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Systems/Circuits

Modular Network between Postrhinal Visual Cortex,
Amygdala, and Entorhinal Cortex

Andrew M. Meier, Quanxin Wang, Weiqing Ji, Jehan Ganachaud, and Andreas Burkhalter

Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110

The postrhinal area (POR) is a known center for integrating spatial with nonspatial visual information and a possible hub
for influencing landmark navigation by affective input from the amygdala. This may involve specific circuits within musca-
rinic acetylcholine receptor 2 (M2)-positive (M2") or M2~ modules of POR that associate inputs from the thalamus, cortex,
and amygdala, and send outputs to the entorhinal cortex. Using anterograde and retrograde labeling with conventional and
viral tracers in male and female mice, we found that all higher visual areas of the ventral cortical stream project to the amyg-
dala, while such inputs are absent from primary visual cortex and dorsal stream areas. Unexpectedly for the presumed salt-
and-pepper organization of mouse extrastriate cortex, tracing results show that inputs from the dorsal lateral geniculate nu-
cleus and lateral posterior nucleus were spatially clustered in layer 1 (L1) and overlapped with M2" patches of POR. In con-
trast, input from the amygdala to L1 of POR terminated in M2" interpatches. Importantly, the amygdalocortical input to
M2~ interpatches in L1 overlapped preferentially with spatially clustered apical dendrites of POR neurons projecting to amyg-
dala and entorhinal area lateral, medial (ENTm). The results suggest that subnetworks in POR, used to build spatial maps for
navigation, do not receive direct thalamocortical M2" patch-targeting inputs. Instead, they involve local networks of M2~
interpatches, which are influenced by affective information from the amygdala and project to ENTm, whose cells respond to
visual landmark cues for navigation.
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A central purpose of visual object recognition is identifying the salience of objects and approaching or avoiding them.
However, it is not currently known how the visual cortex integrates the multiple streams of information, including affective
and navigational cues, which are required to accomplish this task. We find that in a higher visual area, the postrhinal cortex,
the cortical sheet is divided into interdigitating modules receiving distinct inputs from visual and emotion-related sources.
One of these modules is preferentially connected with the amygdala and provides outputs to entorhinal cortex, constituting a
processing stream that may assign emotional salience to objects and landmarks for the guidance of goal-directed navigation. /

circuits connecting multiple brain structures including the amyg-
dala, which drives flight, freezing, and approach (Janak and Tye,
2015); and areas of the limbic and sensory cortex (LeDoux,
2012). In rodents, a critical structure is the postrhinal area (POR;
Burwell, 2001), which is part of the parahippocampal cortex
(Burwell et al., 1995) and is a center for visual scene processing
(Epstein et al., 1999). Studies in rats have shown that POR inte-
grates visual inputs to extract contextual information (Furtak et
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The chief concern for survival is to detect danger and react to it
(Price, 2005). In rodents, defensive strategies include the reflexive
startle response, freezing when danger is distant and escaping
when it is close. To do this, it is important to know the spatial
layout of the environment. For this, animals rely on neural
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al., 2012). It also references head-centered information to the vis-
ual scene, which is thought to form the basis for the grid-cell
metric in entorhinal cortex (Furtak et al., 2012; Gofman et al.,
2019; LaChance et al., 2019). The network for spatial processing
is often contrasted with a pathway that carries nonspatial infor-
mation through perirhinal and lateral entorhinal cortices to the
hippocampus (Deshmukh et al, 2012; Knierim et al, 2014;
Nilssen et al., 2019). The second function is the association of
visual objects with reward and fear memory via a circuit with the
amygdala (Agster et al., 2016; Burgess et al., 2016; Ramesh et al.,
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2018). This pathway is known as the “cortical route” for visual
fear response, as opposed to the “subcortical route” for aversive
responses (Pessoa and Adolphs, 2011; Agster et al., 2016). A
source of the subcortical input channel is the superior colliculus
(SC), which connects through the lateral posterior nucleus to the
amygdala, where it triggers defensive responses to visual threats
(Wei et al., 2015). This information may be used in the circuit
with POR to associate affective significance to objects and places
(Furtak et al., 2012; Burgess et al., 2016; Ramesh et al., 2018). A
second branch of the pulvinocortical pathway sends input
directly to POR and provides for its high sensitivity to moving
stimuli (Nishio et al, 2018; Beltramo and Scanziani, 2019).
Calcium recordings in V1 have shown that lateral posterior nu-
cleus (LP) terminals carry signals for unexpected visual motion
that are incongruent with the running speed of the animal (Roth
et al, 2016). These responses suggest that locomotion-related
cues may be integrated in POR, enabling the detection of moving
objects during self-motion. Direct input to POR may also come
from the dorsal lateral geniculate nucleus (dALGN; experiment
479670988, Allen Brain Atlas), whose terminals in layer 1 (L1) of
primary visual cortex (V1) are most active when the running
speed matches the optic flow (Roth et al.,, 2016), providing cues
for determining the position relative to landmarks.

We have shown in mouse POR that muscarinic acetylcholine
receptor 2 (M2) expression in L1 is patchy (Ji et al, 2015).
Recordings in V1 have further shown that L2/3 neurons aligned
with M2 patches are more sensitive to object features, while
cells in M2 interpatches are more sharply tuned to moving stim-
uli (Ji et al,, 2015). This pattern is reflected in the organization of
dLGN inputs to M2" patches and LP projections to M2™ inter-
patches (D’Souza et al., 2019). The findings raised the question
whether the modular organization of thalamocortical inputs is
preserved in POR, and inputs from the amygdala overlap with
neurons projecting to the amygdala and ENTm. To address these
questions, we have used anterograde and retrograde tracers of
connections to and from POR. The results show that POR
receives inputs mainly from areas of the ventral cortical process-
ing stream (Wang et al.,, 2012). dLGN and LP projections to L1
overlap in M2" patches, whereas inputs from the amygdala ter-
minate in M2" interpatches. The overlap of amygdalocortical
inputs with the apical dendritic tufts of POR neurons projecting
to the amygdala and ENTm suggests that M2~ modules provide
a substrate for the affective modulation of POR output used for
navigation.

Materials and Methods

Animals

Experiments were performed in 5- to 10-week-old male and female C57BL/
6], A9 (Gt[ROSA]26Sor™o(CAGdTTomatolHzey 7 pyy_ e (Bg.129P2-
Pvalem(CRE)Arbr)/L x Ai9 (Gt[ROSA]26SOrtmg(CAG_thTomatO)Hze)/], and
ChrM2tdT-D knock-in (BG6.Cg-Chrm2™'H%)/] mice. All experimental
procedures were performed in accordance with the National Institutes of
Health guidelines and under the approval of the Washington University
Institutional Animal Care and Use Committee.

Surgical procedures

Mice were anesthetized with a ketamine/xylazine mixture (86/13 mg/kg,
i.p.). Analgesia was achieved by presurgical injections of buprenorphine-
SR (0.1 mg/kg, s.c.). Ocular ointment was applied to protect the corneas.
Mice were head fixed in a stereotaxic frame. Body temperature was
maintained at 37°C. For each injection site, a small craniotomy was
made over the target. Tracer injections were performed with glass micro-
pipets (tip diameter, 15-20 pum) and, depending on the tracer used,
attached to a Picospritzer [for bisbenzimide and diamidino yellow
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(DY)], an iontophoresis current source [for biotinylated dextran amine
(BDA)], or a Nanoject II pump [for adeno-associated viruses (AAVs)].
At each cortical site, two injections were made: one at 0.3 mm and the
other at 0.5 mm below the pial surface. After injections were complete,
pipettes remained in place for 3 min before they were retracted. The
scalp was stapled closed with wound clips.

