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Dissociating Perceptual Awareness and Postperceptual
Processing: The P300 Is Not a Reliable Marker of
Somatosensory Target Detection

Pia Schroder, “Till Nierhaus, and Felix Blankenburg

Neurocomputation and Neuroimaging Unit, Freie Universitét Berlin, 14195 Berlin, Germany

A central challenge in the study of conscious perception lies in dissociating the neural correlates of perceptual awareness
from those reflecting its precursors and consequences. No-report paradigms have been instrumental in this endeavor, demon-
strating that the event-related potential P300, recorded from the human scalp, reflects reports rather than awareness.
However, these paradigms cannot probe the degree to which stimuli are consciously processed from trial to trial and, thus,
leave open the possibility that the P300 is a genuine correlate of conscious access enabling reports. Here, instead of removing
report requirements, we took the opposite approach and equated postperceptual task demands across conscious and uncon-
scious trials by orthogonalizing target detection and overt reports in a somatosensory detection task. We used Bayesian
model selection to track the transformation from physical to perceptual processing stages in the EEG data of 24 male and
female participants and show that the early P50 component scaled with physical stimulus intensity, whereas the N140 compo-
nent was the first correlate of target detection. The late P300 component was elicited for both perceived and unperceived
stimuli and was not substantially modulated by target detection. This was in stark contrast to a control experiment using a
classical direct report task, which replicated the P50 and N140 effects but additionally showed a strong effect of target detec-
tion in the P300 time range. Our results demonstrate the task dependence of the P300 in the somatosensory modality and
show that late cortical potentials dissociate from perceptual awareness even when stimuli are always reported.
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The time it takes for sensory information to enter our conscious experience can be an indicator of the neural processing stages
that lead to perceptual awareness. However, because many cognitive processes routinely correlate with perception, isolating
those signals that uniquely reflect perceptual awareness is not a trivial task. Here, we show that late electroencephalography
signals cease to correlate with somatosensory awareness when common task confounds are controlled. Importantly, by bal-
ancing report requirements instead of abolishing them, we show that the lack of late effects cannot be explained by a lack of
conscious access. Instead, we propose that conscious access occurs earlier, at ~150 ms, supporting the view that early activity
in sensory cortices is a neural correlate of conscious perception. j

Introduction enhanced amplitudes for consciously perceived stimuli (Schubert
Whether the neural processes giving rise to conscious perception ¢t al., 2006; ﬁukszﬁulewmz etal, 201ﬂZ ), w};lergas lv ey eeirly com-
originate in sensory cortices or higher-order regions is a long- ponents, such as the P30, seem to re ect physical stimulus prop-
standing debate. In the somatosensory modality, the event- erties (Forschack et al., 2020). These findings are consistent with
related potentials (ERPs) N140 over contralateral somatosensory studies in the visual and Zudltor}.’ r.n'odahtles that have similarly
clectrodes and P300 over centroparietal electrodes show reported awareness-related negativities at ~200 ms over modal-
ity-specific electrodes and late positivities at ~350 ms over cen-

troparietal electrodes (Sergent et al., 2005; Eklund et al., 2019).
Despite this agreement, recent years have seen a rigorous
debate centering on the question of whether these potentials truly
reflect awareness or are instead associated with precursors or con-
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sequences of conscious perception (Melloni et al., 2011; Aru et al.,
2012; Pitts et al., 2014; Rutiku et al., 2015; Naccache et al., 2016;
Cohen et al., 2020; for a recent review, see Forster et al., 2020).
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While early negativities have been suspected to reflect attentional
processes rather than awareness (Pitts et al., 2014), the P300 has
been found to be sensitive to expectations (Melloni et al., 2011),
attention (Koivisto et al., 2006), and the timing of reports (Ye and
Lyu, 2019). In a series of studies, Pitts and colleagues have demon-
strated that the visual P300, in particular its later subcomponent
P3b, ceases to index awareness when stimuli are conscious but not
reported, that is, when they have no behavioral relevance to the
task (Pitts et al., 2014; Cohen et al., 2020; Schlossmacher et al.,
2020). These findings suggest that the P300 reflects postperceptual
processing rather than perceptual awareness per se. However, two
questions are still outstanding: First, because no-report paradigms
do not directly inquire participants’ subjective experience, it
remains unclear to what extent the presented stimuli are con-
sciously processed and whether the neural processes that other-
wise allow sensory information to become accessible for conscious
report can accurately be captured. In this context, it has been
criticized that failure to detect a P300 for conscious but task-irrele-
vant stimuli may be due to increased temporal variability of the
elicited components (Boncompte and Cosmelli, 2018), a lack of
conscious access, or even a failure to correctly identify conscious
stimuli (Mashour et al., 2020). Indeed, studies using more active
manipulations of reports have been inconclusive regarding the
task dependence of the P300, showing a dependence on reports in
vision (Koivisto et al., 2016) but not in audition (Eklund et al.,
2019; but see Schlossmacher et al., 2021). This leads to the second
question: do findings from visual studies generalize across sensory
modalities? So far, studies testing the task dependence of the P300
are scarce in the auditory and completely lacking in the somato-
sensory modality, prohibiting final conclusions regarding the
general relevance of early and late ERP markers of perceptual
awareness.

