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Abstract
Witchweeds (Striga spp.) and broomrapes (Orobanchaceae and Phelipanche spp.) are root parasitic plants that infest many
crops in warm and temperate zones, causing enormous yield losses and endangering global food security. Seeds of these
obligate parasites require rhizospheric, host-released stimulants to germinate, which opens up possibilities for controlling
them by applying specific germination inhibitors or synthetic stimulants that induce lethal germination in the host’s ab-
sence. To determine their effect on germination, root exudates or synthetic stimulants/inhibitors are usually applied to par-
asitic seeds in in vitro bioassays, followed by assessment of germination ratios. Although these protocols are very sensitive,
the germination recording process is laborious, representing a challenge for researchers and impeding high-throughput
screens. Here, we developed an automatic seed census tool to count and discriminate germinated seeds (GS) from non-GS.
We combined deep learning, a powerful data-driven framework that can accelerate the procedure and increase its accu-
racy, for object detection with computer vision latest development based on the Faster Region-based Convolutional Neural
Network algorithm. Our method showed an accuracy of 94% in counting seeds of Striga hermonthica and reduced the re-
quired time from approximately 5 min to 5 s per image. Our proposed software, SeedQuant, will be of great help for seed
germination bioassays and enable high-throughput screening for germination stimulants/inhibitors. SeedQuant is an open-
source software that can be further trained to count different types of seeds for research purposes.
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Introduction
Root parasitic weeds, such as witchweeds (Striga spp.)
and broomrapes (Orobanchaceae and Phelipanche spp.),
are one of the major biological threats to the production
of major agricultural food crops (Musselman et al., 2001;
Tank et al., 2006; Parker, 2012; Pennisi, 2010; Rodenburg
et al., 2016), as infestation by these obligate parasites
causes yield losses ranging from a few percent to com-
plete crop failure (Gressel et al., 2004; Ejeta, 2007; Atera
et al., 2012). They jeopardize global agriculture due to
their variety of hosts (Xie et al., 2010): witchweeds attack
cereal crops in sub-Saharan Africa (Gressel et al., 2004;
Parker, 2012), while broomrapes infest noncereal crops in
Central Asia and the Mediterranean area (Joel et al.,
2007; Parker, 2012).

Despite differences in their host specificity and evolution
in diverse agroecological zones, they exhibit a common life
cycle distributed between under and aboveground phases
(Butler, 1995; Ejeta, 2007; Scholes and Press, 2008; Westwood
et al., 2010). Their life cycle starts in the underground with
seed germination that requires—in contrast to nonparasitic
plants—chemical stimulants, mainly strigolactones (SL), re-
leased by host plants to establish symbiosis with arbuscular
mycorrhizal fungi under nutrient-deprived conditions
(Bouwmeester et al., 2003; Xie et al., 2010; Al-Babili and
Bouwmeester, 2015; Lanfranco et al., 2018). Upon germina-
tion, parasite seedlings direct their radicle (the embryonic
root of the weed) toward host roots and form a haustorium
that grows to connect the parasite to its host, to deprive
the host plant of vital resources including water, products of
photosynthesis, and nutrients (Yoder, 1999; Paszkowski,
2006; Irving and Cameron, 2009; Yoneyama et al., 2010).
This allows the parasites to grow, break the soil surface, and
continue their above-ground development to reach matu-
rity: a single parasitic plant can produce tens of thousands
of tiny and highly viable seeds that return into the soil and
supply an already huge seedbank in constant expansion
(Ejeta, 2007; Jamil et al., 2012).

The control of parasitic weeds is a very difficult and chal-
lenging task, since (1) the infestation detection at early
stages is nearly impossible, (2) parasitic weeds are naturally
resilient (seed longevity), and (3) the extremely high number
of produced seeds builds huge seed reservoirs in infested
regions (Parker and Riches, 1993; Joel et al., 2007; Aly, 2012).
A number of control measures have been employed—in-
cluding cultural, agronomical, mechanical, and chemical
approaches, applied either individually or in an integrated
manner by combining several methods (Eplee and Norris,
1995; Haussmann, 2000; Aly, 2012)—and helped in mitigat-
ing the impact of root parasitic plants. However, they have
not been effective enough to adequately address the prob-
lem of cumulated seed reservoirs in infested fields (Ejeta,
2007; Cardoso et al., 2011). Therefore, research has focused
on developing strategies to eradicate or reduce these seed
banks.

The application of synthetic germination stimulants (SL
analogs) in the host’s absence is a promising approach to
significantly reduce parasitic seed banks, as it leads to the
death of germinating parasites, that is “suicidal germination”
(Kgosi et al., 2012; Zwanenburg et al., 2016; KountcHe et al.,
2019). Alternatively, there is a growing interest in further
exploiting SL dependency to develop specific germination
inhibitors. Such compounds should block SL perception of
parasitic seeds but not of host plants, allowing their applica-
tion in the presence of crops throughout the growing sea-
son (Nakamura and Asami, 2014; Holbrook-Smith et al.,
2016; Yoneyama, 2016; Hameed et al., 2018).

The performance of SL analogs/inhibitors in inducing/
inhibiting parasitic seed germination has been assessed
mainly by direct application to parasitic seeds placed on pe-
tri dishes (Matusova et al., 2005). In this in vitro bioassay,
preconditioned seeds are usually distributed and germinated
in wells or on small glass fiber filter paper disks and let to
germinate after the application of the target compound.
The parasitic seed germination rate is recorded manually,
counting germinated (seed showing a white-transparent
protruded radicle through the dark seed coat) and nonger-
minated seeds (NGSs) using a binocular microscope (Jamil
et al., 2011). Albeit being a standard procedure that yields
hundreds of pictures every month for laboratories studying
SL and related parasitic plants; the germination bioassay is
laborious, tedious, time-consuming, and hardly manageable
in high-throughput screening of large libraries for SL analogs
or inhibitors.

