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Abstract

Identification of those at greatest risk of death due to the substantial threat of COVID-19 can

benefit from novel approaches to epidemiology that leverage large datasets and complex

machine-learning models, provide data-driven intelligence, and guide decisions such as

intensive-care unit admission (ICUA). The objective of this study is two-fold, one substantive

and one methodological: substantively to evaluate the association of demographic and

health records with two related, yet different, outcomes of severe COVID-19 (viz., death and

ICUA); methodologically to compare interpretations based on logistic regression and on gra-

dient-boosted decision tree (GBDT) predictions interpreted by means of the Shapley

impacts of covariates. Very different association of some factors, e.g., obesity and chronic

respiratory diseases, with death and ICUA may guide review of practice. Shapley explana-

tion of GBDTs identified varying effects of some factors among patients, thus emphasising

the importance of individual patient assessment. The results of this study are also relevant

for the evaluation of complex automated clinical decision systems, which should optimise

prediction scores whilst remaining interpretable to clinicians and mitigating potential biases.

Author summary

The design is a retrospective cohort study of 13954 in-patients of ages ranging from 1 to

105 year (IQR: 56, 70, 81) with a confirmed diagnosis of COVID-19 by 28th June 2020.

This study used multivariable logistic regression to generate odd ratios (ORs) multiply

adjusted for 37 covariates (comorbidities, demographic, and others) selected on the basis

of clinical interest and prior findings. Results were supplemented by gradient-boosted

decision tree (GBDT) classification to generate Shapley values in order to evaluate the

impact of the covariates on model output for all patients. Factors are differentially associ-

ated with death and ICUA and among patients. Deaths due to COVID-19 were associated

with immunosuppression due to disease (OR 1.39, 95% CI 1.10–1.76), type-2 diabetes
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(OR 1.31, 95% CI 1.17–1.46), chronic respiratory disease (OR 1.19, 95% CI 1.05–1.35), age

(OR 1.56/10-year increment, 95% CI 1.51–1.61), and male sex (OR 1.54, 95% CI 1.42–

1.68). Associations of ICUA with some factors differed in direction (e.g., age, chronic

respiratory disease). Self-reported ethnicities were strongly but variably associated with

both outcomes. GBDTs had similar performance (ROC-AUC, ICUA 0.83, death 0.68 for

GBDT; 0.80 and 0.68 for logistic regression). We derived importance scores based on

Shapley values which were consistent with the ORs, despite the underlying machine-

learning model being intrinsically different to the logistic regression. Chronic heart dis-

ease, hypertension, other comorbidities, and some ethnicities had Shapley impacts on

death ranging from positive to negative among different patients, although consistently

associated with ICUA for all. Immunosuppressive disease, type-2 diabetes, and chronic

liver and respiratory diseases had positive impacts on death with either positive or nega-

tive on ICUA. We highlight the complexity of informing clinical practice and public-

health interventions. We recommend that clinical support systems should not only predict

patients at risk, but also yield interpretable outputs for validation by domain experts.

Introduction

COVID-19, due to SARS-CoV-2 betacoronavirus, emerged in Wuhan, China in late 2019 and

has spread globally. It can cause severe complications of pneumonia, acute respiratory distress

syndrome, sepsis, and septic shock [1]. It has, as of October 24, 2020, infected over 42 million

people and killed over 1.1 million people [2]. Certain patient subsets, such as the elderly and

those with comorbidities, are at an increased risk of severe outcomes from COVID-19 such as

admission to intensive care units, respiratory distress requiring mechanical ventilation, and

death [3,4].

Clinicians can use predictive factors to prioritize patients at higher risk of clinical deteriora-

tion and public health authorities can use them to target public health interventions. Identify-

ing factors associated with severe disease has been described as an urgent research priority.

Several studies have sought to identify factors predicting poor outcome following COVID-19

infection [5,6] and assist clinician decision making [7–9]. A traditional method such as logistic

regression can infer the odd ratios (ORs) of the outcome in the presence of a risk factor. Mod-

ern machine-learning technologies, widely implemented during the COVID-19 pandemic,

can handle more complex patient data types, offer greater generality, and produce more accu-

rate predictions than the previous methods, but at the cost of losing transparency and

interpretability [10].

Surveillance systems support these analyses. The COVID-19 Hospitalization in England

Surveillance System (CHESS), a UK system distributed by Public Health England (PHE) and

adapted from the UK severe influenza surveillance system, collects extensive data on patients

admitted to hospital, including known comorbidities and important demographic information

(such as age, sex, and ethnicity) [11]. This large national dataset reduces limitations inherent

in small cohorts, enabling more reliable identification of associations. We performed analyses

on this dataset using logistic regression and a more general machine-learning model (the gra-

dient-boosted decision tree, GBDT), which generated interpretable predictions by means of

the Shapley additive explanation, a technique that mitigates the interpretability issue in

machine-learning outputs. For different applications of this technique to COVID-19 research

see, e.g., references [12,13]. Through these methods, we demonstrated the extent to which pre-

existing conditions differentially predicted death and intensive care unit (ICU) admission.
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Some factors affected both similarly but others proved to be protective for one while increasing

the risk for the other, or showed very different effect sizes. We also identified variation of

effects among patients. These results may be useful to clinicians assessing hospitalized patients

with COVID-19. They may also provide a greater context or benchmark for individuals evalu-

ating or interpreting complex automated clinical decision systems designed to identify those

most at-risk.