Combined anterograde tracing with BDA and retrograde tracing with
bisbenzimide

For mapping axonal projections from visual cortex to the amygdala in
C57BL/6] mice, BDA (10,000 molecular weight, 5% in H,O; Thermo
Fisher Scientific) was injected through a glass micropipet using ionto-
phoresis (7 s duty cycle for 7 min, 3 uA; Midgard, Stoelting). Injections
were made into the left hemisphere (in mm, anterior to transverse sinus/
lateral to midsagittal suture), as follows: V1 (1.1/2.8), lateromedial area
(LM; 1.4/4.0), posterior area (P; 1.0/4.2), laterointermediate area (LI
1.45/4.2), POR (1.15/4.3), anterolateral area (AL; 2.4/3.7), rostrolateral
area (RL; 2.8/3.3), posteromedial area (PM; 1.9/1.6), anteromedial area
(AM; 3.0/1.7), and anterior area (A; 3.4/2.4). In the same animal, callosal
connections were retrogradely labeled by blanketing the right visual cor-
tex with 20-30 injections (20 nl each) of bisbenzimide (5% in H,O;
Sigma-Aldrich). After 3 d of survival, mice were killed with an overdose
of ketamine/xylazine (500/50 mg/kg, i.p.) and perfused with 4% parafor-
maldehyde [PFA; 0.1 M phosphate buffer (PB), pH 7.4]. The brain was
extracted from the cranium and cryoprotected in 30% sucrose (PB). The
bisbenzimide-labeled callosal projection pattern was imaged in situ
under a stereomicroscope (model MZ16F, Leica) equipped with fluores-
cence optics (excitation, 338 nm; emission, 505 nm). Injection sites were
visible in situ (and validated later in sections) as weakly fluorescent spots
(see Fig. 3A-]), whose locations relative to the callosal labeling pattern
were used for areal identification (Wang and Burkhalter, 2007). Coronal
sections (50 pm) were cut on a cryostat and stained for BDA using an av-
idin-biotin complex (ABC) reaction (Vectastain ABC Elite System).
Sections containing the brainstem, diencephalon, and the amygdala
were mounted on glass slides, and after dehydration in ethanol and
clearing in xylenes, the diaminobenzidine reaction product was intensi-
fied with AgNO; and HAuCl (Wang et al., 2012). Representative sec-
tions were stained with cresyl violet for Nissl substance. The slides were
coverslipped with mounting medium (DPX, Sigma-Aldrich) and imaged
under a microscope equipped with dark-field optics. Images were cap-
tured with a CCD camera (CoolSnap EZ, Roper Scientific). For analyses
of the termination pattern in each nucleus, coronal sections were imaged
under 10x magnification, and grayscale images were recorded with
MetaMorph NX2.0 acquisition software (Molecular Devices). The opti-
cal density (OD) of BDA-labeled axons was determined by blurring the
raw image and measuring pixel values in regions of interest (ROIs) with
Image].

Retrograde tracing with diamidino yellow

To determine the sources of cortical and subcortical inputs to POR, neu-
rons were retrogradely labeled with the fluorescent tracer diamidino yel-
low (2% DY in H,0, 50 nl; EMS-Chemie). Injections into POR (1.15/4.3
mm anterior to transverse sinus/lateral to midsagittal suture) were made
in PVtdT (parvalbumin-tdT) mice whose pattern of tdT (tdTomato) flu-
orescence was used to identify cortical areas and subcortical nuclei
(Gaminut et al,, 2018). After 3d of survival, mice were perfused with
1% PFA. Brains were extracted, and the cortex including the hippocam-
pus were detached from the rest of the brain and flatmounted (Ji et al.,
2015). Next, the tissue was postfixed in 4% PFA (overnight, at 4°C), fol-
lowed by overnight immersion in 30% sucrose (in PB, at 4°C).
Tangential sections were cut at 40 um on a freezing microtome, wet
mounted on glass slides, and coverslipped in PB. Images were captured
with a CCD camera (Lumenera InfinityS3-URM, Teledyne) and
MetaMorph NX2.0 acquisition software (Molecular Devices) using a
stereomicroscope (model MZ16F, Leica) or an epifluorescence micro-
scope (model 80i, Nikon), respectively, equipped with UV fluorescence
(excitation, 355-425nm; emission, 470 nm) and tdT (excitation, 520~
600 nm; emission, 570-720mn) optics. For storage, sections were
mounted on glass slides and coverslipped with DPX. To reveal DY-
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labeled cells in the amygdala, the neocortex was separated along the rhi-
nal fissure from the rest of the brain, which was then sectioned at 40 pm
in the coronal plane.

Anterograde tracing with AAVs

For retinotopic mapping of POR in C57BL/6] mice, side-by-side injec-
tions with AAV.2/1.hSynapsin. EGFP.WPRE.bGH (46 nl; Penn Vector
Core) and AAV.2/1.hSynapsin.tdTomato. WPRE (46 nl; Penn Vector
Core) were made at select combinations of retinotopic locations in V1.
The injections were confined to a space within (in mm, anterior to trans-
verse sinus/lateral to midsagittal suture) 1.0-1.6/2.7-1.4/3.3. The same
viral tracers and injection volumes were used to trace inputs from the
subcortical structures (in mm, posterior of bregma/lateral of midline/
below pial surface) lateral amygdala (LA; 1.8/3.55/3.7), dLGN (2.35/2.15/
2.55), and LP (1.85/1.25/2.65) in C57BL/6] or Chrm2-tdT mice. After
14-18 d of survival mice were killed and perfused with 1% PFA. The cor-
tex of V1-, dLGN-, and LP-injected mice was flatmounted, postfixed in
4% PFA, cryoprotected in 30% sucrose, and stored overnight with the
rest of the brain. In amygdala-injected mice, neocortex was separated
from the limbic region along the rhinal fissure, flatmounted, postfixed,
cryoprotected, and sectioned at 40 pum in the tangential plane on a freez-
ing microtome. The amygdala was sliced in the coronal plane. For visual-
ization of M2 expression in C57BL/6] mice, tangential, and coronal
sections through cortex were immunostained with an antibody against
M2. This procedure involved preincubation in blocking solution (0.1%
Triton X-100, 10% normal goat serum, PB), followed by incubation in
primary rat anti-M2 antibody (1:500, for 48 h at 4°C; catalog #MAB367,
Millipore) and reaction with Alexa Fluor 647-labeled goat anti-rat sec-
ondary antibody (1:500; catalog #A21247, Thermo Fisher Scientific). M2
labeling patterns in Chrm2-tdT mice were identified by tdT fluores-
cence. Selected sections through cortex and amygdala were counter-
stained with Invitrogen NeuroTrace 435/455 (Thermo Fisher Scientific).
Anterogradely labeled axons and M2 patches were imaged at 4-40x
under an epifluorescence microscope equipped with extended green flu-
orescent protein (EGFP), tdT, and infrared (IR; excitation, 650 nm;
emission, 665 nm) fluorescence optics, a CCD camera, and acquisition
software. In cortical sections, POR and PORa (anterior POR) were out-
lined based on M2 expression. Above-background EGFP or tdT fluores-
cence intensity in POR, LM, and LI was determined in series of 2-12
tangential sections.

To disambiguate laminar identification based on cytoarchitecture
(i.e., counterstaining with NeuroTrace 435/455) in flatmounted cortex, we
immunostained tangential sections of flatmounted cortex of C57BL/6]
mice with an antibody against the transcription factor CTIP2 (COUP TE-
interaction protein), which selectively labels L5 and L6 (Arlotta et al.,
2005). Immunostaining was performed with a rat anti-CTIP2 antibody
(1:500; catalog #18465, Abcam), which was visualized with an Alexa Fluor
488-labeled secondary goat anti-rat IgG (1:500, Thermo Fisher Scientific).

Retrograde tracing with AAVs

To investigate the tangential distribution of POR neurons that project to
the amygdala and the entorhinal cortex, we used retrograde tracing with
rAAV2-Retro/CAG-Cre (University of North Carolina Vector Core) in
Ai9 mice. Injections (46 nl) were made into the LA (in mm, posterior of
bregma/lateral of midline/below pial surface, 1.8/3.55/3.7) and the
ENTm (in mm, anterior to transverse sinus/lateral to midline/below the
pial surface, 0.7/5.25/3.55) angled 40° from vertical. After 14-18 d of sur-
vival, perfusion with 1% PFA, flatmounting of cortex, postfixation in 4%
PFA, cryoprotection, and cutting in the tangential plane, sections were
immunostained with rat anti-M2 and Alexa Fluor 647-labeled goat anti-
rat antibodies. Sections were wet mounted on glass slides and imaged
under IR and tdT illumination at 4-40x magnification to identify M2
patches, cell bodies, dendrites, spines, and local axons (Vaughan and
Peters, 1973; Karimi et al., 2020) of retrogradely labeled cells in POR.

Patchy M2 expression

M2" patches and M2~ interpatches were delineated from images of
immunolabeling in C57BL/6] mice or the expression of Chrm2-tdT
using custom MATLAB scripts. M2 expression images were spatially
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normalized by dividing the intensity of every pixel by the mean intensity
within a 100 um radius. Images were blurred with the MATLAB “nan-
conv” function, a circular (pillbox) filter with 29 um radius (see Fig. 6D),
and then divided into six quantiles based on pixel intensity (see Fig. 6E).
These borders were overlaid onto images of virally anterogradely labeled
axons or retrogradely labeled cell bodies and dendrites. Comparison of
M2 immunostaining and Chmr2-tdT expression yielded nearly identical
borders of M2" patches and areal boundaries; the same analyses were
therefore used for both labels. This similarity was verified by performing
M2 immunostaining in Chrm2-tdT mice and overlaying M2 expression
patterns from both markers in the same section.

Experimental design and analyses
Data were obtained from 44 C57BL/6], 7 Chrm2tdT, 2 PVtdT, and 8 Ai9
adult male (N = 36) and female (N = 25) mice.