The count of GS can be eased using staining solutions to
increase the visibility of the colorless radicles (Long et al.,
2008) or converted into absorbance signals by translating
the germination rate into spectrophotometer-readable val-
ues (Pouvreau et al., 2013). Yet, they failed to reduce the
workload, while keeping an experimentally relevant sample
size. A recent combination of a binocular microscope
mounted with a charge-coupled device (CCD) camera (Leica
Microsystems), coupled with the protocol of Matusova et al.
(2005), has allowed the first steps toward computer-aided
image processing (Jamil et al., 2018). However, the success of
this approach is limited, as the ponderous manual assess-
ment of the germination rate had not been addressed. Thus,
there is an urgent need to develop a high-throughput
method for rapid and reliable recording of the germination
rate in bioassays, which may be addressed using object de-
tection and classification from a computer vision and deep
learning perspective.

Deep learning is a subfield of artificial intelligence that has
recently shown powerful capabilities to learn meaningful vi-
sual representations, allowing breakthroughs in the field of
computer vision (Bengio et al., 2013). Provided that the al-
gorithm is appropriately trained, deep learning methods can
lead to an effective high-level identification, characterization,
and abstraction of raw data or images. The rapid growth in
the popularity of deep learning approaches was motivated
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by the release of large-scale datasets such as ImageNet
(Deng et al., 2009) and Microsoft Common Objects in
Context (MS COCO; Lin et al., 2014), gathering millions of
images annotated with a diverse range of object categories.
Its development has been supported by the increased acces-
sibility of graphics processing units (GPUs), important archi-
tectural changes such as residual connections to solve for
vanishing gradients (i.e. the possibility to train deeper and
higher capacity models; He et al., 2016) and, finally, user-
friendly frameworks such as the PyTorch and Tensorflow
software libraries. The application of deep leaning in plant
science helped to effectively detect GSs of several crop spe-
cies, including chili (Capsicum frutescens), tomato (Solanum
lycopersicum), pepper (Capsicum annuum), barley (Hordeum
vulgare), maize (Zea mays), rice (Oryza sativa), and the para-
sitic plant Striga hermonthica (Nguyen et al., 2018;
Chaivivatrakul, 2020; Colmer et al., 2020; Masteling et al.,
2020).

In this work, we used the well-established algorithm Faster
Region-based Convolutional Neural Network (Faster R-CNN;
Ren et al., 2015) to develop an automated computer vision-
based tool to detect, count, and record the number of GSs
and NGSs from image datasets. Faster R-CNN has been rec-
ognized as a top-performing object detection algorithm with
a high prediction accuracy (Huang et al., 2017). It has been
successfully applied for a variety of downstream vision tasks
(Fan et al., 2016; Hung and Carpenter, 2017; Jiang and
Learned-Miller, 2017; Kang et al., 2017; Chen et al., 2018).
Leveraging this object detection algorithm, we implemented
a software that detects and localizes the parasitic seeds on
images. We report a counting algorithm with 94% accuracy,
which allows a single-click detection, recognition, and
counting of seeds. We show the broad applicability of our
algorithm in assessing the germination rate of different
parasitic plant seeds. Finally, we provide a platform,
SeedQuant (project website: https://braguyjm.github.io/
SeedQuant2/), allowing researchers to simultaneously pro-
cess large numbers of germination bioassay images without
the need of important compute resources. SeedQuant can
be used on Windows, MacOS, and Linux operating sys-
tems (to download SeedQuant: https://github.com/
SilvioGiancola/maskrcnn-benchmark) for in vitro germina-
tion bioassay for parasitic seed detection and germination
rate estimation.

Results

Faster R-CNN-based detection algorithm
development
In computer vision, object detection and object classification
have attracted the attention of the research community.
Object detection algorithms localize objects of interest in
images by estimating the smallest bounding box surround-
ing those objects. Recently, the development of a supervised
deep learning algorithm called Faster R-CNN (Ren et al.,
2015) allows to successfully “attend” to proposed regions, lo-
calize, and classify objects. Faster R-CNN is an efficient two-

stage method consisting of a Region Proposal Network
(RPN) and an object detector (R-CNN) that takes raw
images as input and extracts a meaningful feature represen-
tation based on a Residual Network (ResNet) backbone. A
list of anchors from the feature representation proposes
candidate objects of interest (RPN stage), which are classi-
fied and regressed to the bounding boxes of the object of
interest (Region of Interest [ROI] Pooling stage). In order to
develop a high precision and efficient germinated and non-
germinated parasitic seed detection algorithm, we integrated
multiple feature representations (backbones) based on
ResNet. Transferring well-trained classification models and
using them as the backbone for object detection is a com-
mon approach called transfer learning. This learning can
lead to detection algorithms with a meaningful semantic
representation of an image, which can further be leveraged
to understand and localize the position of objects. Such a
backbone network acts as a feature extractor that helps to
propose regions of interest and, subsequently, bounding
boxes with classes for objects.

We adopted four backbone networks, namely, R-50-C4, R-
50-Feature Pyramid Network (FPN), R-101-FPN, and
ResNeXt-101-FPN with 50 or 101 convolution neural net-
work (CNN) layers, according to their name. By using resid-
ual blocks to address the vanishing gradient problem in
their design, the backbones can have a large number of se-
quential layers (deep network). This significantly increases
the capacity of the network to learn more sophisticated and
richer representations, and ultimately improves detection ac-
curacy. The ResNeXt-101-FPN (Xie et al., 2017) is an en-
hanced version of ResNet, which performs a set of
transformations (lower-dimensional embeddings) inside re-
sidual blocks, allowing the network to increase its accuracy
while preserving the same number of parameters. Two of
our ResNet backbones use the FPN (Lin et al., 2017), a com-
ponent designed to detect objects at multiple scales, that
boosts detection performance of Faster R-CNN for the chal-
lenging COCO benchmark (Lin et al., 2014). The details of
the four adopted backbones are given as follows:

• R-50-C4 uses the first four residual blocks of convolutional layers of

ResNet-50 (network with 50 residual layers). This is the original baseline

in the Faster R-CNN paper.