Materials and methods

Ethics statement

The data used in this study were supplied from the CHESS database after anonymisation

under strict data protection protocols agreed between the University of Warwick and Public

Health England. The ethics of the use of these data for these purposes was agreed by Public

Health England with the Government’s SPI-M(O) / SAGE committees.

Description of cohort and outcomes

We studied a cohort of 13954 patients of which 8947 patients survived and 5007 died after con-

tracting COVID-19. 5758 were admitted to ICUs, of whom 3483 were discharged after treat-

ment, and 2275 died. The dataset includes epidemiological data (demographics, risk factors,

and outcomes) on patients with a confirmed diagnosis of COVID-19 by 28th June 2020 who

required hospitalization. We included all available chronic and pre-existing morbid conditions

recorded by PHE as potential risk factors, including immunosuppression due to disease,

asthma requiring medication, immunosuppression due to treatment, neurological conditions,

respiratory conditions, obesity, type-1 and type-2 diabetes, hypertension, heart conditions,

renal disease, liver diseases, and other comorbidities [11]. No acute illnesses or medical condi-

tions were considered. In the CHESS dataset self-defined ethnicity is categorized according to

the Office for National Statistics questionnaires into 17 factors, all included in the study. With

8628 patients, white British was the largest group in the cohort and therefore chosen as a refer-

ence category. 1895 patients did not identify themselves with any ethnicity and were labelled

as “NA”. With the exception of age and admission date, all features were stratified to binary

variables. Entries labelled “diabetes” whose type was unknown and not recorded in the data-

base as “type 1”, have been considered as “type 2”. Death and ICU admission were chosen as

outcomes. The median age of this sample was 70 years (IQR 56–81, range 1–105), 59.25% were

men and 0.18% had an unrecorded sex. The prevalence of comorbidities is reported in Table 1

and ethnicity in Table 2. Cross-correlations between recorded ethnicities and pre-existing con-

ditions are illustrated in Fig 1.

Statistical analysis

Logistic regression models were used to estimate odd ratios (ORs) of all 37 pre-existing condi-

tions and demographic factors for both outcomes. Standard errors (SEs) and confidence inter-

vals (CIs) of the ORs were computed using the Taylor series-based delta method and the

profile likelihood method, respectively, and statistical significance assessed using the Benja-

mini-Hochberg (BH) test with false discovery rate set to 0.05 [14].

In addition, we applied a “gradient boosted decision tree” (GBDT) machine-learning

model with logistic objective function, as an appropriate machine learning approach. A GBDT

aggregates a large number of weak prediction models, in this case decision trees, into a robust

prediction algorithm, where the presence of many trees mitigates the errors due to a single-

tree prediction. Each individual tree consists of a series of nodes that represent binary decision
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splits against one of the input variables, with its final output being determined by the nodes at

the end of the tree (known as leaves). The model was implemented in the XGBoost library

(version 0.81) [15] and depended on a number of hyper-parameters. To avoid over-fitting,

these hyper-parameters were selected by means of Bayesian optimization of c-statistics using

5-fold cross-validation over the training set [16] with constant L1-regularisation parameter α
= 0.5. We used Shapley additive explanation (SHAP) analysis to understand the result of a

GBDT model fit [17,18]. The importance of each feature in the model output is represented by

the so-called Shapley values, introduced in game theory literature and providing a theoretically

Table 2. Fraction of patients in cohort by ethnicity.

White British 0.598

Eth. NA 0.134

Eth. unknown 0.102

Other white 0.026

Other Asian 0.024

Other ethn. 0.024

Indian 0.024

Pakistani 0.019

Black African 0.013

Black Caribbean 0.010

Other black 0.006

White Irish 0.004

Other mixed 0.004

Bangladeshi 0.004

White and black Caribbean 0.003

Chinese 0.003

White and black African 0.002

White and Asian 0.002

https://doi.org/10.1371/journal.pcbi.1009121.t002

Table 1. Fraction of patients in cohort by sex and comorbitidies.

Sex male 0.593

Other comorbidity 0.315

Hypertension 0.270

Chronic heart disease 0.161

T2 diabetes 0.159

Chronic respiratory disease 0.109

Obesity (clinical) 0.106

Chronic neurological cond. 0.087

Chronic renal disease 0.084

Asthma 0.084

Immunosuppression treatment 0.030

Immunosuppression disease 0.027

Asymptomatic testing 0.021

Chronic liver 0.017

T1 diabetes 0.012

Pregnancy 0.006

Serious mental illness 0.006

Sex unknown 0.002

https://doi.org/10.1371/journal.pcbi.1009121.t001
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justified method for allocation of credit among a group of players. In the context of machine

learning, the same mathematics is used to allocate the credit for the GBDT prediction among

the N features included in the study, for each of the M patients. The chief output of this

approach is a M×N matrix of Shapley values ϕij where i indicates a patient, i = 1,2,. . .,N, and j
is a pre-existing condition or other patient characteristic, j = 1,2,. . .,N. We also refer to the