Optical density of BDA labeling. We determined the weight of an-
terogradely BDA-labeled projections by using Image] to measure the
pixel values and compute the mean background-subtracted OD of axons
(three sections/target/mouse). The OD in a specific nucleus was normal-
ized to the sum of ODs measured in all of the 31 identified subcortical
projection targets and expressed as averages across injection sites and
mice. The relative strength of inputs from different visual areas to sub-
nuclei of the amygdala was determined by computing the OD in the tar-
get relative to the maximal OD of the injection site. The data were
plotted as the mean percentage OD of projections. The ¢ test was used
for statistical comparisons.

Distribution and shape and of M2" patches. For analysis of M2 patch
distribution and shape, patch borders were drawn around the highest
20% intensity pixels and lowest 80% intensity pixels in blurred, high-
pass-filtered M2 expression images of tangentially sectioned L1. A high-
intensity threshold for pixel inclusion was used to ensure the separation
of individual patches and to prevent the formation of large continuous
units. To find out whether patches were anisotropic and aligned with the
asymmetry of visual areas (see Fig. 2C,D), we first drew the outline of
each area containing M2" patches (V1, LM, LI, POR) based on M2
expression patterns in L4. These outlines were then used to determine
the major and minor axes of visual areas, using custom scripts and the
MATLAB “regiongroup” function. Patch anisotropy was quantified by
the major/minor axis ratio. The spatial density of patches was calculated
as units per square millimeter. Patches per square degree of visual space
were determined by multiplying spatial densities with magnification fac-
tor of respective area (Garrett et al., 2014, their Fig. 7). The Tukey’s test
was used for statistical comparisons of patches in different areas.

Projection strength. For the quantification of the distribution of an-
terogradely labeled axonal projections in M2 patches and M2~ inter-
patches, M2 expression images of tangential sections through L1 were
high pass filtered, blurred, and divided into 6 intensity quantiles of equal
area (see Fig. 6D-F). The lower three quantiles were treated as M2~
interpatches and the upper three quantiles treated as M2 patches. The
strengths of anterogradely labeled LA/basolateral amygdala (BLA) —
POR (N=5), dLGN — POR (N=5), and LP — POR (N =2) projections
in M2" patches and M2~ interpatches of C57BL/6] and Chrm2tdT mice
were determined using a custom-written MATLAB script to measure
the pixel values of fluorescence intensity in ROIs (360-630 x 10° pmz)
and subtract the unlabeled background. For each projection target
(POR, LM, LI, V1), the background-subtracted mean pixel values in
M2" patches and M2™ interpatches within the ROI were computed from
one to two sections through L1. The laminar distribution of inputs to
POR was compiled from sections through L2 to L6 in which registration
to the patch/interpatch pattern of L1 was not available. Mean intensities
in patches and interpatches and patch/interpatch intensity ratios were
compared across quantiles using Pearson’s correlation and one-sample ¢
test, respectively.

Distribution of dendrites. Images of dendrites labeled by retrograde
tracing with rAAV2-Retro/CAG-Cre in Ai9 mice and M2-immunola-
beled patches in L1 were acquired with a Leica Thunder Tissue Imager
(model DMB 6) equipped with a camera (model DFC 9000 GT, Leica)
and divided into six quantiles based on M2 expression intensity (see
above). Apical dendrites in L1/2 of retrogradely labeled pyramidal cells
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in POR were distinguished from axons by greater thickness and were
positively identified by their spiny morphology (Vaughan and Peters,
1973; Karimi et al., 2020). The dendrites were reconstructed at 40X mag-
nification using Neurolucida (MBF Bioscience), and their total length
within each quantile of M2 expression was computed. For each quantile
in each mouse, the proportion of dendrite length of all dendrites within
that image was determined, and the Pearson correlation coefficient
between M2~ quantile level and the proportion of dendrites was com-
puted. Images from four mice were analyzed for POR — ENTm projec-
tions and POR — LA projections.

Laminar distribution of retrogradely labeled cells. Series of flat-
mounted tangential sections were taken from Ai9 mice in which
rAAV2-Retro/CAG-Cre had been injected into either ENTm (N=4
mice) or LA (N=2 mice). Images of M2 expression and retrogradely
tdT-labeled cells across layers were taken at 4x and 10x magnification
and overlaid. In each image, borders for LM, LI, P, POR, and PORa were
manually drawn based on M2 immunolabeling visualized with Alexa
Fluor 647 IgG, and all tdT-labeled cells were marked. Custom MATLAB
scripts were used to tabulate counts of cells within each area. Cell counts
for unusable sections were interpolated using Akima piecewise cubic
interpolation with the MATLAB “interp1” function. To compensate for
variations in labeling effectiveness across cases, cell counts were normal-
ized for each mouse by dividing by the maximum number of cells in any
one area in any one section of that mouse. For each mouse, the ratio of
total cells labeled within a group within deep layers (L5 and L6 pooled
together) to total cells labeled within L2/3 was computed.

Tangential clustering of retrogradely labeled cells. To quantify the
clustering of cells in M2 patches and M2™ interpatches of POR, retro-
gradely labeled from LA (N=2) and ENTm (N =4), we analyzed in tan-
gential sections through L2/3 aligned with M2-immunostained patches
in L1. Tmages were taken at 10x magnification (ROI, 160 x 10° um?)
and divided into six quantiles based on M2 expression intensity. Cells
were plotted manually and custom MATLAB scripts were used to count
the number of cells in each M2 quantile. Cell counts were normalized
within each image by dividing the cell count per quantile by the total
number of cells labeled in that image. The Pearson correlation coefficient
was then computed between quantile levels and normalized across mul-
tiple mice. Only images that contained >10 cells were analyzed.

Data availability
Code use for analysis in this study is available at https://github.com/
amsmeier/Meier-et-al._2021.

Results

POR is contained within a M2" region of parahippocampal
cortex

The borders of POR have been outlined previously by mapping
of retinotopic inputs from V1 (Wang and Burkhalter, 2007).
However, it remained unknown whether its borders align with
the expression of M2, an effective marker used to identify cortical
areas (Gamanut et al., 2018). Additionally, the original descrip-
tion of POR in the studies by Burwell (2001) and Beaudin et al.
(2013) was derived from cytoarchitectonic features observed in
coronal sections. This raised the question whether the borders
seen in coronal sections and flatmounted cortex are aligned with
one another. To find out, we combined multicolor viral tracing
of retinotopic projections from V1 with the expression patterns
of M2 and PVtdT. We then analyzed the axonal projections in
tangential sections through the flatmounted cortical hemisphere.
Reconstructions of the retinotopic map were done from serial
tangential sections through the cortical mantle, eliminating the
challenging task of aligning sequential coronal sections. In tan-
gential sections through 14 stained with an antibody against M2,
we identified V1 as an intensely immunopositive triangular area
surrounded by the more weakly fluorescent extrastriate cortex
(Fig. 1A, inset). Lateral to V1, M2 stained a boot-shaped region
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that overlapped with the ventral stream areas LM (lateromedial),
LI (laterointermediate), POR and PORa (Giaminug et al., 2018).
M2 expression dropped sharply at a M2" strip along the rhinal
fissure, which contained ectorhinal area (ECT) and the posterior
area (P), and was continuous with the posterior temporal area
(TEp), on the anterior—dorsal side of POR and PORa. A similar
boot-shaped pattern was seen in the expression of PVtdT in
PVcre x Ai9 mice (Fig. 1D), which overlapped with M2 (data not
shown; Gamanut et al., 2018).

To outline the borders of areas within the M2" boot, we
simultaneously injected C57BL/6] mice (N =5) with two antero-
grade viral tracers, AAV.2/1.hSynapsin. EGFP (AAV.EGFP) and
AAV .2/1.hSynapsin.tdTomato (AAV.tdT), at different visuo-
topic locations of V1. The result of one such case in which AAV.
EGFP was injected near the intersection of the vertical and hori-
zontal meridian (Garrett et al., 2014) and AAV .tdT was targeted
to the upper temporal visual field (Wang and Burkhalter, 2007)
is illustrated in Figure 1A-C. It shows that axonal projections ter-
minated in multiple pairs of red and green patches distributed
across the surrounding extrastriate cortex (Fig. 1B,C). Anterior-
dorsal to the rhinal fissure, we found three pairs of patches: two
within the M2 " boot and one in the M2~ strip. Reading the map
from posterior to anterior starting at the border of V1, the colors
of the projections switch from red to green, reverse back to red,
and then reverse again to label a fainter patch of more inter-
spersed red and green fibers. Because map reversals have been
interpreted as areal borders (Sereno and Allman, 1991; Garrett et
al., 2014), we concluded that the red-to-green/green-to-red
and the green-to-red/red-to-green transitions mark the P/POR
and the POR/PORa areal borders, respectively (Wang and
Burkhalter, 2007; Wang et al., 2011). The systematic topographic
shifts observed in five different mice suggest that P, POR, and
PORa contain nearly complete maps of the visual field. The
maps observed in two representative cases are depicted graphi-
cally in the inset of Figure 1B, in which the blue arrows indicate
the progression from lower/nasal to upper/peripheral fields
extracted from five different experiments. Together with previ-
ous findings that P, POR, and PORa have different connectivity
profiles (Gamanug et al., 2018), these data suggest that these are
distinct visual areas. We next asked whether each of these areas was
contained within M2" parahippocampal cortex or whether they
extend across the border with ECT. We found that V1 injections at
higher retinotopic altitudes shifted the anterogradely labeled patches
in both POR and PORa closer to the borders with LM and LI,
respectively (Fig. 1B, inset). In contrast, injections below the hori-
zontal meridian pushed the projections backward, but never out of
the M2" region into the M2 strip. This topographic pattern shows
that the POR/ECT and PORa/ECT borders coincide with the poste-
rior margin of the M2 region, and indicates that PORa belongs to
M2 cortex and is not part of the agranular perirhinal area 36p, as
suggested previously (Wang and Burkhalter, 2007).