• R-50-FPN uses the ResNet-50 model with the FPN as a feature extractor.

• R-101-FPN uses the ResNet-101 (network with 101 residual layers) model

with the FPN.

• ResNeXt-101-FPN uses the ResNeXt network with 101 residual layers

and FPN.

These four different backbones were trained, tested, and
their results compared for detection of germinated and non-
germinated parasitic seeds and counting performance. The
integration of deeper models with larger numbers of param-
eters (i.e. larger capacities), such as R-101-FPN and ResNeXt-
101-FPN, is expected to benefit significantly from the pre-
training; hence, to boost the performance of the developed
algorithm.
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Training Faster R-CNN
The image dataset consisted of filter paper disks containing
a mixture of germinated and nongerminated Striga seeds
(Figure 1). To assess and obtain the most accurate object
detection, we adopted and compared two annotation
approaches: (1) NGSs versus GSs, where a tight bounding
box is drawn to encompass either the seed alone (NGS) or
the seed with its corresponding radicle (GS) and (2) S/R,
where every seed is isolated from its respective radicle (if
germinated). The first approach directly identifies germi-
nated and NGSs as two different entities. However, for NGS/
GS approach, GSs contain the seed element that can be
recorded as an additional NGSs. Furthermore, radicles are
usually overlapping, making the match between a seed and
its radicle an arduous and useless task. The second approach
tackles the problem in a semantic way by detecting all seeds
(germinated or not) and all radicles separately, which largely
reduces the possibility of false nongerminated detection.

The annotated input images with Striga seeds were used
to train the four different backbones of Faster-RCNN: R-50-
C4, R-50-FPN, R-101-FPN, and ResNeXt-101-FPN. For each
model, we conducted two experiments where the parame-
ters of the model were either initialized (1) with random
weights by training the model from scratch using the
“Xavier” weight initialization (Glorot and Bengio, 2010) or
(2) with previous weights optimized for similar tasks (i.e.
pretrained on an existing dataset MS-COCO (He et al.,
2019)). As MS-COCO is generic with no seed class, we suc-
cessively fine-tuned the parameters of the model on the
seed detection task using the manually labeled image train-
ing set for Striga seeds. We optimized the numerous param-
eters of the model to output the expected detection results,
following either NGS/GS or S/R approaches, to estimate the
germination rate. We further augmented our dataset by arti-
ficially flipping the images around the vertical and horizontal
axis.

The eight different models (combination of four model
architectures and two training strategies) were then vali-
dated by testing each model on images that were not
trained on. Finally, object detection and recognition perfor-
mance of the models were evaluated with a blind test: the
algorithms predicted and placed bounding boxes on non-
processed images according to the employed annotation ap-
proach. The resulting bounding boxes were then compared
with the ones of the hand-made annotations (also called
ground truth, GT), for both approaches NGS/GS and S/R.
The comparison of the predicted bounding boxes against
the GT was used to assess each model’s performances, for
which two metrics were used: (1) the mean average preci-
sion (mAP), comparing the predicted position of the bound-
ing box with the GT and (2) the mean absolute error (mAE)
by comparing the count of each detected object class (NGS,
GS, S, R) with the GT. As expected, the models pretrained
on COCO produced results with slightly higher mAP and
lower mAE (Supplemental Figure S1) compared with the
models trained from scratch (Figures 2 and 3). The back-
bone architecture with the lowest mAE value (more

accurate for counting) using one of the two annotation
strategies (NGS/GS or S/R) was then chosen as SeedQuant’s
backbone.

Accuracy in GS and NGS detection
Realizing efficient and precise detection is essential for unbi-
ased and reliable germination rate estimation. The NGS/GS
classification resulted in consistently high detection perfor-
mance among the different backbone architectures. The
mAP values vary from 86.52% for R-101-FPN to 88.43% for
ResNeXt-101 (Figure 2A). All backbones performed in a simi-
lar way, for both objects’ detection, with mAP values rang-
ing from 85.65% for R-101-FPN N-GS to 89.08% for
ResNeXt-101 GS. When compared separately, results
revealed that ResNeXt-101-FPN and R-50-FPN are the most
reliable backbones to efficiently detect both GS and NGS,
with a gap of 1.29% and 0.32%, respectively.

On the other hand, the S/R annotation approach showed
lower detection performance than the NGS/GS approach.
The mAP values ranged from 78.25% for R-101-FPN to
82.39% for ResNeXt-101-FPN (Figure 3A). Moreover, the ex-
act radicle detection on images was more challenging than
the seed identification. Although seed-related average preci-
sion (AP) varied from 83.91% for R-50-C4 to 87.69% for
ResNeXt-101, the radicle AP fluctuated from 69.17% for R-
101-FPN up to 77.71% for ResNeXt-101-FPN, indicating a
low accuracy for radicle detection.

For both annotation approaches, ResNeXt-101-FPN back-
bone displayed the highest mAP with 88.43% for NGS/GS
and 82.39% for S/R (Figures 2, A and 3, A, respectively).

Counting performance of the developed algorithm
As an important step for calculating the germination rate,
the number of GSs and NGSs was counted for both annota-
tion strategies. For the NGS/GS annotation strategy, results
revealed similar counting accuracy for the different back-
bone architectures with a gap of 2.20% for the mAE values.
The backbone R-50-C4 exhibited the most efficient and reli-
able counting, expressed by the lowest mAE value (7.40%)
compared to 8.01% for ResNeXt-101-FPN, 9.27% for R-101-
FPN and 9.60% for R-50-FPN (Figure 2B). For the NGS/GS
annotation approach, NGS-related AE values are higher than
GS AE values with a gap of 2.28% for R-50-C4 up to a gap
of 2.98% for R-50-FPN.