The goal of our study was to address these questions and
scrutinize the task dependence of early and late ERP correlates of
perceptual awareness in the somatosensory modality. To control
for task demands while guaranteeing conscious access, we used a
somatosensory-visual matching task that orthogonalized target
detection and perceptual reports, leading to equated behavioral
relevance, working memory, and attentional capture of detected
and undetected stimuli. To track the transformation from physi-
cal to perceptual processing stages, we constructed simple behav-
ioral models capturing various task dimensions and evaluated
them using time-resolved Bayesian model selection (Stephan et
al,, 2009). Based on a previous fMRI study (Schréder et al., 2019)
and insights from the visual modality, we hypothesized that (1)
very early potentials (P50) reflect physical stimulus properties,
(2) the somatosensory N140 correlates with target detection in-
dependent of task requirements, and (3) the P300 reflects post-
perceptual processes and only differentiates between hits and
misses when reports correlate with detection but not when report
requirements are controlled for.

Materials and Methods

Participants

Participants were recruited from the student body of the Freie
Universitit Berlin and from the general public. All participants reported
to be healthy with no history of neurologic or psychiatric disorders, were
right-handed, and had normal or corrected-to-normal vision. Twenty-
eight participants completed the main experiment (matching task). Data
of 3 participants were excluded because they did not show stable psycho-
metric functions (see Behavior and Fig. 2), and data of another partici-
pant were excluded because of strong motion-related artifacts in the
EEG recordings leading to the exclusion of >50% of trials. Thus, data of
24 participants entered the analyses (19 females, 5 males, age range: 19-
37 years). Another 23 participants completed a control experiment using
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a classical detection task (direct report task). From this dataset, data of 1
participant were excluded because of unstable psychometric functions,
leaving data of 22 participants that entered the analyses (12 females, 10
males, age range: 21-42 years). All participants gave written informed
consent before the experiment and received a monetary reimbursement
or course credits for their participation. The study was approved by the
local ethics committee at the Freie Universitit Berlin and complied with
the Human Subjects Guidelines of the Declaration of Helsinki.

Experimental design

Matching task. In the main experiment, participants performed a
two-alternative forced choice somatosensory detection task on electrical
median-nerve stimuli while their EEG was recorded (Fig. 1A). Each trial
was preceded by a variable intertrial interval, during which participants
had to fixate on a central gray fixation disk. Following the intertrial
interval, an electrical target stimulus was delivered at 1 of 10 intensity
levels. The intensity levels were individually calibrated to sample the full
dynamic range of each participant’s psychometric function from 0% to
100% detectability (see Stimuli and apparatus). Accordingly, physical
stimulus properties, detection probability, and perceptual uncertainty
associated with target detection varied from trial to trial. Presentation of
the electrical target pulse was accompanied by a simultaneous change in
the fixation disk’s brightness to either white or dark gray. This change in
brightness served as a visual matching cue, which signaled target pres-
ence (white) or absence (dark gray). Participants were instructed to com-
pare their somatosensory percept (electrical pulse detected or not
detected) to the visual matching cue (signaling target presence or ab-
sence) and decide whether the two modalities produced a match (e.g.,
electrical pulse detected and white matching cue presented) or a mis-
match (e.g., electrical pulse detected and dark gray matching cue pre-
sented; Fig. 14, left box). Electrical pulses were presented on every trial
and only their intensity levels varied, rendering them subliminal or
supraliminal. Target detection for the highest and lowest intensity levels
was expected to be relatively stable (~0% detection probability at inten-
sity level 1 and ~100% detection probability at intensity level 10),
whereas detection at intermediate intensity levels was expected to fluctu-
ate from trial to trial. In contrast, the two brightness levels of the match-
ing cue were clearly discernible. This ensured that electrical target
detection could be directly inferred from the combination of the match-
ing cues presented on each trial and the participant’s match or mismatch
reports. After a brief delay, in which the fixation disk returned to its orig-
inal brightness, two color-coded response cues were presented to the left
and right of the fixation disk. Participants reported their match/mis-
match decisions by making a saccade to the corresponding response cue
(the color codes were counterbalanced across participants). Their gaze
was evaluated online, and a response was registered as soon as the gaze
remained within the response area for 0.2 s, which was signaled to the
participant by a brief increase in the selected response cue’s size. The
next intertrial interval began as soon as a response was logged or once
the allotted response time had elapsed. In this case, the fixation disk
briefly turned red, signaling a missed trial. The presented matching cues
and the specific sides on which the color-coded response cues were pre-
sented were counterbalanced across intensity levels, and trials were pre-
sented in random order. All participants completed 6 blocks of 200 trials
(~10min per block), resulting in 1200 trials per participant. The num-
ber of trials per intensity level followed a normal distribution, such that
the number of trials at intensity levels near the 50% detection threshold
was maximized (with 192 trials each for the threshold intensity levels 5
and 6 and 48 trials each for the lowest and highest intensity levels 1 and
10). Before the main experiment, participants completed a 30 min train-
ing, in which they were required to achieve at least 90% accuracy on a
run with superthreshold stimuli to ensure full understanding of the task
and a low error rate in the main experiment.