Shapley value ϕij as the impact of j on the outcome for the patient i. Similar to the logistic

regression model, for each patient i, the trained GBDT model returns a decision value fi to be

interpreted as the logarithm of the odds that the outcome is poor. The Shapley values are

unique allocations of credit in explaining the decision fi among all the N features, where for

our case, negative values (ϕij<0) tip the decision value towards good outcome, while positive

values (ϕij>0) towards bad (i.e., ICU or death). The model output satisfies fi ¼
PN

j¼0
�ij (which

is the local accuracy property), where ϕi0 is a bias term. Importantly, it has been

Fig 1. Correlation heatmap between self-defined ethnicities and pre-existing conditions. Colour shades from blue to red correspond to increasing values of

Person correlation coefficient (white: no correlations are present). NA labels inpatients who did not identify themselves with any ethnicity.

https://doi.org/10.1371/journal.pcbi.1009121.g001

PLOS COMPUTATIONAL BIOLOGY Contrasting factors associated with COVID-19-related ICUA and death outcomes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009121 June 23, 2021 5 / 21

https://doi.org/10.1371/journal.pcbi.1009121.g001
https://doi.org/10.1371/journal.pcbi.1009121


mathematically proven that the Shapley allocation is the only possible one that satisfies two

additional desirable properties, i.e., consistency (if a feature’s contribution increases or stays

the same regardless of the other inputs, its Shapley value does not decrease), and missingness

(a zero-valued feature contributes a zero Shapley value) [17–19]. In tree-based models, the

same idea has been extended to allocate the credit to pairs of features, thus yielding

fi ¼
PN

k¼0

PN
j¼0
Fijk, where the Fijks are referred to as SHAP interaction values [18]. The diago-

nal term Fijj encodes the net effect on the model prediction fi of a feature j, stripped of its inter-

actions with the other features k6¼j and is referred to as the SHAP main effect of j. We used an

implementation specific to tree-based models, also referred to as TreeSHAP, accessible via the

XGBoost and SHAP libraries; we refer the reader to references [17,18] for a more comprehen-

sive discussion and for the implementation details.

Such an approach explains each individual prediction fi and is therefore referred to as a

local method. In contrast to that, as a complementary global method, we consider the so-called

partial dependence plots (PDPs) to show the average effects of age and admission date on the

predicted outcomes, marginalizing over the values of all other features [20].

It is worth comparing this approach with the standard logistic regression. For a patient i
with feature values Xi≔(xi1, xi2,. . .,xiN), the logistic regression and the GBDT models predict

an outcome (here taken to be ICUA or death) with probabilities p(Xi) and ~pðXiÞ, respectively.

These satisfy

log
pðXiÞ

1 � pðXiÞ
¼ b0 þ b1 � xi1 þ b2 � xi2 þ . . .þ bN � xiN

and

log
~pðXiÞ

1 � ~pðXiÞ
≕fi ¼ �i0 þ �i1 þ �i2 þ � � � þ �iN ;

where the coefficients βjs are maximum-likelihood estimates and the values ϕijs are obtained

by means of the TreeSHAP algorithm. To rank the features by their overall importance, we

estimate the slopes ϕjxTj =ðxjx
T
j Þ for each j, where ϕj≔(ϕ1j, ϕ2j,. . .,ϕNj) and xj≔(x1j, x2j,. . .,xNj),

thus obtaining a novel feature score which we refer to as Impj and can be directly compared to

the coefficient βj.
All models were fitted to a randomly chosen 90% of data entries, while the remaining

entries were used for validation. Goodness-of-prediction was assessed by means of the c-statis-

tics of the receiver operating characteristic curve (ROC-AUC) on the validation set, with boot-

strapped 2.5%-97.5% confidence intervals.

Results

Risk factors showed strong associations with both death and ICUA, but the strength and even

direction of these associations differed substantially across these outcomes. From logistic

regression analysis, immunosuppression due to disease (OR 1.39, 95% CI 1.10–1.76), type-2

diabetes (OR 1.31, 95% CI 1.17–1.46), chronic respiratory disease (OR 1.19, 95% CI 1.05–

1.35), age (OR 1.56 for each 10 year age increment, 95% CI 1.51–1.61), and being male (OR

1.54, 95% CI 1.42–1.68) were strongly associated with deaths due to COVID-19. The regres-

sion was adjusted for other comorbidities including type-1 diabetes, chronic liver disease, seri-

ous mental illness, chronic renal disease, chronic neurological condition, chronic heart

disease, hypertension, obesity and asthma, none of which were significantly associated with

death (BH test). Having any comorbidity other than these was recorded in the dataset as

“other comorbidity” and appeared to be a protective factor (OR death, 0.87, 95% CI 0.80–
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0.95). Some self-reported ethnicities, compared to white British, were associated with substan-

tially increased risk of death (e.g., Indian (OR 1.84, 95% CI 1.42–2.73)) risk of death. Asymp-

tomatic testing was associated with substantially lower risk of death (OR 0.29, 95% CI 0.18–

0.45). The estimated ORs of deaths are detailed in Table 3 and illustrated in Fig A in S1 Text.

Table 3. Estimated odd ratios (ORs) from adjusted logistic regressions and importance (Imp) scores of death and intensive-care unit admission (ICUA) outcomes.