On the contrary, S/R classification led to more disparate
results across the different backbones with an mAE value
ranging from 5.86% for R-50-C4 up to 13.61% for R-101-FPN
(Figure 3B). Although the seed count was approximately
similar (from 4.16% for R-50-C4 to 7.58% for R-50-FPN), the
accuracy in the number of radicles was greatly variable with
7.56% for R-50-C4, up to 20.56% for R-101-FPN. This dispar-
ity comes from the radicle count, as each model is perform-
ing differently: 14.23% for ResNeXt-101, 19.01% for R-50-
FPN, 20.56% for R-101-FPN while R-50-C4 is the most accu-
rate with 7.56% AE.

Even though the NGS/GS annotation approach showed a
better performance in mAP (accurate object detection) and
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lower mAE (number of individuals belonging to an object
class) values than the S/R approach, the S/R based detection
registered the lowest mAE value of 7.40% for N-GS/GS (R-
50-C4) and 5.86% for S/R (R-50-C4). These results suggest
that R-50-C4 architecture seems to be the most adapted
backbone for discriminating germinated and nongerminated
Striga seeds regardless of the annotation approach.

Generalization on different parasitic seeds
We examined the knowledge transfer capability of the R-50-
C4 backbone, combined with the S/R annotation approach,
to assess whether the developed algorithm can be used on
seeds of other root parasitic plants.

We used Orobanche cumana, Phelipanche ramosa, and
Phelipanche aegyptiaca seeds, which are very similar to that
of Striga (Supplemental Figure S2). We exposed them to
similar experimental procedures, where each disk was

individually photographed after 5–7 d of the exposure to a
germination stimulant. We used the R-50-C4 S/R detection
model from the Striga seeds training to predict bounding
boxes on a set of 32 images of each seed type. The input
image dataset was separately hand-annotated to assess the
performances of the model on images of different parasitic
seeds types and compared with the predicted annotations
(Figure 4A; Supplemental Figure S3).

SeedQuant’s seed counting performance for P. aegyptiaca
and P. ramosa was remarkable, with an error rate of 4.38%
and 7.96%, respectively (Figure 4A). However, the seed
counting of O. cumana was less efficient: 28.11% of the seeds
were not detected by the algorithm. As expected, the detec-
tion and counting of radicles were more challenging, ranging
from 36.16% for P. ramosa to 83.29% for P. aegyptiaca. The
inefficient radicle detection, observed for P. aegyptiaca, cor-
responds to the presence of an inherent morphological

Figure 1 Pipeline for the algorithm development. Representation of the workflow to adapt an algorithm’s backbone for seed germination detec-
tion. During the data acquisition phase, germination stimulants were applied on preconditioned parasitic seeds (1), to trigger germination (2).
Each disk, containing a mixture of GS and NGS, was placed under a binocular microscope mounted with a CCD camera for disk imaging (3–4).
The acquired images were hand annotated (5) by placing tight bounding boxes around different objects following two classifications: (5a) NGSs/
GSs and (5b) S/R. These annotated images were then analyzed by different Faster R-CNN backbones (6). Once the algorithm training is completed,
a new set of images was provided to the different backbones for object detection (7). The algorithm annotations (NGS/GS and S/R), resulting
from the blind test, were then compared with the hand annotations, performed simultaneously, to assess backbones performance (8).
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characteristic of the P. aegyptiaca seeds, a small white protu-
berance as part of the seed coat, wrongly classified as radicle
(Figure 4B(1), indicated by a white arrow).

To address the high error rate of P. aegyptiaca radicle
counting, we further fine-tuned the R-50-C4 algorithm by
performing an additional training using a set of 20 anno-
tated images of P. aegyptiaca seeds followed by validation
(11 images) and testing (30 images). As expected, the fine-
tuning boosted both, mAP and mAE (from 83.29% down to
26.09% for radicles and 4.38% down to 2.35% for seeds;
Figure 4C). We then used 20 newly annotated P. aegyptiaca
images for training, 11 for validation and 30 for testing. All
models reached between 20.58% and 23.02% error rate for
radicle count and 1.61% up to 2.74% for seed count.

The protuberance of the P. aegyptiaca seed coat and the
seed count error linked to O. cumana challenged the knowl-
edge transfer of the model developed from Striga seeds to
others seeds. This raised the question of the independence
of SeedQuant toward the experimental settings. To address
this question, we tested SeedQuant on collected disk images
from two different research groups from the Netherlands
Institute of Ecology (NIOO-KNAW), including the image
dataset used to develop the Striga counting model
DiSCount (Masteling et al., 2020), and Kenyatta University.

On a batch of images from NIOO-KNAW, SeedQuant
conserved its performances with a mean counting error of
5.25% for seeds and 4.54% for radicles (Supplemental Figure
S4A). However, SeedQuant showed a considerable error for
radicle detection on DiSCount images (Masteling et al.,
2020), due to the presence of plant debris (Supplemental
Figure S4B). SeedQuant’s object detection was impaired on
the images from the Kenyatta University as the number of
seeds was undercounted, due to their relative darkness
(Supplemental Figure S4C, upper part). Using a close up of
the same image improved considerably the object detection;
however, the dim light exposure affected the object classifi-
cation and impeded the differentiation of seeds from
radicles (Supplemental Figure S4C, lower part).