According to this scheme, postrhinal cortex is completely
contained within the M2" boot. This raised the question of
whether the agranular ventral POR (PORv), identified in coronal
sections by Beaudin et al. (2013), is part of postrhinal cortex. To
find out, we looked at the cytoarchitecture of postrhinal cortex in
Chrm2-tdT mice (N =2). Figure 1, E and F, shows a coronal sec-
tion from the approximate location indicated by the green line
on the flatmap in Figure 1A. It shows that the multilayered M2
expression in the dorsal part is interrupted suddenly by an
unstained gap and then reappears as a simpler pattern in more
ventral parts of the section. In tangential sections, the unstained
gap coincides precisely with the M2~ band aligned with the
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Figure 1. Mapping areas of mouse parahippocampal cortex. 4, Tangential section through middle layers of flatmounted postrhinal cortex stained with an antibody against M2 muscarinic acetylcholine
receptor (magenta). Inset shows low-magnification image of M2 expression in L4 of V1 and surrounding cortex. Green and red spots indicate AAV2/1.hSyn.EGFP (green) and AAV2/1.hSyn.tdT (red) injec-
tion sites into nasal/central and peripheral/upper visual field representations, respectively. B, €, Anterogradely labeled clusters of axon terminals labeled after AAV injections into V1 (A, inset) show retino-
topic maps in LM, LI, P, POR, and PORa. Note that to show the projections in higher visual areas, the image was overexposed, which made the injection sites artificially large and gives the false
impression that viral tracers spilled across the lateral V1/LM border. B, inset, A diagram of visuotopic maps obtained from two representative experiments, whose V1 injections sites and projections are
marked by solid and open green and red contours. Blue arrows denote the progression from lower/nasal to upper/peripheral visual field representations in different areas, derived from five different
experiments. The overlay reveals that projection maps in POR and PORa are contained within the M2™ cortex (C). D, Expression of PVtdT in postrhinal cortex shows a foot-shaped pattern similar to M2
expression in C. M2 and PVtdT expression is extremely sparse in P, ECT, and TEp. E, F, Coronal section from Chmr2-tdT mouse (approximate location indicated by the green line in A) shows sharp transi-
tions of laminar M2 pattern at the POR/ECT and ECT/ENTm borders (E); after counterstaining with NeuroTrace 425/455, the transitions coincide with a loss of the granular appearance of L4 and the distinc-

tions with the larger cells in the more sparsely populated L5 of ECT were no longer apparent (F). Axes: A-D: A, anterior; L, lateral; E-F: D, dorsal; L, lateral.

rhinal fissure and overlaps with agranular cortex that lacks L4
and shows a much thinner L5 than in M2" cortex (Fig. 1F). This
cytoarchitecture suggest that the M2 gap represents ECT
(Dong, 2008) and that in coronal sections the gap corresponds to
the M2 band seen in tangential slices. Thus, agranular PORv lies
in ECT and is not part of V1-recipient, M2 " postrhinal cortex.

M2" patches in higher visual areas are linked to cortical
magnification

We have shown previously that alternating M2" and M2~
patches are not unique to V1, but is also observed throughout
the thickness of L1, most notably at the L1/2 border in LM,
LI, POR, PORa, auditory (AUD), and retrosplenial (RSP) cortex

(Ji et al., 2015). In addition, we noted that in each of these areas
M2 expression is more uniform in layers below the L1/2 border
(Fig. 2A4,B). In V1, M2" patches parcellate the plexiform L1 in
the tangential plane into constant size domains, which extend to
the cellular L2/3, and in groups of four to eight represent the vis-
ual point image (Ji et al, 2015). This organization raised the
question of whether the shape, density, and cortical magnifica-
tion factor of M2™ patches is related to the layout of the visuo-
topic maps in LM, LI, and POR. We determined the aspect ratio
of M2™" patches along the major and minor axes of V1, LM, LI,
and POR measured from the study by Garrett et al. (2014, their
Fig. 7; see Materials and Methods). We found that in all four
areas, average patch anisotropy was aligned with the axes of the
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Patchy M2 expression in higher cortical areas. A, B, Tangential section through occipital cortex of Chrm2-tdT mouse shows patchy M2 expression throughout the thickness of L1

(A) and uniform expression in L4 (B) of V1, LM, LI, POR, PORa, AUD, and RSP. Scale and orientation in B are the same as in A. (, Higher-magnification image of LM, LI, POR, and PORa shows
that M2 patches are elongated parallel to the major axes (green double-headed arrows) of LM, LI, and POR. D, Mean = SEM ratio of major/minor axial lengths of M2 patches along the
major axis of the containing area in V1, LM, LI, and POR (mean, 63.2 patches/mouse analyzed; Tukey's test). £, Mean = SEM spatial density of M2* patches across areas (same mice and
patches as in D; Tukey's test). F, Mean + SEM M2 patches per square degree of visual space, determined by multiplying spatial densities with magnification factor of respective area (Garrett
et al., 2014; same mice and patches as in D; Tukey's test; #p << 0.05; sxp << 0.01; #::kp < 0.001).

containing area (Fig. 2D). In areas V1, LI, and LM, whose major
axes represent altitude, patches were stretched along elevation.
In POR, with the major axis mapping azimuth, average patch
elongation occurred along latitude. In V1, LM, and LI, patch
dimensions closely matched those of their containing area [with
major:minor length for patches; V1, 1.21 * 0.03 (12 mice, 1354
patches); LM, 1:14*0.05 (7 mice, 122 patches); LI,
1:1.42 = 0.08 (7 mice, 78 patches); POR, 1.21 + 0.03 (16 mice,
278 patches)] and areas (V1, 1:1.22; LM, 1:1.53; LI, 1:1.53; POR,
1: 1.59; Garrett et al., 2014). These results suggest that anisotro-
pies in the representation of retinotopic space are shared by the
M2 patches within the areas we have examined.

Next, we determined the spatial distribution of M2™ patches
and found that the density was similar in V1, LM, LI, and POR
(p >0.005, Tukey’s test; Fig. 2E). These results indicate that the
patch size (top 20% of M2 pixels) is constant across areas, as
was the case across different quadrants of V1 (Ji et al, 2015).
How much of the visual field is represented by a M2™ patch in a
given area? To find out, we multiplied patch density (patches per
square millimeter) by the cortical magnification factor (square
millimeters per square degree; Garrett et al., 2014) and obtained
a quantity patches per square millimeter in V1, LM, LI, and
POR. We found that a 10 x 10°-wide field of visual space, which
accounts for about the size of the point image in V1 (12 mice)
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Figure 3.

Axonal projections of visual cortex — amygdala pathways. A-J, In situ ex vivo images of callosal connections traced by retrograde transport of bisbenzimide from the posterior

third of the right (contralateral) hemisphere. The arrows point to bright spots that represent the BDA injection sites in V1, LM, P, LI, POR, AL, RL, PM, AM, and A of the left (ipsilateral) hemi-
sphere. A'~J', Dark-field images of coronal sections showing anterogradely BDA-labeled axonal projections (yellow) from V1, ventral (LM, P, LI, POR), and dorsal (AL, RL, PM, AM, A) stream
areas terminating in different nuclei of the amygdala. Note that the white structures represent unlabeled, highly reflective myelinated fibers of the intemal capsule (int). Scale bars: A-J,

Tmm; A'=J', 0.5 mm.

and LM (7 mice; D’Souza et al., 2020), contains 3.93 = 0.08 and
3.46 = 0.23 patches/mm? respectively. In LI (7 mice) and POR
(16 mice), a similar 10 x 10°-wide field contained about half the
number of patches, indicating that a single LI or POR patch rep-
resents a proportionately larger amount of visual space than a
patch in V1 of LM (p < 0.001, Tukey’s test; Fig. 2F).

