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Abstract

The ability to calculate whether small molecules will cross the blood brain barrier (BBB) is an 

important task for companies working in neuroscience drug discovery. For a decade, scientists 

have relied on relatively simplistic rules such as Pfizer’s central nervous system multiparameter 

optimization models (CNS-MPO) for guidance during the drug selection process. In parallel, there 

has been a continued development of more sophisticated machine learning models that utilize 

different molecular descriptors and algorithms; however, these models represent a “black box” and 

are generally less interpretable. In both cases these methods predict the ability of small molecules 

to cross the BBB using the molecular structure information on its own without in vitro or in vivo 
data. We describe here the implementation of two versions of Pfizer’s algorithm (Pf-MPO.v1 and 

Pf-MPO.v2) and compare it with a Bayesian machine learning model of BBB penetration trained 

on a dataset of 2296 active and inactive compounds using extended connectivity fingerprint 

descriptors. The predictive ability of these approaches was compared with 40 known CNS active 

drugs initially used by Pfizer as their positive set for validation of the Pf-MPO.v1 score. 37/40 

(92.5%) compounds were predicted as active by the Bayesian model while only 30/40 (75%) 

received a desirable Pf-MPO.v1 score ≥ 4 and 33/40 (82.5%) received a desirable Pf-MPO.v2 

score ≥ 4, suggesting the Bayesian model is more accurate than MPO algorithms. This also 

indicates machine learning models are more flexible and have better predictive power for BBB 

penetration than simple rulesets that require multiple, accurate descriptor calculations. Our 

machine learning model statistics are comparable to recent published studies. We describe the 

implications of these findings and how machine learning may have a role alongside more 

interpretable methods.
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INTRODUCTION

Over the past few decades there have been considerable efforts to identify rules to describe 

compounds that have the ideal molecular properties to cross the blood brain barrier (BBB) or 

become successful central nervous system (CNS) targeting drugs 1, 2. The many approaches 

to understand the property space for drugs with exposure in the mouse brain have been 

briefly summarized in previous work 1, 2. In addition, there have been many publications 

describing computational models such as quantitative structure property relationships 

(QSPR) 3 or machine learning models that were used to predict CNS activity or BBB 

penetration. In just the last few years we have seen the application of support vector 

machines (SVM) 4, 5, genetic algorithms 4, random forest, gradient boosting, logistic 

regression 6, deep learning 7, recurrent neural networks 8 and light gradient boosting 

machine 9 using structural descriptor-based approaches 10.

Some of the simplest but most widely used computational approaches are relatively simple 

and interpretable rules. Most notably, in 2010, Wager et al. published their analysis of 119 

CNS drugs and method development to score 108 CNS candidates from Pfizer programs 

using a multiparameter optimization (MPO) algorithm 11. They built this MPO (referred to 

throughout as Pf-MPO.v1) algorithm using six molecular properties (ClogP, ClogD, MW, 
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TPSA, HBD and pKa) resulting in a 6-point scale. When applied to the analyzed set of 119 

marketed drugs, 74% scored favorably (using a 4 threshold); in comparison, only 60% of 

Pfizer’s own candidates scored favorably. Subsequently this algorithm was further tuned 

towards BBB penetration (referred to throughout as Pf-MPO.v2) and applied to 21 new CNS 

candidates, of which 77% were found to score ≥ 4 12. This prediction tool was also proposed 

to help reduce the number of candidates requiring exploratory toxicity studies and ensure 

they cross the BBB 12. This MPO approach has subsequently been widely implemented or 

improved upon in pharmaceutical companies 1, 2. Interestingly, the algorithm has not been 

made commercially available or benchmarked against other methods or machine learning 

models to our knowledge.

We now describe the development of a script to replicate the original 11 and more recently 

updated Pfizer MPO algorithms 1, 2, referred throughout this study as CPI-MPO.v1 and CPI-

MPO.v2, respectively. Additionally, we present a comparison of molecular descriptors 

necessary for the MPO algorithms produced by ChemAxon (Budapest, Hungary), Advanced 

Chemistry Development, Inc. (ACD) used in Wager et al., 2010 11, and Discovery Studio 

(Biovia, San Diego, CA) and show that discrepancies between descriptors can lead to 

different MPO scores and ultimate different decisions made for a potential drug. 