Discussion
The development of a high-throughput tool for assessing
the germination rate in parasitic seed germination bioassays
is relevant for rapid characterization and screening of SL
analogs or inhibitors, as well as the rapid identification and
development of innovative alternative control strategies.
This paper investigates efficient and high precision detection
of germinated and nongerminated parasitic seeds using

Figure 2 Performance assessment for NGSs/GSs classification on Striga seeds images. A, Detection performance on 32 images of the different
Faster-CNN backbones (R-50-C4, R-50-FPN, R-101-FPN, ResNeXt-101) representing the accuracy (in percentage) of the predicted bounding box
position in comparison to the hand annotated one (GT), estimated by the AP represented as bars with error bars that indicate standard error.
The horizontal bar is representing the mAP for each backbone and its corresponding value can be found in the table below. B, Counting perfor-
mance on 32 images of the different Faster-CNN backbones (R-50-C4, R-50-FPN, R-101-FPN, ResNeXt-101) in comparison to the hand counting of
NGS/GS objects, estimated by the absolute error (AE). AE represents the percentage of count errors made by the different algorithms and is repre-
sented as bars with error bars that indicate standard error. The horizontal bar represents the mAE for each backbone and its corresponding value
can be found in the table below. C, Visualization of the resulting bounding boxes for GS (light blue) and NGS (dark blue) on a disk image placed
by (upper) the backbone R-50-C4 (algorithm prediction) versus (lower) the hand annotations (GT). D, Close up of the squares indicated on C,
showing the variation of the annotation between GT (black bounding boxes) versus R-50-C4 prediction (GS in light blue, NGS in dark blue) on
the same picture area.
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deep learning. Indeed, the reduced need for feature engi-
neering, resulting in a significant gain of time and reliable
quantitative data, is one of the most important advantages
of using deep learning in image processing.

SeedQuant detects GSs using the S/R approach; a different
strategy from the Striga seed counter DiSCount that relies
on the radicle onset’s detection (Masteling et al., 2020). All
our models performed counting very accurately; more par-
ticularly, models with larger capacities benefited from pre-
training and generalized better. All backbones have AP
values of at least 83.91% for seed detection, regardless of the
annotation strategy, as seeds are generally of similar shape,
size, and of contrasting color compared to the white back-
ground. However, the mAP values, assessing the average var-
iation between predicted and GT bounding boxes (position
and bounding box area) for each model, fluctuated between
78% and 90%. As predicted bounding boxes were sometimes
placed loosely by the models, compared to the hand-anno-
tated boxes (Figure 3D). This can be attributed to two char-
acteristic elements of the input dataset including (1) the
radicle attributes and (2) the high occurrence of object
superposition.

When comparing the two annotation strategies, we ob-
served a low accuracy for radicle detection from S/R classifi-
cation (Figure 3). These white-transparent elements offer
less contrast with the white filter paper (background) than

the darker seed coats. Moreover, although subjected to the
SL analogs at the same time, preconditioned parasitic seeds
do not respond to these chemicals in a synchronized way.
This results in the uneven development of radicles, growing
into variable lengths. Their corresponding bounding boxes
are less consistent in size and area than that of the seeds.
Thus, it is possible that the radicle size variability and trans-
parency have impeded their accurate identification. In addi-
tion, the presence of object superposition in the input
images might have added another level of complexity in the
object identification process. Most of the images contain an
average of 60 elements (a mixture of GSs and NGSs), which
oftentimes led to the superposition of tangled radicles on
seed coats, hence complicating the detection for both types
of object (Figure 3C, Box 2). Object superposition is also a
challenge for hand annotation and can influence the accu-
racy of the GT as the bounding box placement on radicle
knots can be misled by the intricacy of the intertwinement.

For object count, the absolute error (AE) values were gen-
erally low, with a maximum of 20.56% for radicle count us-
ing R-101-FPN. This corresponds to a minimum of 86.39%
counting accuracy, with a maximum of 94.14% (mAE of
5.86%) using the R-50-C4 model, the least complex model.
We speculated that more complex algorithms’ performances
(with FPN) would have stood out if applied on a larger
training set of images or for objects with different scales.

Figure 3 Performance assessment for S/R classification on Striga seeds images. A, Detection performance on 32 images of the different Faster-
CNN backbones (R-50-C4, R-50-FPN, R-101-FPN, ResNeXt-101) representing the accuracy of the predicted bounding box position in comparison
to the hand annotated one (GT), estimated by the AP in percentage represented as bars with error bars that indicate standard error. The horizon-
tal bar represents the mAP for each backbone and its corresponding value can be found in the table below. B, Counting performance on 32 images
of the different Faster-CNN backbones (R-50-C4, R-50-FPN, R-101-FPN, ResNeXt-101) in comparison to the hand counting of S/R objects, esti-
mated by the absolute error (AE) percentage represented as bars with error bars that indicate standard error. The horizontal bar represents the
mAE for each backbone. C, Visualization of the resulting bounding boxes for R (dark red) and S (light red) on a disk image placed by (upper) the
backbone R-50-C4 (algorithm prediction) versus (lower) GT. D, Zoom in of the squares indicated on C, showing the variation of the annotation
between GT (black bounding boxes) versus R-50-C4 prediction (R in dark red and S in light red) on the same area.
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For SeedQuant development on Striga seeds, we priori-
tized accurate counting over exact detection, as a low AP
value (above 65%) still allows detection of the object, thus,
correct counting. The SeedQuant’s error rate of 5.86% is
comparable to its counterparts for crop and Striga seeds
(from 3% up to 13.27% error rate, Chaivivatrakul, 2020;
Masteling et al., 2020), and better than the human error for
large annotation tasks including hundreds of pictures—esti-
mated at 5.85% during the annotation of the input images.

It is also worth noting R-50-C4’s performances can be fur-
ther improved by conducting experiments on larger batches
of images, as a larger training set is expected to further re-
fine its learned detection parameters.

The direct generalization of SeedQuant on other parasitic
seeds, such as O. cumana, P. ramose, and P. aegyptiaca seeds
was impaired by a slight variation in seed color and mor-
phology that misled the models. Although the seed coat de-
tection was very accurate (4.38% and 7.96% error in seed
count for P. aegyptiaca and P. ramosa, respectively, in oppo-
sition to 28.11% for O. cumana), the models were perplexed
with the radicle detection. They reliably detected germinated
radicles while reporting high-mAE values (from 36.16% up
to 83.29%; Figure 4A), hinting at the presence of numerous
false positives. This misidentification was particularly

important for P. aegyptiaca due to its seed morphology.
These seeds display an extra white-transparent cuticle-like
feature, very similar to a small length radicle observed for
freshly germinated Striga seeds. Learning that every white-
transparent object should be a piece of radicle based on the
Striga training, our models were unable to associate by
themselves this additional feature as a part of the seed coat;
creating many false positives for radicle detection
(Figure 4B(4)). Thus, the knowledge transfer from Striga to
other seeds was successful; however, not as straightforward
as expected.