Death outcome ICUA outcome

OR 95% CI Pr(>|z|) Imp OR 95% CI Pr(>|z|) Imp
Comorbidities:

Immunosuppr. disease 1.392 1.1–1.76 0.006 0.25 0.826 0.63–1.07 0.157† -0.13

T2 diabetes 1.307 1.17–1.46 0.000 0.18 1.018 0.9–1.15 0.778† -0.05

T1 diabetes 1.228 0.85–1.77 0.275† 0.07 0.414 0.27–0.63 0.000 -1.09

Chronic liver 1.215 0.89–1.64 0.209† 0.11 1.146 0.83–1.58 0.406† 0.00

Chronic respiratory disease 1.188 1.05–1.35 0.008 0.08 0.830 0.72–0.96 0.011 -0.21

Obesity (clinical) 1.163 1.01–1.33 0.030† 0.08 3.371 2.9–3.92 0.000 0.87

Serious mental illness 1.087 0.63–1.82 0.755† 0.04 2.575 1.5–4.46 0.001 0.49

Chronic renal disease 1.081 0.94–1.25 0.284† 0.15 0.672 0.57–0.79 0.000 -0.21

Chronic neurological cond. 1.064 0.93–1.22 0.381† 0.08 0.322 0.27–0.39 0.000 -1.01

Chronic heart disease 1.017 0.91–1.14 0.770† 0.05 0.481 0.42–0.55 0.000 -0.45

Hypertension 1.003 0.91–1.1 0.958† 0.00 1.578 1.42–1.76 0.000 0.30

Other comorbidity 0.871 0.8–0.95 0.003 -0.05 1.314 1.19–1.45 0.000 0.21

Asthma 0.869 0.75–1.01 0.070† -0.10 1.512 1.29–1.77 0.000 0.25

Ethnicities:

White and Asian 2.401 0.92–6.11 0.066 0.00 2.451 0.95–6.91 0.073† 0.00

Other black 2.204 1.34–3.61 0.002 0.42 3.583 1.96–7.03 0.000 1.18

White and black Caribbean 1.996 1.03–3.83 0.038 0.00 2.570 1.23–5.84 0.017 0.76

White and black African 1.842 0.78–4.15 0.149† 0.00 3.439 1.33–10.75 0.018 0.61

Indian 1.838 1.42–2.37 0.000 0.41 2.443 1.86–3.23 0.000 0.76

Chinese 1.784 0.85–3.71 0.122† 0.00 10.224 3.92–35.06 0.000 1.85

Pakistani 1.709 1.28–2.28 0.000 0.33 1.158 0.87–1.54 0.314† 0.04

Other mixed 1.584 0.78–3.07 0.187† 0.00 3.069 1.5–6.81 0.003 1.03

Black Caribbean 1.499 1.02–2.2 0.040 0.29 5.247 3.26–8.84 0.000 1.60

Bangladeshi 1.376 0.7–2.61 0.338† 0.00 3.086 1.6–6.32 0.001 1.11

Other Asian 1.265 0.97–1.65 0.084 0.19 3.183 2.41–4.25 0.000 1.01

Other white 1.076 0.83–1.39 0.585† 0.03 2.721 2.09–3.57 0.000 1.01

Eth. unrecorded 0.969 0.86–1.09 0.607† -0.05 0.160 0.13–0.19 0.000 -1.78

Other eth. 0.966 0.72–1.28 0.809† 0.03 3.711 2.75–5.08 0.000 1.03

Black African 0.922 0.62–1.33 0.672† -0.04 4.170 2.78–6.46 0.000 1.35

Eth. unknown 0.859 0.75–0.99 0.032† -0.10 0.770 0.67–0.88 0.000 -0.26

White Irish 0.493 0.25–0.92 0.032† -0.19 0.933 0.51–1.68 0.818† 0.00

Other:

Sex unknown 1.900 0.76–4.74 0.165† 0.00 0.395 0.08–1.45 0.205† 0.00

Age (x10 years) 1.560 1.51–1.61 0.000 0.02 0.764 0.74–0.78 0.000 -0.02

Sex male 1.543 1.42–1.68 0.000 0.13 1.735 1.59–1.89 0.000 0.16

Immunosuppr. treatment 1.229 0.98–1.54 0.072† 0.10 1.793 1.41–2.28 0.000 0.55

Admission day 0.795 0.76–0.83 0.000 -0.24 0.666 0.64–0.7 0.000 -0.39

Pregnancy 0.714 0.3–1.52 0.414† 0.00 0.339 0.2–0.57 0.000 -0.19

Asymptomatic testing 0.291 0.18–0.45 0.000 -0.82 0.517 0.35–0.74 0.000 -0.44

P values that do not test significant according to the Benjamini-Hochberg procedure are marked with a dagger(†).

https://doi.org/10.1371/journal.pcbi.1009121.t003
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Among co-morbidities, obesity (OR 3.37, 95% CI 2.90–3.29), serious mental illness (OR

2.57, 95% CI 1.51–4.46), hypertension (OR 1.58, 95% CI 1.42–1.76), asthma (OR 1.51, 95% CI

1.29–1.77), and “other comorbidity” (OR 1.31, 95% CI 1.19–1.45) were strongly positively

associated with ICU admission (Fig B in S1 Text and Table 3). Each of these had far weaker or

even negative associations with death. Some features associated with increased risk of death

such as chronic respiratory disease were negatively associated with ICUA (OR 0.83, 95% CI