Furthermore, we describe the development of a novel Bayesian BBB machine learning 

model based on published data, and the subsequent comparison of its predictive ability 

against the MPO scores on a set of compounds. This study illustrates the steps required to 

implement an MPO calculator that is comparable to that initially described by Pfizer and 

others 1, 2, 11 in the absence of a standalone commercial product. It also illustrates the 

considerable variability that can be obtained when using simple descriptors calculated by 

different commercial software.

RESULTS AND DISCUSSION

We have created an in-house script to implement the three functions (i.e. monotonic 

decreasing, hump and desirability) utilized to calculate the original MPO score previously 

described by Pfizer in Wager et al., 2010 11. We validated this CPI-MPO.v1 algorithm with 

the same 119 compounds evaluated in the supplementary data table provided in Wager et al., 

2010, which provided the six molecular descriptors necessary to calculate the MPO score as 

well as the Pf-MPO.v1 score itself which we can compare against. The Pf-MPO.v1 score is 

defined as: Pf-MPO.v1 = ∑ (t0_cLogP, t0_cLogD, t0_MW, t0_TPSA, t0_pKa, t0_HBD). 

The CPI-MPO.v1 scores using the provided supplementary descriptors are similar, but do 

not exactly match the Pf-MPO.v1 scores provided by Wager et al., 2010 11 (Figure 1).

This difference is most likely due to the ClogP values in the Wager et al., 2010 supplemental 

table having been rounded to the second significant digit, while the CPI-MPO.v1 values 

provided were calculated from the raw, non-rounded data provided. This is obvious if we 

compare the results of the monotonic decreasing function applied to the supplementary data 

given against what the actual results of their function are 11. The linear decreasing segment 

of the monotonic function should display an exact straight line with no deviations; our 

function provides that linear decrease with no deviations, while the values from Wager et al., 
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2010 show stepwise changes in the T0 ClogP values (Figure 2) due to the rounding 

procedure.

If the linear transform is the same, clearly the original ClogP values graphed in Wager et al., 

2010 are different from the ClogP values given. If we look at the supplementary table from 

their publication of ClogP values and their transformed T0 ClogP values, we see that the 

same ClogP values are given different transformed T0 ClogP values (Table S1). Finally, we 

can convince ourselves by calculating the actual values expected. Using the equation for the 

monotonic decreasing function:

T (x) =

y1 for x ≤ x1

yi − 1 +
(yi − yi − 1)
(xi − xi − 1)(x − xi − 1) for xi − 1 < x ≤ xi

yn for x > xn

and input the correct values to generate the Pf-MPO.v1 scores from the supplementary table 

of Wager et al., 2010 11. For example, a ClogP value of 3.1 results in a T0 ClogP of 0.95, the 

exact result produced from three drugs/candidates analyzed in Wager et al., 2010 11 (Table 

S1) as well as the CPI-MPO.v1 function. Therefore, the CPI-MPO.v1 script is correct and 

can be used to accurately calculate a MPO score from ChemAxon molecular descriptors.

After verification of the CPI-MPO.v1 function, we next turned to generating the six 

molecular descriptors upstream of the MPO calculation and implementing them into a 

pipeline. Using the full list of public compounds from Wager et al., 12, we compared the six 

descriptors generated from ChemAxon software against the ACD descriptors used by Pfizer 

(Figure 3). The majority of descriptors match up well with little bias, with variance 

contributing to most of the difference between clogP, clogD, and pKa due to variability in 

the calculation of these properties. Of note, MW and TPSA are almost identical between 

ChemAxon and ACD. pKa values below 1 were all set to 1 (black dotted line) in the Pfizer 

dataset. This makes no difference in the overall MPO score, as values below 1 fall well 

within the “acceptable” range according to the monotonic transformation, and, thus, their 

transformed values are exactly the same. Since such rounding up transformation does not 

affect the final calculated score, we elected to retain the raw pKa values in the CPI-MPO.v1 

function. HBD values are discrete integers. Of note, the Pfizer calculations show a positive 

bias compared to the ChemAxon calculations (Figure 3).

Although the correlation between the CPI-MPO.v1 and the Pf-MPO.v1 scores for the same 

compounds is acceptable, with an R2 of 0.81 (Figure 4), there are marked differences. All 

scores fall along the identity line with little bias, but still with clear variability (Figure 4). As 

described above, the CPI-MPO.v1 calculation is an exact mathematical match of the Pfizer 

calculation (i.e., Pf-MPO.v1), so the differences lie solely in the descriptors generated from 

ChemAxon and ACD labs.

