrane domain; 
LDLRA, LDL-receptor class A; SRCR, scavenger receptor cysteine-rich domain 2; Peptidase S1, Serine 
peptidase.  
 
 
Figure 6. Genetic variation at DPP4 and its disease association. 
(A) Location of coding variants and their minor allele frequency (MAF) at DPP4 identified from the pooled 
dataset. (B) MAF of coding variants in diverse global ethnic groups. (C) The MAF of variant within 
rs129559 at DPP4 in diverse global ethnic groups. (D) Regulatory eQTLs located in DPP4. RNA Pol2 
ChIA-PET data and DNase-seq data of large intestine, small intestine, lung, kidney and heart are from 
ENCODE 32.  (E) Gene-based association result between coding variants at DPP4 and 12 disease classes. 
The disease classes are shown on the x-axis and the y-axis represents the p-values. EA, European Ancestry; 
AA, African American ancestry. (F) PheWAS plot of the four eQTLs associated with DPP4 and ~1800 
disease codes across 17 disease categories. The disease categories are shown on the x-axis and the y-axis 
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represents the -log10 of the p-values. The colored dot represents an eQTL and the direction of effect of the 
association. The red dashed line denotes the 0.0001 cutoff, and the blue dashed line represent the 0.001 
cutoff. 
 
 
Figure 7. Genetic variation at LY6E and its disease association. 
(A) Location of coding variants and their minor allele frequency (MAF) at LY6E identified from the pooled 
dataset. (B) MAF of coding variants in diverse global ethnic groups. (C) The MAF of variant rs111560737 
at LY6E in diverse global ethnic groups. Each pie denotes frequencies of alleles in the corresponding 
population. (D) Three regulatory eQTLs identified at LY6E. RNA Pol2 ChIA-PET data and DNase-seq data 
of large intestine, small intestine, lung, kidney and heart are from ENCODE 32. (E) Gene-based association 
result between coding variants at LY6E and 12 disease classes. The disease classes are shown on the x-axis 
and the y-axis represents the p-values. EA, European Ancestry; AA, African American ancestry. (F) 
PheWAS plot of the three eQTL associated with LY6E and ~1800 disease codes across 17 disease categories. 
The disease categories are shown on the x-axis and the y-axis represents the -log10 of the p-values. The 
colored dot represents an eQTL and the direction of effect of the association. The red dashed line denotes 
the 0.0001 cutoff, and the blue dashed line represents the 0.001 cutoff. 
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