0.72–0.96). No ethnicity was negatively associated with ICUA compared to white British

although there was substantial variation across these. Other factors associated with ICUA

included immunosuppression due to treatment (OR 1.79, 95% CI 1.41–2.28) and male sex

(OR 1.73, 95% CI 1.58–1.89). Old age (OR 0.76, 95% CI 0.74–0.78 for each 10-year increment),

asymptomatic testing (OR 0.52, 95% CI 0.35–0.74), and pregnancy (OR 0.34, 95% CI 0.20–

0.57) were associated with decreased ICUA. The associations of each predictor with death and

with ICUA are illustrated in Fig 2, highlighting some contrasts in direction and magnitude

while other risk factors appear more consistently associated with the two outcomes. The over-

all associations obtained from the GBDT model were consistent with the logistic model

results.

The receiver operating characteristic (ROC) curves for the logistic regression models are

plotted in Fig 3. The ROC-Area Under the Curve (AUC) scores for the logistic regression clas-

sifiers were 0.68 (95% CI 0.65–0.71) and 0.80 (95% CI 0.78–0.82) for death and ICUA outcome

predictions, respectively. Generalized collinearity diagnostics by means of variance inflation

factor (VIF) excluded severe collinearity (VIFs <2, Table 4, see also reference [21]). The scores

of GBDT for classification task were 0.68 (95% CI 0.66–0.71) and 0.83 (95% CI 0.82–0.85) for

the death and ICUA outcome predictions, respectively. In addition to outcome prediction, the

GBDT analysis with Shapley value explanations yielded the impact of each feature on both

death and ICUA outcome for each single patient (summarised in Figs C and D in S1 Text).

We contrasted the Shapley values for impacts on death and ICUA in Fig 4. All patients with

obesity, serious mental illness, immunosuppressing treatment, male sex, asymptomatic admis-

sion, and those whose self-reported ethnicity was other black, Indian, black Caribbean, other

Asian, other white, and NA had concordant impacts to death and ICU admission. In almost all

asthma patients, it is possible to appreciate negative impact on death and positive impact on

ICUA. Patients with type-1 diabetes, chronic renal disease, or chronic neurological disease

show positive association with death and negative association with ICUA outcome, although

with very dispersed Shapley value distributions. Upon visual inspection, the scatter points for

chronic liver disease, type-1 diabetes, chronic neurological, and chronic heart comorbidities

show two (or more) clusters with respect to the impact on death. The hypertension scatter plot

displays a neat partition with respect to the impact on ICUA outcome, showing that this vari-

able was associated with ICUA. Its impact on death is less clear, with patients having discor-

dant or concordant Shapley values for death. The cases of type-2 diabetes and chronic

respiratory disease appear diametrically opposite to these, as all patients with such conditions

had positive Shapley values for death with qualitatively different impacts on ICU outcome.

Stratifying on ICUA yields marginally higher ROC-AUC scores (logistic regression 0.69

(95% CI 0.66–0.72), GBDT 0.70 (95% CI 0.67–0.72) compared to death prediction obtained

without ICUA prediction. In fact, ICUA is a very strong predictor of death (OR 2.25, 95% CI

2.04–2.48) but is markedly correlated to other features (Fig 1). The full results are summarised

in Figs E-F and Table A in S1 Text.

The features were ranked according to their median ORs and their importance scores Imp
(defined in Materials and methods), showing that these two are ordinally associated in both

death (Spearman’s ρ = 0.47, P = 0.005) and ICUA outcomes (Spearman’s ρ = 0.97,

P = 13×10−22), as shown in Fig 5. The explanation model for the GBDT was therefore largely
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consistent with the interpretable logistic linear model. The analysis of SHAP main effect also

revealed the non-linear relations between outcomes and the age and admission day (Figs 6 and

7). The probability of death rose above 30 years of age. Likelihood of ICU admission decreased

markedly above 60.

Discussion

This cohort study investigated the association between patient characteristics (demographics

and comorbidities) and severe outcomes with COVID-19 using a large national dataset in

England (the CHESS database). Our findings on many factors were largely consistent with the

patterns observed worldwide in studies on patients infected with SARS-CoV-2 [22–34]. Both

logistic and GBDT models predicted admission to ICU more accurately than death.

Obese patients were approximately 3.4-fold more likely to be admitted to ICU (the stron-

gest association for any co-morbid condition), while the association with mortality was small

and non-significant (OR 1.16, BH test). In a US study involving 3615 patients, patients with a

body mass index (BMI) between 30 and 35 were 2-fold more likely to reach the ICU and those

with a BMI of over 35 were 3-fold more likely, when compared to BMIs of less than 30 [22].