Anterogradely labeled outputs from visual cortex to
amygdala, thalamus, brainstem, and striatum

Despite massive efforts, there are no detailed descriptions of the
connectivity of visual cortical areas with the amygdala in mice,
except for POR (Burgess et al., 2016). In previous studies (Oh et
al., 2014; Zingg et al., 2014; Hintiryan et al, 2019), injections
involved multiple areas, and areal assignments were based on the

computed majority stake, which is known to underestimate the
connectome density (Gimanu{ et al.,, 2018). We have taken a
different approach in which we only accepted clean hits of the
source area for anterograde tracing with BDA. To do this, we
relied on the complementary patterns of M2 expression and cal-
losal connections (Wang et al., 2011). Callosal connections were
labeled by retrograde tracing with bisbenzimide and visualized in
situ in fixed brains imaged under a fluorescence stereomicro-
scope. This procedure also revealed the injection site as a bright
spot, which was, based on the distinctive callosal projection pat-
tern, readily assigned to V1, PM (posteromedial), AM (antero-
medial), A (anterior), RL (rostromedial), AL (anterolateral), LM,
LI, P, or POR (Wang and Burkhalter, 2007; Fig. 3A-]). The cor-
tex dorsal to the rhinal fissure was then separated from the
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brain, flattened, cut tangentially, reacted for M2 immuno-
fluorescence, and stained with an ABC reaction to reveal
the BDA injection site. Injections were considered clean
hits if they were confined within the areal boundaries
delineated by Gamanut et al. (2018). The rest of the brain
was cut coronally, and sections containing the amygdala
were stained to reveal BDA-labeled axonal projections. We
found that the projections from V1 and the dorsal stream
areas, AL, RL, PM, AM, and A, were extremely weak and
too sparse for determining their optical density (Fig. 3F'-
J'). In sharp contrast, the projections from the ventral
stream areas, LM, P, LI, and POR, were much denser (Fig.
3A’'-E'). The vast majority (98-100%) of inputs from LM,
LI and P to the amygdala terminated in LA with only minor
offshoots to BLA (basolateral amygdala; Fig. 3B’-D’).
Projections from POR were percentage-wise (percentage of
total input to amygdala and percentage of optical density
relative to injection site) the strongest in LA, but, compared
with LM, LI, and P, a larger fraction terminated in BLA and
central amygdala (CeA; Fig. 4B-E, inset).

Compared with the total output from 10 visual cortical
areas to 31 subcortical targets, the weight of amygdala pro-
jections was weak, and even the strongest combined input
from POR to LA and BLA was only ~10% of the total
strength (Fig. 4A-]). Notably, inputs from ventral areas to
LA were significantly stronger than from dorsal areas (Fig.
4K). POR input to another emotion regulatory center for
fear, the dorsal lateral periaqueductal gray (DLPAG), which
responds to cortical stressors and, unlike the amygdala,
does not receive visceral input (Floyd et al., 2000), was only
~2% (Fig. 4E). Similarly sparse projections to DLPAG were
found from P, AM, and PM (Fig. 4D,H,I).

Bennett et al. (2019) have shown that dorsal stream areas
are more weakly connected to posterior LP than areas of the
ventral stream. We found a similar rostrocaudal distribution
by anterograde BDA labeling of outputs from nine higher
visual areas. In our data, however, ventral stream projections
include the rostral LP, the primary target of the dorsal
stream. The strong preference for posterior LP [LP, latero-
caudal (LPLC); LP, mediocaudal (LPMC)] was present in the
inputs from ventral stream areas LM, LI, P, and POR (Fig.
4B-E), which was in striking contrast to the absence of input
from the dorsal stream, AL, RL, AM, PM, and A (Fig. 4F-)).
Inputs to the middle and anterior part of LP [LP, lateroros-
tral (LPLR); LP, mediorostral (LPMR)], including the widely
connected laterodorsal nucleus, dorsomedial, and laterodor-
sal nucleus, ventrolateral (laterodorsal thalamic nuclei;
Juavinett et al., 2020), originated from both ventral and dor-
sal stream areas (Fig. 4B-]). Unexpectedly, we found that
POR sent weak outputs to dLGN, from which it also received
weak inputs (Figs. 4E, 5D,E). Notably all of the retrogradely
DY-labeled cells found in the dLGN were located in the shell
(Fig. 5D,E). This suggests that intracortical communication
through transthalamic circuits (Sherman, 2016) may involve
the higher-order LP as well as the first-order dLGN. Weak
POR projections were also found to the auditory medial ge-
niculate, ventral (MGV), and marginal zone of medial genic-
ulate (Fig. 4E). Unlike dorsal stream areas, which more
strongly project to oculomotor and motor coordination cen-
ters than ventral stream areas, such inputs were extremely
weak or absent from POR (Fig. 4E). A notable exception was
the strong POR inputs to the dorsomedial caudoputamen
(Fig. 4E), which plays a role in goal-directed behavior
(Hunnicutt et al., 2016).

Meier etal. @ Modularity of Mouse Postrhinal Cortex

Retrogradely labeled sources of inputs to POR

To map the sources of inputs to POR, we retrogradely traced
neurons in PVtdT mice with DY (N=2). Unsurprisingly, given
the results from anterograde tracing (Fig. 4E), we found DY-la-
beled cells in LA, LP, and dLGN (Fig. 5D-G). Of a total of 2454
DY-labeled neurons in the primary and secondary visual thala-
mus, the vast majority were found in different subdivisions of
the LP (LPLC, 542*6.1%; LPMC, 6.4=*19%; LPLM,
25.3 * 3.4%; LPMR, 11.7 = 2.0%). Only a small percentage of la-
beled cells was encountered in the dLGN (2.4 = 1.8%), notably
all of them in the dLGN shell (Fig. 5D,E). This shows that POR
receives retinal input via a direct dJLGN — POR and an indirect
SC — LP — POR (Beltramo and Scanziani, 2019) thalamocorti-
cal pathway. In addition, we found DY-labeled POR projecting
thalamic neurons in the zona incerta, suprageniculate, dorsal
anteromedial, central medial thalamic nucleus, paratenial tha-
lamic nucleus, and MGV (data not shown). Limbic regions con-
tained DY-labeled cells in LA; medial (ENTm) and lateral
(ENTI) entorhinal cortex (Fig. 5B,C,G). Each of these structures
received strong inputs from POR (Figs. 3E', 4E'; Wang et al,,
2012), suggesting bidirectional communications among POR,
amygdala (confirming the findings of Burgess et al., 2016), and
entorhinal cortex (Fig. 6A-C; also see Figs. 8A-C,E-G, 9A-C,E-
G). DY-labeled POR projecting neurons were also encountered
in multiple neocortical areas including the following: V1; PM;
MM (mediomedial area), RSP (retrosplenial area); AM; RL; AL;
LM; LI P; ECT; TEp; TEa (anterior temporal area); DP (dorsal
posterior area), AUD, Alv (ventral anterior insula); GU (gusta-
tory area), ORBI (lateral orbitofrontal area), ILA (anterior
infralimbic area), and ACAv (ventral anterior cingulate area)
(Fig. 5A-C).

Anterogradely labeled projections from amygdala to POR
terminate in M2" interpatches

It has been known from studies in rats and mice that projections
from LA and BLA to POR terminate in L1-3 with weaker input
to the layers below (Pikkarainen and Pitkédnen, 2001; Burgess et
al,, 2016). To find out whether these inputs are modularly organ-
ized, we traced inputs from LA and BLA (Fig. 6B, inset) with
AAV.EGFP or AAV.tdT in C57BL/6 and Chrm2-tdTmice. We
found that the laminar distribution of inputs from both sources
was similar, which let us pool (LA/BLA, N=5) the baseline-sub-
tracted fluorescence intensity of axonal projections. Inputs were
densest in L1, weaker in L3/4, and sparse in L2, L5, and L6 (Fig.
7E). To study whether inputs specifically target M2" patches or
M2 interpatches, we removed the cortex dorsal to the rhinal fis-
sure, flatmounted the tissue, cut tangential sections, and sliced
the amygdala in the standard coronal plane. Projections to L1 of
POR were strikingly nonuniform, preferentially targeted M2~
interpatches, and largely avoided M2 patches (Fig. 6A-C). We
performed an automated delineation of M2™ patch borders with
custom MATLAB scripts, using a procedure similar to that used
by Sincich and Horton (2005). M2 intensity images were high-
pass filtered and blurred, then partitioned into six quantiles
based on fluorescence intensity (Fig. 6D,E). To test for different
input strengths to patches and interpatches, EGFP intensity was
compared across M2-defined quantiles (Fig. 6F). EGFP intensity
showed a strong negative correlation with M2 expression (R =
—0.86, p<10~°, N=5, Pearson correlation), and projection
strength in the highest quantile (6) was a mere 17% of that in the
lowest quantile (1), indicating that M2~ interpatches received sig-
nificantly stronger input from the LA/BLA than M2" patches
(Figs. 6F, 7F).
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Relative strength of anterogradely BDA-labeled projections of mouse visual cortex to 31 subcortical targets. Nomenclature is after that in Dong (2008) and

Franklin and Paxinos (2008). A-E, Average = SEM optical density of projections from V1 and the ventral stream areas LM, LI, P, and POR in percentage of the summed den-
sity of all subcortical projections labeled from each area. F-J, Projections from the dorsal stream areas AL, RL, AM, PM, and A. Colors indicate functionally broadly similar
groups of subcortical targets (Jones, 2007). BE, insets, Relative strength of anterogradely BDA-labeled projections from ventral stream areas LM, LI, P, and POR to LA, BLA,
BMA, Cel, and CeM. Percentage (mean = SEM) of total optical density of labeled terminal axonal branches (black bars). Values are background-subtracted percentage
(mean = SEM) of optical density relative to the injection site (gray bars). K, Comparison of projection strengths from different visual areas to LA. Two-sample ¢ test:
#p <<0.001; *:p < 0.0001. (=), undetectable; CeL, centrolateral amygdala; CeM, centromedial amygdala).