Direct report task. To assess the influence of task requirements on
early and late ERP correlates of somatosensory target detection, we ran a
control experiment, in which participants performed a direct report task,
comparable to classical detection tasks. The stimulation protocol, visual
displays, and all other experimental parameters were identical to the
main experiment, and only the task instructions differed to produce hit/
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Figure 1.  Experimental design. A, Trial design. Following a variable intertrial interval, participants received an electrical target pulse at 1 of 10 intensity levels, which they either detected or
missed. At the same time, the fixation disk changed its brightness to serve as the visual matching cue, which signaled target presence (white) or target absence (dark gray). In the matching
task, participants compared their somatosensory percept to the matching cue and decided whether the two modalities matched or not (left box). In the direct report task, participants ignored
the identity of the matching cue and merely decided whether they had detected a target pulse or not (right box). After a brief delay, they reported their decision by making a saccade to one
of two peripherally presented, color-coded response cues. The selected cue briefly increased in size, signaling that the response was logged, and the next trial began. B, Experimental regressors.
EEG responses were modeled with seven different GLMs that were compared using BMS. Each experimental GLM contained an intercept regressor and one of six experimental regressors model-
ing stimulus intensity, detection probability, target detection (hit vs miss), expected uncertainty, matching reports (match vs mismatch), and matching cues (white vs dark gray). An additional
null model contained the intercept regressor only. Small black circles represent individual trials of 1 participant. Please note that although the detection probability regressor is computed from
the detection regressor, the two models differ in their behavior within intensity levels: for example, looking at the predictions for trials at intensity level 5, the detection probability model pre-

dicts the same activation level for all targets of that intensity level, regardless of whether they were detected or missed, whereas the detection model predicts categorically higher activity for
detected than missed trials. Thus, the detection model assumes a nonlinear, all-or-none response for detected stimuli, whereas the detection probability model assumes a graded response.

Further note the intensity-biased distribution of trials in the detection regressor, which leads to correlations between models and prohibits classical GLM analysis.

miss reports instead of match/mismatch reports. Participants were simi-
larly presented with electrical target stimuli and concurrent matching
cues, but they were informed that the fixation disk’s change in brightness
merely indicated the timing of a potential target stimulus, with no rele-
vance of the direction of change. Thus, instead of reporting match/mis-
match decisions, they directly reported whether they had perceived the
target stimulus or not by saccading to the corresponding color-coded
response cue (Fig. 14, right box).

Task comparison. Because of the different report requirements, the
two tasks offered different levels of experimental control. In both experi-
ments, the selected intensities ensured an overall detection rate of
~50%, such that detected stimuli were not expected to produce oddball
effects. Likewise, because of the randomization, participants could not
predict which response cue would be presented on which side, so that
they could not prepare a motor response early in the trial in either
experiment. However, in the direct report task, target detection directly
correlated with overt reports, behavioral relevance, working memory,
and attentional capture. In contrast, in the matching task, the use of
counterbalanced matching cues resulted in a decorrelation of target
detection and overt reports. Importantly, since detected and undetected
targets could result in the same overt report, their behavioral relevance
and ensuing working memory were equated. Finally, the multimodal na-
ture of the task required participants to split their attentional resources
between somatosensory and visual inputs and quickly combine the
extracted information into corresponding reports. As a result, signal dif-
ferences related to poststimulus attentional capture were expected to be
minimized. Thus, the contribution of postperceptual processing to the

hit versus miss contrast was expected to be considerably attenuated in
the matching task compared with the direct report task.