The refinement of the preexisting Striga models by us-
ing P. aegyptiaca images for an extra training phase (also
called fine-tuning) yielded better results in terms of
count accuracy, with an acceptable maximum mAE value
of 14.22% (Figure 4C). It is worth noting that during this
generalization, only 31 pictures were used for fine-tuning
(training þ validation), compared to 129 (97þ 32) used
for Striga.

Moreover, the fine-tuned algorithm performance was very
similar to that of the models’ trained independently
(Figure 4C; Supplemental Figure S5, respectively), showing a
possible versatility in quickly and easily adapt the potential

Figure 4 Generalization capabilities of the developed object detection algorithm for measuring germination of other parasitic seeds. A,
Assessment of the performance of SeedQuant backbone (R-50-C4, developed on Striga seeds) on O. ramosa, P. cumana, and P. aegyptiaca seeds
images (32 images for each seed type), in comparison with the hand annotations for the S/R (seed/radicle) annotation approach. Evaluation of
(upper) the detection performances and (lower) the counting performances. The horizontal bars on the bar graphs represent the mAE/mAP, re-
spectively, for each architecture and its corresponding value is reported in the table below. The error bars that indicate standard error. B, (1)
Visualization of the P. aegyptiaca seeds morphology (nongerminated indicated by an arrow), showing their extra morphological structure, in com-
parison with (2) Striga seeds. Visualization of the bounding boxes placed by hand (3) and by the R-40-C4 algorithm (4) (seeds in light red, radicle
in dark red). The direct processing of the P. aegyptiaca images by the Striga-based algorithm led to a lot of false positives in radicle detection, as
the presence of the additional white part of the seed coat was classified as a very short radicle. C, Assessment of the counting performance of the
different Faster-CNN backbone architectures (R-50-C4, R-50-FPN, R-101-FPN, ResNeXt-101) used for SeedQuant development on P. aegyptiaca
seeds, based on the S/R object classification: (upper) prior fine-tuning on 32 images and (lower) after fine-tuning on 30 images, using 31 P. aegyp-
tiaca seeds images for an additional training. The horizontal bars on the bar graphs represent the mean value of each architecture, its correspond-
ing value is reported in the table below. The error bars that indicate standard error.
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of SeedQuant to new types of seed. Moreover, we open-
source SeedQuant, both the interface for seed counting and
the code to train further models on different sets of images.
All models trained in this article are available on cloudlabe-
ling.org, which allows researchers to detect and count seeds
remotely, without the need of any extra computational
resources.

The use of SeedQuant on pictures from different laborato-
ries allowed to identify some of the limitations of the count-
ing algorithm: (1) the cleanliness of the seeds (Supplemental
Figure S4B); (2) the intensity of the microscope’s light
source (Supplemental Figure S4C); (3) the radicle length
(Figure S6); and (4) the dependency on color images
(Supplemental Figure S7). (2) And (4) depend on the exper-
imental set-up, which could be overcome by the creation of
new models using images from different laboratories. using
we were able to provide some guidance to improve the first
and third points. We detailed the handling of parasitic seeds
prior germination (see “Parasitic seed cleaning”) to reduce
the amount of plant debris in the seed batch, and illus-
trated a protocol to successfully perform bioassays while en-
suring an appropriate radicle length (Supplemental Figure
S8). Alternatively, the use of DiSCount for unclean seed
batch is recommended, as the training image set contains
plant debris (Masteling et al., 2020).

Conclusion
In this study, we developed and validated a software,
SeedQuant, as a high-throughput and efficient tool for para-
sitic seed detection and counting.

We adapted the robust object detector algorithm Faster R-
CNN, using Deep Neural Networks-based transfer learning,
and developed an algorithm for germinated and nongermi-
nated parasitic seed detection. This algorithm, established
from a trained version of R-50-C4 backbone architecture, was
capable of accurately assessing (up to 94% counting accu-
racy) the rate of parasitic seed germination from image data-
sets. We demonstrated the possibility of knowledge transfer
from Striga spp. to other parasite plant families, such as
Orobanche and Phelipanche spp., although we recommend
species-specific fine-tuning for improved performances.

We packaged the developed seed detection model into
SeedQuant, a fast, reliable, and high-throughput software for
parasitic seed detection and counting from in vitro bioas-
say’s image dataset. SeedQuant leverages the boresome and
routine work of counting parasitic seed germination rate
without the need of important compute resources, but lim-
ited to an internet connection. It is open source and can be
downloaded at https://github.com/SilvioGiancola/maskrcnn-
benchmark. This software has a user-friendly interface that
allows the almost-instantaneous processing and characteriza-
tion of a single/group of image(s) into an exportable table,
which logs image name and germination rate information
(Figure 5). The latter summarizes the count details, for all
images, in an open CSV (comma-separated values) format
and enables further statistical per-image analyses, as well as

per-batch analysis. Additional data can be retrieved from
the processed pictures by slightly modifying the code and
using visual instance segmentation techniques. As a matter
of fact, each bounding box contains much information
(pixel color, bounding box size), which could be useful for
further characterization of germination stimulants and
inhibitors.

Materials and methods

Biological data
Parasitic seed material

Striga hermonthica seeds were collected from sorghum fields
during the 2012 rainy season in Sudan and were generously
provided by Prof. Abdel Gabbar Babiker. Seeds of
Phelipanche aegyptiaca, collected from Egypt, were kindly
provided by Dr Mohamed Abdul-Aziz, University of Cairo.
Phelipanche ramosa seeds were kindly provided by Philippe
Semier, Université de Nantes, France, and O. cumana seeds
were generously provided by Dr Alberto Martin Sanz from
the University of Seville, Spain.