Anterogradely labeled projections from dLGN and LP to

POR terminate in M2" patches

We have found recently that M2 expression in V1 divides L1
into interdigitating modules receiving dLGN input to M2"
patches and LP input to M2 interpatches (Ji et al, 2015;

D’Souza et al, 2019). Both of these thalamic nuclei are also
known to project to extrastriate visual cortex (Oh et al., 2014),
but only LP has been shown unequivocally to project to POR
(Zhou et al., 2017; Beltramo and Scanziani, 2019; Bennett et al.,
2019; Juavinett et al, 2020). Here, we investigated whether
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Retrograde tracing in PVtdT mice of subcortical and cortical source neurons projecting to POR. A, Tangential section through L2/3/4 of flatmounted PVtdT-expressing (red) cortex,

shows DY injection site (false colored blue) in POR. B, Overexposed black/white image (notice the artificially large injection site gives the false impression that DY spilled beyond the borders of
POR) showing DY-labeled neurons (white dots) in LA and multiple cortical areas segmented according to Gamanut et al. (2018). €, Overlay of DY-labeled neurons with PVtdT expression. D-G,
Coronal sections through thalamus and amygdala. D, E, Representative sections through the dLGN of two different mice (17134 and 17185) showing that DY-labeled neurons are present in the

shell (arrowheads) but not in the core. F, G, Dense labeling in the LPLR and LPMR (F), and LA (G).

dLGN and LP project to POR and whether inputs to L1 show an
interdigitating pattern similar to the one we have found in V1
(D’Souza et al., 2019). For this purpose, we injected the antero-
grade viral tracers (AAV.EGFP, AAV.tdT) into either dLGN or
LP (Fig. 7B,D, inset). We found that input from dLGN (N=5)
and LP (N=2) terminated in POR and PORa (Fig. 7A-D). In
two cases with a complete series of sections across cortex, we
found that dLGN input was densest in L1 and L5, moderate in
L4 and L6, and weakest in L2/3 (Fig. 7E). LP input was dense in
L1 and L4, moderate in L5 and L6, and weakest in L2/3 (Fig. 7E).
To determine the patch/interpatch ratio of input to L1, the top
three M2 quantiles were taken as M2™ patches and the bottom
three quantiles as M2~ interpatches. The results show that the
tangential distribution of dLGN and LP inputs to L1 of POR and
PORa overlapped with M2 patches (patch/interpatch ratios:
dLGN — POR, 3.04 = 0.67, N=5, p <0.01, ¢ test; LP — POR,
3.51 £0.42, N=2, p<0.01, t test; Fig. 7F). The targeting in POR
and PORa to M2" patches distinguished dLGN and LP input
from amygdala inputs, which terminated in M2 interpatches
(Fig. 6C,F). EGFP intensity positively correlated with M2 quan-
tile (LP — POR, p < 0.001, r=0.83, N = mice; dLGN — POR,
p<10""", r=0.91, N=5 mice, Pearson correlation). dLGN and
LP inputs to LM and LI likewise targeted M2 patches and
avoided M2 interpatches (Fig. 7F; patch/interpatch ratios:
dLGN — LM, 2.45*0.59, N=4, p<0.01, ¢ test; LP — LM,
211*0.71, N=3, p<<0.05, t test; dLGN — LI, 2.09 = 0.49,
N=4,p<0.01, ttest; LP — LI, 2.1 = 0.75, N=3, p < 0.05, t test).
In agreement with previous studies (D’Souza et al., 2019), dLGN
inputs to V1 were preferentially targeted to M2" patches,
whereas LP inputs preferred M2~ interpatches (data not shown).
Inputs from V1 — POR, while topographical (Fig. 1B,C), showed

no clear preference for either compartment (patch/interpatch
ratio: 1  0.03, N=4, p=0.88, t test; Fig. 7F).

Cell bodies and apical dendrites of POR — amygdala and
POR — ENTm projecting neurons are aligned with

M2 interpatches

The striking specificity of amygdala — POR axonal projections
for M2~ interpatches suggested that these inputs may target api-
cal dendrites of long-range projecting neurons in L1. Of particu-
lar interest were POR neurons projecting to downstream targets
such as the amygdala and ENTm, which are known for their
roles in affective processing (Phelps and LeDoux, 2005), mem-
ory, and spatial navigation (Buzsaki and Moser, 2013), respec-
tively. To label the complete dendritic arbor of such neurons, we
performed retrograde viral tracing from LA/BLA and ENTm in
Ai9 mice with AAV2retro-CAG-Cre. M2" patches were identi-
fied by immunostaining for M2 and dividing fluorescence inten-
sity into quantiles. The results show that LA/BLA and ENTm
injections retrogradely labeled pyramidal cell dendrites, somata,
and occasionally their local axonal projections in POR (Fig. 8A-
G), PORa, P, ECT, LM, and LI (Fig. 8L]).

Dendrites were readily distinguished from axons by the
greater thickness and positively identified based on the
presence of spines (Vaughan and Peters, 1973; Karimi et al.,
2020). Module preference of apical dendrites in L1 was
quantified by reconstructing branches in three to four ROIs
of the top two sections through POR. An example is shown
in Figure 8D. Most strikingly, we found that apical den-
drites of POR — LA/BLA projecting cells branched prefer-
entially in M2~ interpatches of L1 (Fig. 8E-G). Similar
results were obtained for POR — ENTm projecting neurons
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Figure 6.  Axonal projections of lateral amygdala — POR pathway. 4, Tangential section through L1 of flatmounted POR in Chrm2-tdT mouse showing nonuniform pattern of M2 patches
(magenta) and M2™ interpatches (black). B, Patchy axonal projections to L1 labeled by anterograde tracing with AAV2/1.hSyn.EGFP from the LA. Coronal section of injection site in LA (B, inset).
€, Overlay of A and B shows that LA — POR projection to L1 terminates preferentially in M2~ interpatches. D, Heat map of M2 expression in POR (). E, Partitioning of heat map (D) into six
equal-area quantiles (different shades of gray) for the delineation of M2 patches and M2~ interpatches. F, Normalized average * SEM (V=5 mice) EGFP fluorescence intensity in each of
the six quantiles shows that LA — POR inputs are preferentially associated with M2™ interpatches (R = —0.86, p < 102, Pearson correlation).

(Fig. 8A-D). Comparison of total dendrite lengths in M2 intensity
quantiles showed a strong negative correlation between M2 inten-
sity and labeled dendrites (POR — LA/BLA: R = —0.93, p <10,
N=4 mice; POR — ENTm: R = —0.99, p<10~°, N=4 mice,
Pearson correlation), supporting the finding of spatial clustering in
M2 interpatches (Fig. 8H).

In cases in which complete z-stacks of sections were
available, somas and retrogradely labeled POR — ENTm
(N=2) and POR — LA/BLA (N=2) cells were found in L2~
6 of POR (Fig. 81,]). Similar size injections into ENTm and
LA consistently labeled more cells in POR than in any other
area. LM — ENTm and LI — ENTm neurons were mostly
confined to L2/3. P — ENTm, PORa — ENTm, and POR —
ENTm cells were biased to deep layers with a preference for
the L5/6 border (Fig. 8I). The ratio of total labeled POR —
ENTm L2/3 cells to L5/6 cells within a given case was
1:4.8 £2.5 (N=2, p<0.042, t test). Deep layers were also
the preferred source of cells projecting to LA/BLA (L2/3-to-
L5/6 ratio, 1:2.8 = 0.1 (N=2, p < 10>, ¢ test).

Unlike POR — ENTm cells, POR — LA/BLA neurons were
distributed across the thickness of L5 (Fig. 81,]), suggesting that
the projections originate from distinct cell types.