Stimuli and apparatus. Target pulses were generated as analog volt-
age signals using a waveform generator (DT-9812, Data Translation),
converted to direct current monophasic square wave pulses of 200 ps du-
ration by a constant current stimulator (DS5, Digitimer), and delivered
via adhesive electrodes (GVB-geliMED) attached to the left wrist to stim-
ulate the median nerve. Stimuli were delivered at 10 individually cali-
brated intensities that were determined from participants’ psychometric
functions. The psychometric functions were estimated before the experiments
using the threshold estimation procedure described by Schroder et al. (2019),
which accommodates between-subject variation in detection thresholds and
criteria (estimated 1%, 50%, and 99% detection thresholds: matching task:
T01=1.88 %+ 0.79mA, T50=253 * 0.75mA, T99=3.18 £ 0.91 mA; direct
report task: T01=2.38 %+ 0.78mA, T50=2.88 £ 0.82mA, T99=3.38=*
091mA [mean * SDJ]). Stimulus presentation was implemented in
MATLAB (The MathWorks, RRID:SCR _001622) using the Psychophysics
toolbox (Brainard, 1997) (RRID:SCR_002881). For response collection, par-
ticipants’ gaze was measured using an SMI RED-m remote eye tracker
(120 Hz, Sensomotoric Instruments) and SMI’s iView X SDK.

EEG recording and preprocessing. EEG data were recorded from 64
electrodes placed according to the extended 10-20 system (ActiveTwo,
BioSemi). Four additional electrodes recorded vertical (vEOG) and hori-
zontal (hEOG) eye movements. Preprocessing steps included high-pass
filtering at 0.01 Hz (data of 1 participant in the control experiment were
high-pass filtered at 0.5Hz to remove excessive sweat artifacts), down-
sampling from 2048 Hz to 512 Hz, and rereferencing to the common
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average. Eye blinks were removed from the data using adaptive spatial
filtering based on individual blink templates computed from the vVEOG
(Tlle et al., 2002). The continuous data were cut into epochs from —50 to
600 ms relative to stimulus onset. All epochs were visually inspected for
artifacts, and artifactual trials were removed (on average, 5.20% in the
main experiment and 6.48% in the control experiment). The artifact-
free, epoched data were then low-pass filtered at 40 Hz and baseline cor-
rected using a baseline from —50 to —5ms. All preprocessing and data
analyses were performed using SPM12 (www.filion.uclac.uk/spm;
RRID:SCR_007037) and custom MATLAB scripts. EEGLAB’s topoplot
function was used to plot topographies (Delorme and Makeig, 2004)
(RRID:SCR_007292).

Statistical analysis

Behavior. Logistic functions were fitted to the behavioral data of each
experimental block to obtain continuous models of the underlying psy-
chometric functions (Wichmann and Hill, 2001). For each participant,
the estimated slope and threshold parameters were then averaged across
blocks to obtain one psychometric function per participant. Estimated
detection probabilities <10% for intensity level 1 and >90% for inten-
sity level 10 were defined as inclusion criteria. The rationale behind these
criteria was that minimum and maximum detection probabilities outside
these margins would indicate an incomplete sampling of the individual
psychometric function (possibly because of changes in detection thresh-
olds, response criteria, or erroneous reports). In the main experiment
(matching task), data of 3 participants and in the control experiment
(direct report task), data of 1 participant were excluded based on these
criteria (see Fig. 2). Differences in mean psychometric functions between
tasks, which could be indicative of altered stimulus processing, were
tested by running a Bayesian equivalent of the two-sample t test on the
estimated 50% threshold and slope parameters. Differences in reaction
times between hits and misses were tested using a Bayesian equivalent of
the paired-sample f test (Krekelberg, 2019). For all ¢ tests, Bayes factors
in favor of a difference are reported (BF10). To test whether the match-
ing task successfully dissociated target detection from overt reports,
Bayesian tests of association (Johnson and Albert, 1999) were performed
on these variables for each participant in the matching task and Bayes
factors for independence are reported (BFOI, i.e., Bayes factors in favor
of the null hypothesis). Following the recommendations by Kass and
Raftery (1995), we consider 1 < BF < 3 negligible, 3 < BF < 20 positive,
20 <BF < 150 strong, and 150 < BF very strong evidence. All descriptive
statistics are reported as mean * SD, except where otherwise noted.