If we next subtract the two calculated MPO scores (Pf-MPO.v1 and CPI-MPO.v1) element-

wise for each compound, we see that the majority of CNS-MPO scores are less than 1 point 

from each other (Figure 5, ~95% highest density interval falls between −0.832 and 0.9). 
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There is a slight bias between the two MPO scores (mean of MPO-difference= −0.11), with 

the Pf-MPO.v1 exhibiting a slightly lower MPO score overall. The majority of compounds 

fall within the same “range” of MPO scores, and only scores around the threshold MPO 

score of 4 may be scored differently due to differences in descriptor values. For example, we 

did not observe a compound that produced a Pf-MPO.v1 score of 5 and a CPI-MPO.v1 score 

of 1-3.

As a further comparison we used another commercial product (Discovery Studio) to 

calculate the descriptors needed for the MPO algorithms (Figure S2). The Discovery Studio 

ClogP calculator was generally comparable to the ACD-derived values. On the contrary, the 

logD and pKa from Discovery Studio showed much weaker correlations with ACD 

descriptors than those from ChemAxon (Figure S2). The Discovery Studio TPSA 

calculation, while showing a good correlation, often predicted a higher TPSA on average 

than ChemAxon or Pfizer. Interestingly, the CPI-MPO.v1 scores generated with Discovery 

Studio descriptors result in a correlation with the Pf-MPO.v1 scores of R2 = 0.69 (Figure 

S3). This is lower than the R2 = 0.81 observed with CPI-MPO.v1 scores generated with 

ChemAxon descriptors (Figure 3). Hence, ChemAxon descriptors appear the better option 

for calculating MPO when the ACD descriptors are unavailable.

In addition to the CPI-MPO.v1 calculation from Wager et al., 2010 11, we also implemented 

the CPI-MPO.v2 calculation 1, 2. Briefly, Pf-MPO.v2 is a modified MPO algorithm to 

predict BBB penetration. The authors, using CNS penetration drug datasets, proposed that 

cLogD is unnecessary as cLogP captures the same information well, and that, instead, the 

number of HBD is highly critical for CNS penetration. Therefore, the authors proposed the 

Pf-MPO.v2 to score compounds for CNS penetration, effectively removing the cLogD from 

the calculation and doubling the weight that the HBD number contributes to the equation. 

We used the table of compounds provided in the original manuscript along with their 

provided MPO.v2 scores (Pf-MPO.v2, 1, 2) to compare against our implementation (CPI-

MPO.v2). Comparison of CPI-MPO.v2 and Pf-MPO.v2 suggest ChemAxon descriptors are 

comparable with ACD descriptors for calculating the MPO score (R2 = 0.98, Figure S4). On 

the other hand, both MPO.v1 and MPO.v2 use the same function and set-points for 

calculating the T0 of each descriptor.

MPO.v1 = ∑ (t0_cLogP, t0_cLogD, t0_MW, t0_TPSA, t0_pKa, t0_HBD)

MPO.v2 = ∑ (t0_cLogP, t0_MW, t0_TPSA, t0_pKa, 2 ∗ t0_HBD)

Comparison of the CPI-MPO.v1 score and CPI-MPO.v2 score for predicting drugs that can 

penetrate the BBB was performed with a test set from Wang et al., 2018 with binary 

classifications based on logBB (i.e., values ≥ −1 being active) for 2296 molecules collected 

from four studies 13. As for CPI-MPO-v1 scores, a compound was classified as active 

(crossing the BBB) if the CPI-MPO.v2 score was ≥ 4.
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Metrics for CPI-MPO.v1 and CPI-MPO.v2 for analyzing the published BBB dataset (Figure 

6, Table 1) suggests that neither score does particularly well (balanced accuracies of 

0.61-0.67) at predicting BBB penetration on a very large dataset consisting of 1777 BBB 

penetrating and 519 BBB non-penetrating compounds 13.

The same dataset of 2296 compounds was also utilized as a training set to generate a 

Bayesian model with extended connectivity fingerprint 6 (ECFP6) descriptors using our 

Assay Central® software, as we have previously described 14-18. Five-fold cross-validation 

statistics are shown in Figure 7; these results would appear to be very similar to those 

obtained in the original publication using different descriptors, algorithms and 10-fold cross 

validation 13. Using this Bayesian model, we then predicted the 119 CNS marketed drugs 

from Wager et al., 2010 11 for BBB penetration. 79 of the 119 drugs were included in the 

BBB training data and were considered active therein; 60 of these had an CPI-MPO.v1 score 

>=4. Of the remaining 40 drugs not included in the training set (and thus represent a test set 

for our machine learning model), 37/40 (92.5%) were predicted as active by the Assay 

Central® model while only 30/40 (75%) were assigned a desirable CPI-MPO.v1 score ≥ 4 

and 33/40 (82.5%) received a desirable CPI-MPO.v2 score ≥ 4. This suggests the machine 

learning model is more accurate than either the CPI-MPO.v1 or CPI-MPO.v2 scores.