Parasitic seed cleaning

For fine cleaning, seeds were soaked in water for 30 min.
Meanwhile, 15 mL of 60% (w/v) sucrose solution was added
in a 50-mL tube, followed by 10 mL of 40% sucrose added
dropwise to create concentration gradient. About 20-mL
water, along with Striga seeds, was then added dropwise to
the 50-mL tube and centrifuged for 10 min. The middle
layer of the seeds was collected gently, washed thoroughly
and dried in a laminar fume hood.

Preconditioning of parasitic seeds

Parasitic seeds require specific temperature and moisture
conditions for a certain period of time (preconditioning) to
germinate. For this purpose, Striga seeds were surface-steril-
ized in a 50-mL tube with 20% bleach with 0.1% Tween-20
for 5 min. For Phelipanche/Orobanche, seeds were surface-
sterilized in a 50-mL tube with 75% ethanol for 3 min. After
removing the bleach/ethanol with subsequent six washings,
the seeds were again sterilized with 3% bleach for 3 min,
poured along with bleach, were poured in vacuum assembly
(Sigma Aldrich) placed under a laminar flow cabinet, and
thoroughly rinsed with six subsequent washings with steril-
ized milliQ water. The seeds were shifted in a glass petri
plate and air-dried under a laminar flow cabinet for 3–4 h.
Approximately 9-mm glass fiber disks were put in a glass pe-
tri plate and parasitic seeds (�50–100) were spread uni-
formly on each disk. Then 12 disks were carefully transferred
on a sterilized 90 mm Whatman filter paper (Merck KGaA,
Darmstadt, Germany), placed in a plastic petri plate and
moistened with 3-mL sterilized milliQ water. The plates
were sealed with parafilm (Merck KGaA, Darmstadt,
Germany) and covered in an aluminum foil. The plates with
Striga seeds were put in an incubator at 30�C for 10 d, while
the ones containing Phelipanche/Orobanche seeds were in-
cubated at 21�C for 14 d.
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Germination of parasitic seeds

Following preconditioning, the plates were opened and air-
dried under a laminar flow cabinet. For Striga, a new labeled
plastic petri plate was supplemented with a 90 mm
Whatman filter paper ring, supplied with 900-mL sterilized
milliQ water, and six dried disks containing preconditioned
seeds. A 55-mL of germination stimulant was added on each
disk. For Phelipanche/Orobanche, six dried disks containing
preconditioned seeds were transferred into a 24-well plate
and 100 mL of germination stimulant was added on each
disk. Plates were sealed with parafilm (Merck KGaA,
Darmstadt, Germany) and incubated at 30�C for Striga (24
h) or 25�C for Phelipanche/Orobanche (5 d). A protocol de-
scribing the critical steps is depicted in Supplemental Figure
S8.

Dataset acquisition
Imaging of parasitic seed disks

After germination, the Petri plates were taken out from the
incubator, opened and air-dried in ambient conditions for
few minutes to get rid of extra moisture. Each disk, contain-
ing a mix of 50–100 germinated (exhibiting a translucent
radicle poking out of the dark seed) and NGS (seed alone),
with an average germination of 55% per disk, was individu-
ally photographed using a Leica LED3000 R adjusted to 50%
medium light, mounted with a CCD camera (Leica
Microsystems). The images were saved in 8-bit, 2,592 �
1,944 pixels and exported in JPEG format using the LAS-EZ-
V3-0 software for image acquisition.

Building a dataset for seed Ccnsus

A set of 161 images were produced with a total of 9,826
Striga seeds. We used 97 images (�60%) to train our deep
learning algorithms and 32 images (�20%) for validation to
avoid overfitting our models to the training (i.e. memorizing
the training images). We kept 32 extra images (�20%), pre-
viously unseen by the trained model, to perform a blind
test. For P. aegyptiaca, 61 images containing a total of 3,529
seeds were used: 20 for fine-tuning, 11 for validation, and 30
for the blind test of our models.

The image annotation followed two logical approaches to
detect the seeds (germinated or not) and identify their

germination ratio: NGSs/GSs detection and S/R detection.
This annotation process consisted of drawing tight bounding
boxes around the objects of interest using the software
LabelImg (Tzutalin, 2015), indicating the coordinates and
the class of the object encapsulated inside each bounding
box: they are considered as GT, that is, the expected output
of our algorithm. Resulting annotations were exported in
XML files following the Pascal VOC format (Everingham
et al., 2010), one of the most commonly used annotation
formats for object detection tasks. Our dataset—gathering
images and annotation files—is scalable, and, as any other
deep learning algorithm, our model would benefit from fur-
ther annotated images.

Algorithm details
Feature representation

In our experiments, we adopted four backbone networks,
namely, R-50-C4, R-50-FPN, R-101-FPN, and ResNeXt-101-
FPN. The first three backbones are variations of the popular
ResNet network (He et al., 2016) with either 50 or 101 layers
of CNN.

Region proposal network

The features (feature maps) extracted with a backbone are
further used to generate object proposals. For each pixel of
the feature maps, we proposed nine anchors, that is, nine
bounding boxes centered at each location of the feature
map, with three different scales and three different aspect
ratios. Those nine different anchors would help in coping
with various shapes of objects. Each anchor is binary classi-
fied based on an objectness, that is, whether it represents an
object or a background. We regressed four scalars for each
positive anchor to adjust the bounding box to be tight
around the object it contains. In total, two classification and
four regression values are estimated per anchor. We defined
positive and negative anchors based using their Intersection
over Union (IoU) with the GT bounding boxes. In particular,
anchors with IoU >0.7 were defined as positive, while
anchors with IoU <0.3 as negative. The anchors were fur-
ther classified using a cross-entropy loss and the position of

Figure 5 Proposed workflow for seed germination stimulants/inhibitors studies using SeedQuant. Stimulants or inhibitors are applied to precondi-
tioned seeds, placed on small (9 mm) glass fiber filter paper disks. After incubation, the disks are imaged under a binocular microscope mounted
by a charge-coupled device (CCD) camera. In one click, the resulting pictures are processed by SeedQuant, which renders the germination ratio
for each picture. The data are then provided to the user in an easy-to-use format (.csv), allowing further data processing.
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the positive boxes regressed to their assigned GT using a
smooth L1 loss.