We quantified the alignment of retrogradely labeled L2/3 neurons
(sections across L4-6 were not available for analysis) with M2"
patches and M2™ interpatches by overlaying M2 expression images
with labeled cells and determining cell counts in each of six M2
quantiles. Cell counts were normalized by dividing the cell count
within each quantile by the total number of labeled cells in that
image. POR — ENTm cells showed a strong preference for aligning
with M2~ interpatches (Fig. 9A-D; R = —0.86, p < 10>, N=4 mice,
132 total cells, Pearson correlation) POR — LA/BLA cells
also showed a significant preference for aligning with M2~

interpatches, though with less specificity than POR — ENTm cells
(Fig. 9E-H; R = —0.63, p<<0.027, N=2 mice, 53 cells, Pearson
correlation).

Input from POR to hippocampus strongly biased to dorsal CA1
We have shown previously that POR provides input to CA1 of
the hippocampal formation (HPF) but have not described the
topographic organization of this pathway (Wang et al., 2012).
Here, we have retraced the connections anterogradely with
AAV2/1.hSyn.EGFP from POR in two mice. The case illustrated
in Figure 10 shows a tangential section through flatmounted cor-
tex. The injection site was assigned to POR by location and
clearly spares PORa (Fig. 10A). To physically flatmount the HPF
(for complete graphical flatmounting, see Swanson and Hahn,
2020), it was separated from the external capsule along the
alveus, flipped backward so that the dorsomedial pole came to lie
at the posterior edge of the section (Fig. 10B, inset). The green-la-
beled axonal projection was densest in the dorsal part of CAl
and gradually lost strength toward the ventral pole (Fig. 10B). A
similar nonuniform distribution of projections was found when
the injection involved POR and PORa, but was confined to the
M2 region (data not shown). This suggests that either the pro-
jections from POR and PORa are similar or that input from
PORa was undetectable. Regardless, the results show that POR
input is strongly biased to the dorsomedial part of the HPF. The
results further show that POR — CA1 input can either be direct,
bypassing ENTm, or indirect, by way of ENTm (Wang et al,
2012). Both of these pathways provide visuospatial information
(Fanselow and Dong, 2010), which through the reciprocal POR-
amygdala network (Figs. 6, 8E-H) receives affective input to
influence spatial navigation.
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Figure 7. Axonal projections of dLGN — POR and LP — POR pathways. A, €, Immunostained M2™ patches in L1 of flatmounted tangential section through POR and PORa. B, dLGN —
POR axonal projections traced anterogradely with AAV2/1.hSyn.EGFP. B, inset, Coronal section of injection site spreading across core and shell of dLGN. White contours indicate borders between
fourth and fifth intensity quantiles (of six) of M2 expression (4). Overlay of contours shows overlapping patterns of M2 patches and dLGN — POR projections (B). D, AAV2/1.hSyn.EGFP-la-
beled LP — POR projections to M2 patches (€) in L1 of POR. D, inset, Coronal section of injection site in LP. E, Laminar distribution of anterogradely labeled LA/BLA — POR, dLGN — POR,
and LP — POR projections. F, Mean == SEM patch: interpatch EGFP intensity ratio of dLGN — POR, LP — POR, dLGN — LM, LP — LM, dLGN — LI, LP — LI, LA/BLA — POR, and V1 —
POR axonal labeling in L1 of the projection target. sp << 0.01; *p < 0.05; ns, not significant (one-sample ¢ test).

Discussion

Postrhinal cortex contains two modularly organized areas

We have found that postrhinal cortex contains two separate
areas, POR and PORa, with distinct visuotopic maps and con-
nection profiles (Gimanut et al., 2018). Both areas have granular
cytoarchitectures, are contained within an M2" region, and have
borders with the surrounding M2~ areas of ECT and TEp. We
found no support for a ventral PORv (Beaudin et al., 2013),
which based on its agranular cytoarchitecture and lack of M2
expression may correspond to rodent ECT or primate parahip-
pocampal cortex TH (Burwell, 2001). The POR/PORa border
was revealed by a transition from the orderly map in POR to the
more dispersed but spatially clustered connectivity in PORa. A

similar map reversal exists between primate parahippocampal
cortices TFO and TF (Ungerleider et al., 2008), suggesting that
the areal organization of the PV- and M2-expressing parahippo-
campal cortex (Saleem et al., 2007) in rodents and primates may
be homologous.

A striking feature of POR, PORa, LM, and LI is the nonuni-
form tangential distribution of M2 patches and M2~ inter-
patches in L1. Patchiness is a known attribute of primate
extrastriate cortex (Kaas, 2012) and has also been shown to exist
in the intrinsic connectivity of TF (Lavenex et al., 2004). The
patchiness in POR, PORa, LM, and LI resembles the pattern we
have seen in mouse V1 (Ji et al.,, 2015). However, unlike the
quasi-isotropic modules in V1, patches in higher visual areas
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Modular distribution of retrogradely labeled apical dendrites of POR — ENTm and POR — amygdala pro-

jecting neurons in L1 of POR. A-C, Tangential section through flatmounted POR showing patchy expression of M2 immu-
nostaining in L1 () and nonuniform branching pattern of spine-covered apical dendrites (false-colored green, denoted
by white arrows) in L1 of POR — ENTm projecting neurons labeled by retrograde tracing with rAAV2-Retro/CAG-Cre in
Ai9 mice (B); overlay of A and B shows that dendritic branches are preferentially located in M2~ interpatches (C). D,
Tracings of retrogradely labeled dendrites (green) in L1 of POR overlaid onto contour plot of M2 expression. Shades of
gray represent six quantiles of fluorescence intensity. E, F, Tangential section through flatmounted POR showing patchy
expression of M2 immunostaining in L1 (E) and nonuniform branching pattem of apical dendrites (false-colored green)
of POR — LA/BLA projecting neurons labeled by retrograde tracing with rAAV2-Retro/CAG-Cre (F). White arrows indicate
dendrites branching in the plane of the pial surface. Red arrow points to a thick vertically ascending dendritic trunk at
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were anisotropic and showed aspect ratios
similar to the overall shape of the area
(Garrett et al., 2014) in which they reside.
Notably, we found a reduced (relative to V1)
magnification factor per patch in LM (12.5%
smaller), POR (37.5% smaller), and LI (50%
smaller), indicating that a module in each of
these areas represents a larger portion of vis-
ual space than in V1. The results show that
the magnification factor decreases as the
receptive field size increases from V1 — LM
— LI — POR (D’Souza et al., 2020; Siegle et
al., 2021), indicating that at the apex the prod-
uct (ie., point image) is represented by the
smallest number of modules and remains
constant. The findings further indicate that
inputs from diverse retinotopic locations con-
verge and that individual patches are process-
ing units that integrate a broader set of
stimulus attributes inherited from intracorti-
cal and subcortical sources (Beltramo and
Scanziani, 2019; Harris et al., 2019; D’Souza
et al., 2020).

POR contains separate module-specific
circuits with dLGN, LP, amygdala, and
ENTm

Our anterograde tracings with BDA have
shown that only the ventral stream areas LM,
LI, P, and POR provide input to the amyg-
dala. No such connections were found from
V1 and the dorsal stream areas AL, RL, A,
AM, and PM. Conceptually similar results
were reported in rat (McDonald and
Mascagni, 1996). Together, the results suggest
that only higher visual areas involved in
encoding of objects and the context in which
they appear have direct connections to the
amygdala, while areas that play a role in visu-
ally guided actions (Jin and Glickfeld, 2020)
do not. From this simplified perspective, it is
easy to overlook that POR is highly intercon-
nected with dorsal and ventral stream areas
(Wang et al, 2012; Gdmanut et al., 2018).
Through these connections, POR combines
task-specific information across streams,