EEG. Neuronal processing of the somatosensory stimulus was
expected to undergo a transformation from physical to perceptual stages
and on to the final reports. To track this transformation in the EEG sig-
nals and identify the latency at which awareness-related potentials occur,
we constructed five GLMs. Each contained an intercept regressor and a
trialwise experimental regressor capturing a variable of interest (Fig. 1B):
(1) intensity: the stimulus intensity level presented on each trial as a
model of physical stimulus properties (linear regressor); (2) P(detec-
tion): the individual psychometric functions modeling trialwise detec-
tion probability (sigmoidal regressor); (3) detection: categorical target
detection which was inferred from match/mismatch reports and match-
ing cues in the main experiment and explicitly reported in the control
experiment, modeling a nonlinear response expected to index awareness
(binary regressor); (4) uncertainty: the slope of individual psychometric
functions modeling the expected uncertainty associated with target
detection (inverse U-shaped regressor); and (5) match: matches and mis-
matches between target detection and visual matching cues, which were
explicitly reported in the main experiment and inferred from hit/miss
reports and matching cues in the control experiment (binary regressor).
Although participants did not engage with the matching cue in the direct
report task and did not form match/mismatch reports, we still included
the match model (as defined by the alignment of participants’™ hit/miss
reports with the matching cues presented on every trial) in the analysis
of both experiments to ensure that any differences in results would be at-
tributable to differences in the data and not to differences in the model
spaces. In addition to the five models of interest, we included two further
GLMs as control models to validate the approach: (6) cue: a visual
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Figure 2.  Psychometric functions in the matching task (4) and the direct report task (B).
Black lines indicate the individual block-averaged psychometric functions of participants
included in the final samples (matching task: n = 24; direct report task: n = 22). The psycho-
metric curves are plotted as a function of intensity level, not intensity in mA, to normalize
across participants. Red dashed lines indicate participants whose detection probabilities at mini-
mum and maximum intensity levels fell outside the required margin of <<10% and >90%
(white background) and were thus excluded from the analyses. The red dotted line indicates 1
participant in the matching task that was excluded because of poor EEG data quality.

control model that was defined by the white or dark gray matching cues
to demonstrate specificity of the results to electrodes over somatosensory
and visual cortices, respectively (binary regressor); and (7) null: a control
model that contained only the intercept regressor to ensure that model
selection would correctly dismiss experimental models when no effects
were expected (i.e., no effects in the baseline period).

Each of these models captures a unique aspect of the processing
stages expected to occur during the tasks, but not all of them are inde-
pendent. Specifically, because target detection becomes more likely with
increasing stimulus intensity, the intensity, detection probability, and
detection models are positively correlated. This collinearity complicates
classical GLM analysis since corresponding variance in the data cannot
be uniquely assigned to any one of the regressors (e.g., the contrast
between hits and misses would always be confounded by differences
in stimulus intensity). Therefore, we used an alternative approach,
Bayesian model selection (BMS) (Stephan et al., 2009), which can capi-
talize on variance that is explained by each of the models beyond their
shared variance. Importantly, the intensity, detection probability, and
detection models each make unique predictions: while the intensity and
detection probability models both assume a gradual increase of activity
with increasing intensity, the intensity model does so in a linear fashion
whereas the detection probability model predicts a sigmoidal response
profile, with slow changes at low and high intensity levels and a sharp
increase near the threshold intensities. Within one intensity level, the
detection probability model predicts the same level of activation for all
trials of that intensity level, regardless of whether they were detected or
not, whereas the detection model predicts categorically higher activity
for detected than undetected stimuli, despite being presented at the same in-
tensity level. Accordingly, the detection model assumes an all-or-none
response for detected stimuli that is not captured by any of the other models.