CONCLUSIONS

It has been previously reported that the CNS MPO scores developed in 2010 and updated in 

2017 have since performed well at Pfizer and Eli Lilly 1, 2, 11 for the design and separation 

of molecules that penetrate the brain and those that do not. Subsequently, many other 

companies and academic research groups have likely also tried to implement these 

algorithms internally with different descriptors. We now demonstrate how these CNS MPO 

scores can be almost identically replicated with ChemAxon descriptors in place of ACD. In 

addition, we have demonstrated that these algorithms provide a balanced accuracy between 

61-66% with a very large dataset of 2296 BBB datapoints (Table 1). Using this dataset to 

generate a BBB Bayesian machine learning model with ECFP6 descriptors in Assay 

Central® to predict 40 of the 119 CNS active drugs used by Wager et al., 10, illustrating how 

this technology outperforms the Pf-MPO algorithm, correctly predicting > 90%.

Interestingly, recent machine learning models for BBB are achieving accuracies in a similar 

range to our Bayesian model, for example a Light Gradient Boosting Machine had an 

accuracy of 90% for a test set of 74 molecules 9 while random forest, gradient boosting and 

logistic regression had accuracies 78-82% on external testing 6. A consensus QSPR model 

using SVM, random forest, Naïve Bayes and probabilistic neural network had 81% accuracy 

for a test set of 32 molecules 3. We have compared our current model and several recently 

published machine learning models and our model statistics for 5-fold cross validation in 

this study are also on a par with these earlier models e.g. accuracy of 90% (range of 

published studies 82-94%, (Table S2)).

While rule-based approaches are clearly more transparent than machine learning models it is 

apparent they may not have accuracies as high as these more sophisticated methods. 

Differences in chemical descriptors generated between different proprietary and open-source 
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algorithms may also lead to very different outcomes in MPO score, reducing the ability to 

consistently apply MPO scores to molecules. Additionally, Assay Central® does not need to 

calculate these physiochemical properties of molecules to generate predictions; rather it 

applies a simple probability-like score to the structure, either drawn manually or provided in 

a compatible file (i.e. .sdf) 14. As the publicly accessible BBB datasets continue to 

accumulate, these models will likely increase in their utility and applicability domain. The 

limitations of all MPO calculations are the requirement for descriptors like ClogP, pKa, 

clogD that are really only accessible in high end commercial software (e.g. ACD labs, 

ChemAxon, Biovia). Comparison of ChemAxon and ACD labs pKa predictors demonstrated 

a high correlation R2 = 0.91 and 0.96 for acid and basic predictions, respectively 19 in line 

with our data herein. When machine learning models were used to calculate these 

physicochemical properties and then compared with commercial tools the correlation was 

lower 19, which suggests that the MPO algorithms and machine learning models can capture 

different types of structural information.

As we have clearly demonstrated, open-source descriptors (such as ECFP6) and machine 

learning algorithms are better predictors of BBB or CNS activity than closed-source 

descriptor-based calculators required for MPO scores and the requirement for commercial 

descriptors may no longer be required for such prediction tasks. These kinds of machine 

learning models can also be used to visualize the contributions of molecular features by 

highlighting atoms with a particular bioactivity as we have demonstrated previously 16. The 

disadvantages of machine learning models are well known, as they generally lack the 

transparency and interpretability to show what molecules features separate active from 

inactive drugs, a key inferential tool for chemists to understand and steer future drug 

development. The two approaches can be combined to provide new guidance for chemists. 

The intersection of compounds predicted active by machine learning models but which fail 

the MPO score decision boundary can lead to discovery of new rules and exceptions that 

were not originally captured by the previous simple rulesets. The future of chemical 

understanding of BBB penetration can therefore be guided by constructing new simple 

rulesets based on the predictive power that black-box machine learning algorithms, such as 

Assay Central® or other published models (Table S2) can offer.

METHODS

MPO calculation

The Collaboration Pharmaceuticals, Inc. MPO pipeline is as follows: Molecular descriptors 

(MW, clogP, clogD, HBD, Pka, TPSA) are generated from SD files containing structures of 

molecules using ChemAxon cxcalc software.