«—

the branchpoint of terminal tuft at the L1/2 border. Because the
section is not perfectly parallel to L1 and cuts into L2 it shows a
retrogradely labeled cell body at the L1/2 border (arrowhead). G,
Overlay of E and F shows that dendritic branches (green) and cell
bodies at the L1/2 border are preferentially aligned with M2~
interpatches. H, Length of dendritic branches of POR — LA/BLA
and POR — ENTm projecting neurons in M2™ patches and M2™
interpatches of L1 of POR. The fraction (mean = SEM) of total
dendritic lengths for both types of neurons shows a strong (POR
— LA/BLA: R = —0.93, p<< 10~ ', N =4 mice; POR — ENTm:
R=-099 p< 10~% N'=4 mice, Pearson correlation) prefer-
ence for M2™ interpatches. /, J, Laminar distribution (mean =+
SEM) of retrogradely labeled cells in POR, PORa, LM, LI, and P pro-
jecting to ENTm (/) and LA/BLA (J), respectively. Same axes in /
and J.
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Figure 9.  Modular distribution of retrogradely labeled cell bodies of POR — LA/BLA and POR — ENTm projecting neurons in L2/3 of POR. A, B, Tangential section through flatmounted
POR showing nonuniform distribution of somata (false-colored green) of POR — ENTm projecting L2/3 neurons labeled by retrograde tracing with rAAV2-Retro/CAG-Cre in Ai 9 mice (A) over-
laid with patchy expression of M2 immunostaining in L1 (B). C, Overlay of A and B shows that cell bodies and basal dendrites are preferentially aligned with M2™ interpatches. D, Normalized
cell counts (mean = SEM) of POR — ENTm in M2 quantiles (shades of gray) of POR. The fraction of total cell bodies shows a strong preference for M2™ interpatches. E-G, Tangential section
through flatmounted POR showing nonuniform distribution of somata (false-colored green) of POR — LA/BLA projecting L2/3 neurons labeled by retrograde tracing with rAAV2-Retro/CAG-Cre
in Ai 9 mice (E) overlaid with patchy expression of M2 immunostaining in L1 (F). G, Overlay of E and F shows that cell bodies are preferentially aligned with M2~ interpatches. H, Normalized
cell counts (mean = SEM) of POR — LA/BLA in M2 quantiles of POR. The fraction of total cell bodies shows a preference for M2~ interpatches.
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Figure 10.  Anterogradely labeled POR inputs to CA1 of hippocampus. 4, Tangential section through
L4 of flatmounted cortex stained with an antibody against M2 (magenta). Green spot indicates injection
site of AAV2/1.hSyn.EGFP in POR. B, Tangential section through flatmounted HPF. For flatmounting, the
hippocampus was separated from the extemnal capsule (ec) along the alveus (alv) and flipped backward
(inset) so that the ventral side faced the pial surface and the dorsal pole (cross hairs) came to lie at the
posterior edge of the section through the flatmounted left cortical hemisphere (inset). POR — (A1
axons (green) are most densely labeled at the dorsal pole and gradually fade away toward the ventral
pole. DG, Dentrate gyrus; slm, stratum lacunosum moleculare; so, stratum oriens; sp, stratum pyrami-
dale; s, stratum radiale; Sub, subiculum; dHPF, dorsal HPF; vHPF, ventral HPF.

associates objects with locations (i.e., context; Furtak et al., 2012),
and, through interactions with the amygdala, assigns affective
credits to neurons that guide behavior (Bucci and Burwell, 2004;
Burgess et al., 2016). Notably, only POR sends significant input
to the BLA nucleus, which projects onward to the CeA (Pitkdnen
et al,, 1995) and is the major driver of behavioral responses from
the amygdala (Tye et al., 2011). Thus, it appears that POR has
more direct control over visually related affective behaviors than
areas LM, LI, and P, whose projections are weak and largely con-
fined to LA.

The patchy pattern of M2 expression we have found in L1 of
areas LM, LI, POR, and PORa reveals that the modular organiza-
tion of V1 (Ji et al., 2015) is preserved across visual areas of the
ventral stream (Wang et al., 2012). Modularity, in the sense used
here, refers to the columnar organization of stimulus-selective
responses and the spatial clustering of projection neurons within
an area (da Costa and Martin, 2010). That such constraints
emerge from the segmentation of the plexiform sheet of L1 has
only been shown in V1, where a patchy pattern of M2 expression
label sites of thalamocortical and intracortical synaptic input to
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Figure 11.  Circuit diagram of the modular thalamo-amygdalo-entorhinal network with POR.
Modules in POR are depicted as M2™ patches (dark red) and M2~ interpatches (light red) in L1,
which indicate clusters or putative columns across the layers below. The M2-defined modularity is
supported by patch- and interpatch-specific inputs and outputs. Inputs from the dLGN shell and the
lateral posterior nucleus (LP or pulvinar) go to M2 patches. Inputs from V1 to POR are equally
dense in M2 patches and M2 interpatches. Inputs from the amygdala (Amy) and, hypothetically,
the ENTm (dotted line) terminate in M2" interpatches. M2~ interpatches also contain the dendrites
and cell bodies (red) of POR neurons projecting to Amy and ENTm. The projection targets of patch
neurons (black) are unknown. POR projections to the HPF are hiased toward the dorsal pole (dHPF)
and are undetectable in the ventral part (vHPF). It is unknown whether POR — HPF neurons are
preferentially associated M2 patches or M2 interpatches or reside in both modules.

apical dendrites of pyramidal neurons (Ji et al., 2015; D’Souza et
al., 2019). We have found that similar patchy patterns in L1
organize the modularity of amygdalocortical and thalamocortical
inputs to POR, PORa, LM, and LI. The results show that of all
layers the LA innervates L1 most strongly and preferentially tar-
gets M2 interpatches. Thalamic inputs from dLGN and LP to
POR, PORa, LM, and LI not only differ from amygdalocortical
afferents in their laminar distribution, but also in their preferen-
tial targeting of M2 ™" patches in L1. The distinctive connectivity
patterns suggest that amygdalocortical and thalamocortical
inputs to L1 target apical dendrites of separate populations of
POR and PORa neurons, whose cell bodies are located in the
layers below. Spatial clustering of pyramidal cell dendritic tufts
in L1 are known features of rat V1 and retrosplenial cortex
(Ichinohe and Rockland, 2002; Ichinohe et al., 2003). Here, we
demonstrate directly that the apical dendrites of POR — amyg-
dala projecting neurons preferentially terminate in M2 inter-
patches. Thus, it is tempting to speculate that pyramidal cells in
POR with dendrites in M2~ interpatches may be modulated by
affective information from the amygdala (Bucci et al, 2000;
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Burgess et al., 2016), which is driven directly by visual input
from LP (Wei et al., 2015). In contrast, responses of POR neu-
rons with dendrites in M2 ™" patches may be influenced prefer-
entially by direct locomotion-modulated inputs from the
dLGN shell and LP (Marshel et al., 2012; Roth et al., 2016;
Beltramo and Scanziani, 2019; Bennett et al., 2019) rather
than by inputs ascending through the hierarchical cortical
network originating in V1 (Beltramo and Scanziani, 2019;
D’Souza et al., 2020).

The overlap between dendrites of POR output neurons with
inputs from the amygdala suggests that the amygdala and POR
are interconnected through a reciprocal loop, as has been shown
directly by Burgess et al. (2016). It seems likely that these
reward-modulated responses are mediated by synaptic contacts
in L1. Tagging sensory stimuli with affective significance
imported from the amygdala is not the only influence on the
multimodal response profile of POR neurons, which are also
sensitive to the spatial context in which objects appear
(Furtak et al., 2012). This information may derive from dor-
sal stream inputs (Wang et al., 2012; Gadmaénut et al., 2018)
and is sent to multiple downstream targets (Agster et al,,
2016), including the ENTm, with which we have found POR
to be reciprocally connected. Similar to POR — amygdala
projecting cells, the apical dendrites of POR — ENTm neu-
rons terminate preferentially in M2~ interpatches. These
dendrites may belong to POR — LA/BLA and POR — ENTm
cells or belong to the same neurons with branching projec-
tions to both the amygdala and ENTm. Regardless, the
results suggests that some POR neurons with dendrites in
M2" interpatches send affect-modulated outputs to ENTm,
where they may enhance the emotional salience of landmark in-
formation and unexpected objects in the external world (Knierim et
al,, 2014), and guide defensive responses to visual threats (Bucci and
Burwell, 2004; Wei et al., 2015). In addition to this indirect pathway,
POR also provides direct input to the dorsal HPF, suggesting that it
serves visuospatial processing for environmental exploration
(Fanselow and Dong, 2010). Although the modular origin of POR
— HPF neurons remains unknown, the sparse innervation of inter-
mediate and ventral HPF suggests that the input may carry little
affective information (Fanselow and Dong, 2010).

In contrast to amygdala — POR projections, we found that
dLGN — POR and LP — POR inputs overlap with M2 patches
of L1. Retrograde labeling from POR confirmed that dLGN inputs
originate from shell neurons, which are known to receive afferents
from the retina and the SC (Dhande and Huberman, 2014; Morin
and Studholme, 2014; Bickford et al., 2015; Martersteck et al., 2017)
and, like the SC — LP — POR pathway, convey visual motion in-
formation to its target (Cruz-Martin et al, 2014; Beltramo and
Scanziani, 2019; Bennett et al., 2019). Inputs from matrix-type tha-
lamic neurons to dendrites in L1 have been shown to elicit spiking
in pyramidal cells of rat barrel cortex (Cruikshank et al., 2010) and
may possess similar synaptic strength in POR. Both pathways carry
locomotion signals, in which running speed is either synchronized
or desynchronized with optic flow motion (Roth et al, 2016).
Synchronous convergent thalamocortical inputs, heavily biased
from LP, to M2" patches in POR may mostly signal moving objects
at speeds different from the motion of the animals. These direct tha-
lamic inputs to apical dendrites in M2 patches of POR may
increase the sensitivity of POR neurons (Takahashi et al., 2016) to
nonthreatening moving stimuli independent of the hierarchical
cortical circuitry (Beltramo and Scanziani, 2019). Future studies are
necessary to determine to which circuit M2" patch-aligned POR
cells belong (Fig. 11).
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