These very high levels of ICUA in our and other works, as well as the contrastingly weaker

association with COVID-19 mortality, could be explained by clinicians tending to, relatively,

over-admit obese patients to ICU. It could reflect ICUA being very effective in reducing

Fig 2. Contrasting odd ratios (ORs) of death with ORs of intensive care unit admission (ICUA). Features are

grouped into comorbidities, self-defined ethnicities, and others (top to bottom). For binary variables, marker sizes are

proportional to the frequencies of the exposure. Error bars are 68% confidence intervals (CIs). Gray and white regions

correspond to discordant and concordant associations. The figure highlights mismatches in the ORs of a number of

variables, e.g., asthma and “other comorbidity” were risk factors for ICUA but protective for death outcome. Chronic

respiratory disease was a risk factor for death but negatively associated with ICU admission. For most ethnicities the

ORs of death and ICUA were concordant in sign but of different magnitude. Abbreviations: Mental ill.: serious mental

illness; Resp. dis.: respiratory disease; Neuro. dis.: neurological disease; Immunos. dis.: immunosuppression due to

disease; T2D: type-1 diabetes; T1D: type-2 diabetes; Eth. NA: ethnicity unrecorded; Immunos. treat.:

immunosuppression due to treatment; Asymp.: asymptomatic–meaning that testing was not due to the presence of

COVID-19 symptoms.

https://doi.org/10.1371/journal.pcbi.1009121.g002

Fig 3. ROC curves (C-statistics) of the logistic regression classifiers over the validation set. Confidence intervals are obtained by means of

bootstrapping.

https://doi.org/10.1371/journal.pcbi.1009121.g003
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mortality in this group and is an important area for further research [35]. Hypertension, and

asthma were associated with ICU admission but not death. Others have reported increased

risk of severe COVID-19 among asthmatics, with the increase driven only by patients with

non-allergic asthma [27]. Hypertension has been associated with severe COVID-19 disease in

previous univariable studies but there is no clear evidence that hypertension is an independent

risk factor [29].

Black or Asian minority ethnic groups showed higher odds of death and substantially

higher odds of ICU admission in our data compared to white British patients. Similar findings

to ours have been demonstrated UK-wide. Multivariable analyses from large multi-ethnic

Table 4. Variance inflation factors (VIFs) for the logistic regressions. VIF scores are always smaller than two,

excluding serious collinearity issues.

VIF death VIF ICUA

Age (x10 years) 1.29 1.19

Hypertension 1.26 1.28

Chronic heart disease 1.25 1.21

T2 diabetes 1.19 1.18

Other comorbidity 1.18 1.18

Chronic renal disease 1.15 1.14

Obesity (clinical) 1.13 1.07

Eth. NA 1.12 1.07

Chronic respiratory disease 1.10 1.10

Chronic neurological cond. 1.08 1.04

Admission day 1.07 1.13

Eth. unknown 1.07 1.07

Immunosuppr. treatment 1.06 1.06

Immunosuppr. disease 1.05 1.05

Asthma 1.05 1.05

Other Asian 1.05 1.03

Sex male 1.05 1.03

Indian 1.04 1.03

Pakistani 1.04 1.04

Asymptomatic testing 1.04 1.09

Other ethn. 1.04 1.02

Other white 1.03 1.02

Black African 1.03 1.02

Other black 1.02 1.01

Chronic liver 1.02 1.02

Black Caribbean 1.02 1.01

T1 diabetes 1.02 1.02

Serious mental illness 1.01 1.02

Other mixed 1.01 1.01

White and black Caribbean 1.01 1.01

Sex unknown 1.01 1.01

Bangladeshi 1.01 1.01

Pregnancy 1.01 1.03

White and Asian 1.01 1.01

White and black African 1.01 1.00

Chinese 1.01 1.00

https://doi.org/10.1371/journal.pcbi.1009121.t004
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cohorts have suggested that Asian and black patients group experienced an excessive level of

mortality, hospital admission, and intensive care admission even when differences in age, sex,

deprivation, geographical region, and some key comorbidities were taken into account

[5,28,30,31]. White Irish ethnicity was non-significantly associated with lower risk of death

(OR 0.49, BH test). This finding, adjusted for all covariates, echoes findings in an earlier study

comparing death rates standardised for age and region using census data [30]. Chinese ethnic-

ity predicted ICU admission (OR 10.22 with respect to the white British baseline) most

strongly, followed by black Caribbean (OR 5.25). For these and other minority groups the

association with ICU admission far exceeded that of death. An unrecorded or unknown eth-

nicity was strongly negatively associated with ICU admission, but not strongly associated with

death. This may indicate increased recording of ethnicity on ICU admission, a potential cause

of bias in estimating true differences in risk of ICU admission across ethnicities.

Age, type-1 diabetes, and neurological, heart, and respiratory diseases were negatively asso-

ciated with ICU admission but not death. Age and chronic respiratory disease were strongly

positively associated with death. Data gathered across the USA showed that deaths are 90

times higher in the 65–74 age group than the 18–29 age group and 630 times higher in the 85

and older group [36]. This may reflect judgements of limited capacity to benefit from ICU

admission due to age and some co-morbidities. Type-2 diabetes is broadly reported to be asso-

ciated with poor outcome in COVID-19 patients, while studies reporting outcome for type-1

diabetes are rare [32,33]. A national general practice based analysis in England demonstrated

that both type-1 and type-2 diabetes are associated with increased risk of in-hospital death

with COVID-19 [34]. Our multiply adjusted analysis of the CHESS dataset confirmed that

type-2 diabetes had a strong association with mortality (and non-significant association with

ICU admission), while type-1 diabetes’ association was positive but not statistically significant.

On the other hand, type-1 diabetes was negatively associated with ICUA outcome. There is

uncertainty regarding the effect of diabetes and glycaemic control on COVID-19 outcome.