ROI Pooling

We successively pooled and cropped the feature maps
around all positive bounding boxes regressed from the RPN
stage. The features from the bounding boxes are successively
elaborated with further CNN layers, in order to estimate its
class and regress tighter bounding boxes. Similarly, to the
RPN, the Fast R-CNN part has two branches (also called
heads): regression and classification. Note that RPN is class-
agnostic, meaning it does not predict the object classes. In
the detection stage, we predict scores for each class and an
additional background class, for negative anchors. We nor-
malized the classification scores (to sum up to 1) and to
represent the probability distribution for object classes using
a softmax over the final layer prediction. Similar to the RPN,
the classification is learned with a cross-entropy loss and the
regression with a smooth L1 loss. During inference, we pre-
dict the class with the highest score. This value is referred to
as the confidence score and can be used to threshold or
evaluate the predictions.

Model training

Each suggested Striga model was trained for 5,000 iterations
with batches of two images using the Adam optimizer with
a learning rate of 0.01. The P. aegyptiaca models were
trained for only 2,000 iterations as they contain less images.
We trained all Faster-RCNN models with the four different
backbones and retained the models at the iteration per-
forming best on the validation set, in order to avoid overfit-
ting on the training set of images. All models were first
pretrained on the COCO dataset, in order to transfer visual
knowledge learned from large-scale generic datasets.

Algorithm performance metrics

The trained Faster R-CNN models were evaluated on the
blind test set of images defined previously. We evaluated
the performance for both detection and counting.

Detection metric

The most common metric used to evaluate the perfor-
mance of object detection is the mAP, which includes three
parameters such as the IoU, precision, and recall. The IoU
defines the tightness of a predicted bounding box with re-
spect to the annotated one. In particular, the ratio between
the intersection and the union of those two bounding boxes
(annotated versus predicted) is used to decide whether a
prediction is positive or negative. Setting a higher IoU
threshold would restrict the performances for tight bound-
ing boxes, while a lower IoU threshold would still consider
looser bounding boxes as positive. On the basis of applica-
tion, one can decide whether tight bounding boxes are re-
quired or not. Predictions are then classified as follow:

• True positive (TP)—predicted box has an IoU with a GT box that is

higher than the threshold value.

• False positive (FP)—predicted box has an IoU with a GT box that is

lower than the threshold value.

• False negatives (FN)—no predicted box for an object.

On the basis of those definitions, the precision is esti-
mated as the ratio TP/(TP þ FP) and represents the ratio of
predicted correct objects. Also, the recall is estimated as the
ratio TP/(TP þ FN), and represents the ratio of objects that
the tested model missed to predict. In addition, each predic-
tion is provided with a confidence score, it is at discretion
of the user to consider predictions above a given confidence
score. Focusing on high-confidence scores would improve
the precision of the method, but worsen the recall as many
instances would be missed. Similarly, considering lower con-
fidence scores would improve the recall but worsen the pre-
cision as many false detections would appear. As a tradeoff
between precision and recall, the AP metrics is commonly
used as the area under the Precision–Recall curve drawn
with all possible combinations of precision/recall. As this
metric is defined for a single class of object, the mAP pro-
vides the mean of the AP for each class of object of interest
(NGS/GS or S/R).

Counting metric

Since our final goal is counting, we also evaluate the mAE as
follows:

mAE ¼ 1

N

XN

i ¼ 1

absðyi � tiÞ
yi

where N is the number of classes, yi the GT count for the ob-
ject class i, and ti the predicted count for the object class i.

We will show below that while one could be tempted to
calculate solely the standard detection metric (mAP), it is
essential to do counting metrics analysis as in general, a
model producing results with higher mAP does not result in
the smaller counting error.

Inference speed

We recorded and analyzed the detection speed—how much
time does it take for a network to produce an output when
it is presented with an input (raw image)? We estimated
that a scientist takes on average 5 min to count a disk and
compared it to the different backbones (Table 1).

Statistical analysis
We trained each model for 30 times, using different random
initializations for the weights. Then, we predicted the

Table 1 Inference time of the different backbones for SeedQuant
development

Backbones R-40-C4 R-50-RPN R-101-RPN ResNeXt-101-FPN

Inference Speed (s) 0.241a 0.086 0.102 0.173

All inference times were obtained using an NVIDIA GTX1080Ti GPU.
aOur method is 1200x (R-50-C4) to 3600x faster (R-50-RPN) than an experienced re-
searcher for this counting task
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bounding boxes on the blind test set of images, counted the
object of interest (NGS/GS or S/R) and reported the per-
class and average results for each architecture.

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Figure S1. Performance assessment of the
four different model architectures for both annotation
approaches (NGS/GS and S/R), pretrained on COCO, for
Striga seeds.

Supplemental Figure S2. Image acquisition of the differ-
ent parasitic seeds used for the study.

Supplemental Figure S3. SeedQuant’s knowledge transfer
to P. ramosa and O. cumana.

Supplemental Figure S4. SeedQuant’s independence test
on images containing Striga seeds.

Supplemental Figure S5. Model performance evaluation
of training from scratch on P. aegyptiaca seeds for both an-
notation approaches (NGS/GS and S/R).

Supplemental Figure S6. R-50-C4 backbone test on long
radicles-containing images with Striga seeds.

Supplemental Figure S7. R-50-C4 backbone test on gray-
scale images.

Supplemental Figure S8. Illustrated step-by-step protocol
for parasitic seeds bioassay.
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