MW - Molecular weight. called with “mass”. Default settings.

clogP - calculated logp. Called with “logp”. Default settings.

clogD - calculated logd. Called with “logd”. Calculated from pH 7.4, as done performed in 

Wager et al., 2010.

Urbina et al. Page 7

ACS Chem Neurosci. Author manuscript; available in PMC 2022 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HBD - hydrogen bond donors. called with “donor count”. Default settings.

TPSA - total polar surface area. Called with “polarsurfacearea”. Default settings.

Pka - PKa. called with “pka”. By default, provides 4 PKAs; two basic and two acidic. 

Called to only provide the most basic Pka, as in the Pfizer paper.

Below is the command as called:

#cxcalc -o [output file.txt] [input file.sd] logP logD -H 7.4 pka -a 0 -b 1

#donorcount polarsurfacearea mass

The descriptors are generated as a .txt file. After generation of descriptors, an R script is 

called to apply monotonic or hump functions, followed by adding up the values of each 

transformed (T0) predictor for each molecule to create an MPO score.

MPO_pipeline.R

The output is a .CSV file with the descriptors, transformed descriptors, and MPO.

Machine learning with Assay Central®

Assay Central® is proprietary software developed to build machine learning models from 

high-quality datasets and generate predictions. It applies extended-connectivity fingerprint 

descriptors from the Chemistry Development Kit library 20 and a Bayesian algorithm 

previously described 14, 15 and utilized for other drug discovery projects 16-18, 21-27. 

Structure-activity datasets were collated in Molecular Notebook (Molecular Materials 

Informatics, Inc. in Montreal, Canada) and were curated through a series of scripts to detect 

and correct any problematic data (i.e. multiple components, salt removal, potentially 

inaccurate structure depiction). Performance metrics generated from internal five-fold cross-

validation are included with each model. These include a receiver operator characteristic 

curve, recall, precision, specificity, Cohen’s kappa, Matthews Correlation Coefficient, and 

balanced accuracy.

Predictions are generated from resulting Bayesian model by first enumerating all training 

data fingerprints and calculating a given fingerprint’s “contribution” to an active 

classification from the ratio of its presence in active and inactive molecules; the summation 

of contributions of the fingerprints in a prospective molecule produces the probability-like 

prediction score 14. Scores greater than 0.5 are considered an active prediction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparison of CPI-MPO.v1 score and Pf-MPO.v1. Scores that perfectly align appear on the 

diagonal red line (P << 0.005).
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Figure 2. 
Correlation between our T0 ClogP calculation and Pfizer T0 ClogP (P << 0.005).
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Figure 3. 
Set of molecular descriptors generated from ChemAxon vs. ACD, using the same chemical 

structures. Black line in D) indicates “1” on the y-axis (P << 0.005 for all).
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Figure 4. 
Correlation between resulting CPI-MPO.v1 score calculated with ChemAxon descriptors 

and Pf-MPO.v1 score calculated with ACD descriptors (P << 0.005).

Urbina et al. Page 14

ACS Chem Neurosci. Author manuscript; available in PMC 2022 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Difference in MPO.v1 scores. Red lines indicate highest density interval (~95% of data). 

Black line indicates mean difference.
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Figure 6. 
Comparison of CPI-MPO.v1 and CPI-MPO.v2 scores at predicting BBB penetration from a 

binary dataset 13. Green (x-axis: 1) represents active (BBB penetrating) compounds and 

purple (x-axis: 0) represents inactive (BBB non-penetrating) compounds from the testing 

dataset. The red dashed line indicates the activity cutoff (active if ≥ 4), and the large dot 

represents mean CPI-MPO scores of the entire testing dataset. Normalized density plots to 

the right of each point-graph.
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Figure 7. 
5-fold cross validation statistics for the Assay Central® Bayesian model for BBB penetration 

using the supplemental data from Wang et al., 2018 13.
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Table 1.

Comparison of performance metrics for CPI-MPO.v1 and CPI-MPO.v2 scores when predicting 2296 

compounds for BBB penetration.

Metrics CPI-MPO.v1 Score CPI-MPO.v2 Score

Sensitivity 0.378 0.453

Specificity 0.845 0.884

Precision 0.534 0.655

Recall 0.378 0.453

F1 0.443 0.536

Prevalence 0.319 0.327

Detection Rate 0.121 0.148

Detection Prevalence 0.226 0.226

Balanced Accuracy 0.612 0.669
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