To implement the BMS approach, the data from both experiments
were analyzed using the same analysis pipeline: the seven GLMs were fit-
ted to participant’s trialwise EEG data using the Bayesian estimation
scheme as implemented in SPM’s spm_vb_glmar.m function. This func-
tion approximates the posterior distributions of regression coefficients
using variational Bayes (Penny et al., 2003) and provides free energy
approximations to the log model evidence (LME), which can be used for
model comparison (Penny et al., 2007). To obtain time-resolved esti-
mates of LMEs for each model, electrode, and participant, we fit our
GLMs to each time point of each electrode individually (with the autore-
gressive model order set to zero, effectively reducing the error term to in-
dependent and identically distributed Gaussian errors and Gaussian
priors for the regression coefficients with mean w0=0 and variance
a ' =0.005). All EEG data were z-scored across trials before model fit-
ting to obtain data of comparable signal amplitudes.
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To identify which model best explained the EEG data at every time
point, the estimated LMEs were then used to perform time-resolved
BMS (Stephan et al, 2009). BMS computes exceedance probabilities
(EPs) for all models, quantifying the probability that a particular model
explains the data better than any of the other models. In addition to ena-
bling model comparison of non-nested models, this approach allows for
comparison of models that share variance to different degrees. If models
are correlated, their shared variance reduces the relative difference
between their LMEs. Accordingly, if correlated and uncorrelated models
were included in the comparison individually, the correlated models
would be at a disadvantage because they would have to compete against
very similar models. At the same time, by assigning equal prior probabil-
ity to correlated and uncorrelated models, identical portions of variance
would be assigned too much prior weight, again resulting in an unfair
comparison. BMS offers a simple solution to this problem by presenting
the possibility to combine similar models into model families and adjust-
ing the models” prior probabilities accordingly (Penny et al., 2010). The
combined models are then assessed on the family level, facilitating fair
comparisons. In our case, we combined the intensity, detection probabil-
ity, and detection models into a model family (which we termed +family
because of their positive correlations) and performed BMS on the family
level, comparing the +family with the uncertainty, match, cue, and null
models. For time points that were best explained by the +family, we fur-
ther determined which of the individual +family models best explained
the data by running the model comparison on the +family models only
and weighting the resulting EPs by the +family EP.

To identify time points of interest, we imposed two criteria: (1)
the winning model family had to score an EP > 99% demonstrating
a very high probability that the respective model family explained
the data better than any of the other model families; and (2) across
participants, the B estimates of the winning models’ experimental
regressors had to systematically deviate from zero. Since BMS does
not take the directionality of effects across participants into
account (LMEs can be high regardless of whether an effect is posi-
tive or negative), we added this criterion to ensure that only signals
that systematically varied with any of our experimental regressors
would be identified. To test this, we extracted B estimates of the
winning models’ experimental regressors and tested these for sys-
tematic deviation from zero using a Bayesian equivalent of the
one-sample t test (Krekelberg, 2019). Thus, time points of interest
were defined as those exceeding both the EP threshold and a 3 evi-
dence threshold of BF10 > 3. The null model was exempt of this
rule as it did not have an experimental regressor and thus was only
required to exceed the EP threshold. When using BMS, it is usually
not required to explicitly correct for multiple comparisons, since
estimating posterior probabilities does not constitute a statistical
test with a binary outcome that would result in false positives
(Friston and Penny, 2003). However, when threshold criteria are
applied to identify data segments of interest as done here, false
positives become a possibility. In this context, it has been noted
that thresholding posterior probabilities and labeling the thresh-
old-crossing data segments as “active” is analogous to controlling
the false discovery rate in classical inference (Friston and Penny,
2003; Marchini and Presanis, 2004). In our case, by thresholding
EPs at 99%, we ensure that, among the data segments surpassing
that threshold, at most 1% may be false positives. Moreover, by
using the additional criterion of systematic 8 estimates, unsyste-
matic variation across participants is further prevented from
resulting in false positives, such that the true false discovery rate is
expected to be even lower.

To visualize the influence of the different task requirements on ERPs
elicited by detected and undetected stimuli independent of differences in
physical stimulus properties, we extracted subsamples of hit and miss tri-
als that were matched for stimulus intensity. For each participant, we
identified all intensity levels that resulted in both hits and misses and
randomly sampled trials such that the number of hits and misses was
identical within each intensity level (see Fig. 4A4). The subsampled trials
were then pooled across intensity levels (main experiment:
225.96 *+ 43.32 trials per condition; control experiment: 211.23 & 47.35
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trials per condition [mean * SD]) and grand-averaged hit and miss
ERPs were plotted for electrodes of interest.

Code and data accessibility

MATLAB scripts, including all analysis code, are publicly available on
Github at: https://github.com/PiaSchroeder/SomatosensoryTargetDetection_
EEG. Preprocessed EEG data and log files holding all relevant trial informa-
tion can be downloaded from: https://doi.org/10.6084/m9.figshare.13160381.