Whilst some suggest a 3-fold increase in intensive care admission and death [24], others found

no association between glycaemic control and severe outcome [26]. Potential mechanisms for

effects could include hyperinsulinemia or the interaction of SARS-CoV-2 with ACE2 receptors

expressed in pancreatic β cells [32,37].

Male sex was positively and similarly associated with both ICU admission and death. The

increased risk of male deaths is consistent with worldwide data, in which, on average, 1.4-fold

more men than women have died from SARS-CoV2, with some countries reporting greater

than 2-fold male deaths [38]. Increased expression of the ACE2 receptor may occur in men

and has been suggested as a possible explanation for this finding [25]. Asymptomatic testing

Fig 4. Contrasting Shapley values for impact on death and intensive-care unit admission ICUA for all variables

included in this study. Each marker in the scatter plots corresponds to an in-patient. Colours from red to blue

indicate the value of the underlying variable (in binary variables, red colour means feature is present, blue otherwise; in

age feature, red to blue shades correspond to old to young ages; in admission day, red to blue shades correspond to

early to late dates). The explanation models assigned a concordant (discordant) impact on death and ICUA to the

patients in the white (grey) regions. The scatter plots expose not only the importance of a potential risk factor but also

its range of effects over the cohort. All patients with immunosuppression disease, type-2 diabetes, liver and respiratory

disease, and Pakistani self-defined ethnicity had positive Shapley values from death, with impact on ICU ranging from

negative to positive values, thus suggesting that these conditions were always leaning towards death but sometimes not

consistently towards ICUA. Conversely hypertension always have positive impact on ICUA whilst can either have

positive or negative impact on death for different patients. The Shapley values for death for many features appear

clustered (T1 diabetes, chronic liver, neurological, and hearth disease comorbidities), thus suggesting the presence of

different groups under the same labels with different effect on patient health. Inspection of the age pattern suggests the

presence of a group of young patients (blue markers) with negative impact on both age and ICUA outcome, old-age

patients with positive impact on death and negative impact on ICUA outcome, and intermediate-age patients with

impacts negative on death and positive on ICUA outcome. For abbreviations, see the caption of Fig 2.

https://doi.org/10.1371/journal.pcbi.1009121.g004
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and pregnancy demonstrated a strong negative association with both death and ICU admis-

sion. These results were expected in view of NHS trusts undertaking surveillance swabs for

asymptomatic people, including among elective hospital admissions.

Different machine-learning models have been leveraged to predict COVID-19 patients at

risk of sudden deterioration. A study over 162 infected patients in Israel demonstrated that

artificial intelligence may allow accurate risk prediction for COVID-19 patients using three

models (neural networks, random trees, and random forests) [39]; a random forest model was

Fig 5. SHAP importance scores from the explaination model for GBDT vs logarithm of odd-rations (ORs) from

logistic regression for death (A) and intensive-care unit (ICU) admission (B). Each point represents a feature (see

Table 3). Red markers correspond to the features whose association with the outcome was not significant according to

the logistic regression. The x-axis errorbars comprise 68% confidence intervals. The SHAP importance Imp allows us

to assess to what extent a feature contributes to the GBDT prediction. This plot shows that these are consistent with the

well-known logistic regression coefficients, despite the underlying models used to generate these two quantities are

fundamentally different.

https://doi.org/10.1371/journal.pcbi.1009121.g005

Fig 6. A-B) Partial dependence plots (PDPs) and probability of death predicted by GBDT for each patient in training set. C-D) SHAP main effect for age and

admission date. These effects can be ascribed to the age/admission date alone, regardless of their covariates. The strong pattern in the main effect for admission date

highlights the importance of incorporating timing in predictive models.

https://doi.org/10.1371/journal.pcbi.1009121.g006
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used over 1987 patients for early prediction of ICU transfer [40]; the GBDT model was

deployed on blood-sample data from 485 patients in Wuhan, China [41]; GBDT models out-

performed conventional early-warning scoring systems for ventilation requirement prediction

over 197 patients [42]; deep learning and ensemble models were reported to perform well for

early warning and triaging in China [9,43]. These models are very complex, but evidence indi-

cates that mortality predictions can be obtained from more parsimonious models, upon select-

ing the most important features, thus facilitating more efficient implementation of machine-

learning in clinical environments [44]. Despite these successes, prediction models have been

found overall to be poorly reported and at high risk of bias in a systematic review [45]. A com-

prehensive list of relevant works is out of the scope of this paper, but it is worth underlining

that machine-learning methods typically excel in outcome prediction but lack ease of interpre-

tation of the result. In this study, we bridged the gap between performance and interpretability

in machine learning for poor outcome predictions in COVID-19 patients. We trained GBDT

models (see Materials and methods section) and extracted not-only their predictions, but also

the extent to which each potential risk factor contributed to the prediction overall (thus

Fig 7. A-B) Partial dependence plots (PDPs) and probability of intensive-care unit admission predicted by GBDT for each patient in training set. C-D) SHAP main

effect for age and admission date.

https://doi.org/10.1371/journal.pcbi.1009121.g007
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permitting comparisons with the more easily-interpretable logistic regression model) and for

each patient. So-called “Shapley values” quantify such information, as summarised in Fig C

and D of S1 Text for death and ICUA, respectively.