Results

Behavior

Participants detected 53.77 == 9.49% of targets in the matching
task and 55.84 = 8.99% in the direct report task. Target detection
was most variable on trials with intermediate stimulus intensity
levels resulting in characteristic sigmoidal psychometric curves
(Fig. 2). The two tasks resulted in similar psychometric curves, as
indicated by a lack of evidence for differences in their character-
istics (50% thresholds: matching task T50=2.52% 0.79mA,
direct report task T50=2.82* 0.80mA, BF10=0.58; slopes:
matching task slope=7.53 *4.92, direct report task slope=
8.82 = 3.82, BF10=0.43). Reaction times were slightly shorter
for hits than misses (matching task: hits: 308.97 * 32.25ms,
misses: 314.05 * 36.52 ms, BF10=9.27; direct report task: hits:
313.62 = 34.17 ms, misses: 333.89 = 42.28 ms, BF10=568.68).
The matching task successfully dissociated target detection from
overt reports as suggested by Bayesian tests of association
(BF01 > 5 for all participants).

EEG

Task dependence of early and late somatosensory ERPs

To test our hypotheses regarding the task dependence of the P50,
N140, and P300, we inspected the BMS results in three electrodes
of interest: CP4, C6, and CPz. These electrodes were selected
based on previous research (Del Cul et al., 2007; Auksztulewicz
et al.,, 2012; Pitts et al., 2014; Cohen et al., 2020), and we con-
firmed that they captured the components of interest by inspect-
ing grand-averaged topographies of all hit trials across both
experiments at relevant time points (P50: 50 ms, N140: 140 ms,
P300: 350 ms; Fig. 3). The grand-averaged EEG signals plotted
for each intensity level showed the largest deflections for stimuli
of high intensity levels and the smallest deflections for stimuli of
low intensity levels, suggesting correlation with the +family.
This observation was confirmed by BMS: in the matching task,
the P50 in contralateral electrode CP4 was best explained by the
intensity model, indicating processing of physical stimulus prop-
erties at this latency (Fig. 3A; Table 1). The P50 was followed by
a centroparietal P100, which was similarly modulated by stimu-
lus intensity but showed a transition to reflect detection probabil-
ity at ~120 ms. The N140 in electrode C6 was the first to show
an effect of target detection at ~150 ms, but this effect was pre-
ceded by an effect of physical stimulus intensity, suggesting a
transition from physical to perceptual processing stages at this la-
tency. From ~250 ms onwards, the P300 in electrode CPz was
best explained by the detection probability model (please note
that this model assumes no differences between detected and
undetected stimuli of the same intensity) and showed little evi-
dence for a late effect of target detection (maximum EP reached
by the detection model in this component compared against the
intensity and detection probability models: EPy. = 16.54%, com-
pare Table 1). To get an impression of the spatial extent of this
effect, we inspected effect topographies across the scalp for rele-
vant time points and found that the centroparietal electrode clus-
ter constituting the P300 did not show a homogeneous response
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ERPs and BMS results for three electrodes of interest (P4, (6, CPz, marked in grand-averaged Hit topographies on the right) in the matching task (A) and in the direct report task

(B). For each electrode: Top, Stimulus-locked, grand-averaged ERPs (mean == SE) for each intensity level (1-10). Below the ERPs, BMS results are plotted for time points of interest
(EP>=99% and BF10,, >>=3) as color bands representing the winning model families. For time points best modeled by the -+family (intensity, P(detection), detection), the color repre-
sents an RGB value that is composed of the EPs of the three +family models (compare the RGB triangle: corners correspond to EP = 100%, signifying a clear winner of the model comparison
within the +family, whereas intermixed colors represent similar EPs for the respective models). Corresponding peak +family model EPs are presented in Table 1. Middle, Unthresholded EP
time courses for each model. Bottom, Time courses of group-averaged 3 estimates of each model’s experimental regressor (warm colors represent positive /3 estimates; cold colors represent
negative 3 estimates). White rectangles represent data segments that exceed the respective thresholds. The results suggest that the P50 was modulated by stimulus intensity in both tasks.
The N140 showed a transition from stimulus intensity to target detection in the matching task and a pure effect of target detection in the direct report task. The P300 was strongly task-de-
pendent, showing an effect of detection probability in the matching task and a transition from stimulus intensity to target detection in the direct report task.

Table 1. Peak EPs of +family models as displayed in Figure 3°
Matching task

Direct report task

P(detection) Detection

126 (41)

Intensity P(detection) Detection

P50 100.00 (43) 0.00 —
P100 99.92 (102) 96.95 (135) 17.53 (119) 100.00 (66) 50.91 (76) 30.75 (111)
N140 99.97 (123) 34.12 (152) 71.96 (156) 34.61 (133) 78.73 (111) 99.87 (145)
P300 85.64 (482) 99.99 (393) 16.54 (262) 98.74 (307) 57.48 (453) 99.96 (578)
“The maximum model EPs within time points best explained by the +family in components of interest are
presented for the matching task and the direct report task: P50 (40-60 ms, CP4), P100 (60-140 ms, CPz),
N140 (100-160 ms, €6), and P300 (200-600 ms, CPz). Peak EPs are displayed along with the latency at which
they occurred [% (ms)]. Where a maximum EP occurred repeatedly within a component, the earliest corre-
sponding latency is noted.