Overall, the association of patient features with the final outcome (measured by the SHAP

importance scores Imp, see Materials and methods and Fig 5) is consistent with the logistic

regression results, although the two models are intrinsically different. Moreover, for each fea-

ture, we derived an individual Shapley value for each patient, allowing us to consider the varia-

tion in effects among patients. As a first example, we discuss interpretation of type-2 diabetes.

In the summary plots of Fig 4 and Figs C and D in S1 Text, the red markers correspond to

type-2 diabetes patients and blue to patients without type-2 diabetes. In the summary plot for

death outcome (Fig C in S1 Text, see also Fig 4), the red and blue markers are grouped into

two distinct clusters. All the type-2 diabetes patients had positive Shapley values, thus showing

that such a comorbidity was always associated with death, while all the other patients had

nearly zero Shapley values. Conversely, in the summary plot for ICUA outcome (Fig D in S1

Text, see also Fig 4), the red markers appear scattered. Some T2-diabetes patients had positive

Shapley values (positive association with ICU admission) while others had negative values (a

negative association with ICU admission). The summary plots thus show not only the overall

importance of a potential risk factor, but also its range of effects over the patients. In this case

our interpretation is that although consistently increasing the risk of death, the presence of

type 2 diabetes had more variable impact on decision making around ICU admission, in some

cases apparently adding to the case for admission and in some cases diminishing it.

Being male was positively associated with both death and ICU admission. Its impacts were

concordant in sign and confined within a narrow range of values. Conversely, for example,

chronic renal disease and immunosuppressive treatment had low impact on predicting death

for some patients, but very high impact for others, perhaps reflecting that these categories

comprise a number of diverse conditions and therapies. Considering ethnicity, most minority

groups were consistently and positively associated with ICUA but the impact attributed to

Pakistani ethnicity were much more variable.

Shapley value analysis of the GBDT model also excels in explaining the nonlinear relations

between covariates and their importance to outcome prediction. In Fig 6A, the predicted prob-

ability of death is shown to increase with age, in part due to increasing presence of comorbidi-

ties which are correlated with increasing age (Fig 1). In fact, the isolated effect of age (the

SHAP main effects for age), illustrated in Fig 6C, shows a sharp rise from age 30 even if it is

stripped from the interactions with the other factors. For ICUA, the SHAP main effect for age

abruptly drops and even reverses from the 60th year of age (Fig 7). The abruptness may suggest

an age threshold is being applied in clinical decision making on ICU admission.

During the first peak of COVID-19 epidemic healthcare services were under variable strain,

with clinical expertise growing over time. Declining in-hospital mortality was observed in Italy

[46] and England [47] during the first pandemic peak. This may reflect a mix of changing pres-

sure, developing clinical expertise and variable follow-up time following admission. We

included the patient’s admission day in our models to allow for these effects in adjustment

(logistic regression) and attribution of impact (machine learning). Hospital admission later

than March decreased both death and ICUA. These results mirror the PDPs outlined in Figs

6A and 6B and 7A and 7B, showing that a local explanation technique such as the Shapley

value analysis supersedes and is consistent with the global explanation of the PDPs. The per-

formance gains of the GBDTs here are small, in part due to the fact that all but two predictors

(age and admission date) are binary. Indeed, the logistic model predictions depend on a linear

combination of the predictor values, which is adequate if all the predictors are binary and the

classes are linearly separable. The similarity in the predictive power for these specific cases
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should not shadow the other advantages of the GBDTs (including their greater generality and

their ability of detecting non-linearity and variation in predictive effect).

While all our models had excellent performances, it is worth noting that prediction of

ICUA outcome was significantly better than death alone prediction for both. Including labora-

tory test results in the predictor variable may improve death prediction [48].

In conclusion, this study confirms that, in hospitalised patients, the risk of severe COVID-

19, defined as either death or transfer to intensive care unit, is strongly associated with known

demographic factors and comorbidities. We found that the association of these variables with

death was often qualitatively and quantitatively different from their association with ICU

admission. This was consistently derived by means of two different predictive models, i.e., the

standard logistic and the GBDT machine-learning models. The Shapley value explanation of

the latter model also highlights the sometimes variable impact of each factor for each patient.

These results allow an insight into the variable impact of individual risk factors on clinical

decision support systems. We suggest that these should not only grant the optimal average pre-

diction, but also provide interpretable outputs for validation by domain experts. Shapley values

may also support analytical approaches to address the problem of characterising the group of

patients for whom a prediction is incorrect. This is an important additional potential area for

research and application. Shapley-value analyses allow clinical interpretation of the results

from a complex machine-learning model such as the GBDT. Using these we have derived

importance scores which are consistent with the better known ORs as an overall assessment of

an average effect but can additionally display the extent to which this average effect is consis-

tent across patients or highly variable among different patient groups. We recommend the

wider adoption of Shapley-value analyses to support interpretation of ML outputs in clinical

decision making given this capacity to communicate the variation in the effects of predictive

variables. These aspects are particularly valuable to tackle COVID-19, a complex disease that

can cause a variety of symptoms and clinical outcomes, depending on the patients’ conditions,

and rapidly overwhelm healthcare systems, thus requiring large-scale automated decision

systems.
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