Intensity

100.00 (56)

0.00 —  0.00 —

across electrodes. Instead, it was dominated by the intensity
model in contralateral electrodes and the detection probability
model in midline and ipsilateral electrodes (see Fig. 5A).

The control experiment using a direct report task showed
similar effects in the early components but marked differences in
the late components (Fig. 3B; Table 1). As in the matching task,
the P50 and P100 were modulated by stimulus intensity and the
N140 showed an effect of target detection. Interestingly, in
the direct report task, the detection effect in the N140 dominated
the entire component, without a preceding effect of stimulus in-
tensity. However, the most striking difference was seen in the

P300 component. While the early phase of the P300, starting at
~200ms, was best explained by the intensity model, its later
phase, starting at ~350 ms, showed a sustained effect of target
detection with an EP as high as EP4., = 99.96% (compare Table
1). Previous studies have shown that the P300 can be subdivided
into an earlier, frontocentral P3a and a later, centroparietal P3b
(Yamaguchi and Knight, 1991; Polich, 2007). In visual aware-
ness, these subcomponents are assigned different roles: while the
P3a is considered an automatic response that can occur noncon-
sciously, the P3b is commonly discussed as a candidate marker
of awareness (Muller-Gass et al., 2007; Dehaene and Changeux,
2011; Boncompte and Cosmelli, 2018). The transition from phys-
ical to perceptual processing stages observed here is, in principle,
compatible with this distinction, showing that detection effects
occur in the later phase of the P300 (>350 ms, P3b). However,
the corresponding effect topographies suggest that the transition
from intensity to detection effects occurred similarly across the
P300 electrode cluster, with no clear shift from frontocentral to
centroparietal electrodes, leaving it somewhat unclear whether
the observed effects truly reflect P3a and P3b, respectively (see
Fig. 5B).

To further inspect the different detection effects in the two
tasks, we plotted grand-averaged subsamples of hit and miss tri-
als that were matched for intensity levels (for details, see Fig. 4A).
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Intensity-matched hit and miss ERPs. A, Trial distributions are shown for one exemplary participant. Lower-intensity levels resulted in more miss trials (yellow), whereas higher-in-

tensity levels resulted in more hit trials (blue). To obtain intensity-matched subsamples of hit and miss trials, for each intensity level, we determined the number of trials obtained per condition
and sampled as many trials from the condition with more trials as available for the condition with fewer trials. The subsampled trials (overlap) were then pooled across intensity levels to obtain
a hit and a miss pool with identical intensity distributions. B, Hit and miss ERPs (mean = SE) in the matching task and (C) in the direct report task. Topographies for hits (H), misses (M), and
their difference (D) are displayed for time points of interest (indicated by black arrows). Gray shaded areas represent time points that were best explained by the detection model. The P50 was
not modulated by target detection in either task, whereas the N140 exhibits larger amplitudes for hits compared with misses in both tasks. The P300 shows a large difference between hits

and misses in the direct report task but not in the matching task.

The resulting ERPs and corresponding scalp topographies showed
no difference between hits and misses in the P50 component, further
confirming that early EEG signals reflect processing of physical stim-
ulus properties (Fig. 4B,C). The N140, on the other hand, showed a
clear amplitude enhancement for hits compared with misses; and
this effect was apparent in both experiments, although in the match-
ing task, the detection model only dominated the model comparison
in a later time window. In contrast, the P300 clearly reflected the dif-
ferent BMS results in late time windows. In the matching task, hits
and misses elicited similar P300 amplitudes, whereas in the direct
report task, hits elicited much larger P300 amplitudes than misses,
resembling the commonly reported P300 detection effect. Please note
that these results represent only a small subset of trials that was
largely dominated by near-threshold stimuli (which are susceptible to
near-threshold confounds, e.g., the focus of attention and general
alertness). For this reason (and to avoid circular analysis), we did not
perform any further statistical tests on these data. Nonetheless, this

way of looking at the results helps to better understand the evolution
of detection effects observed in the BMS results. For example, looking
at the intensity-matched hit and miss ERPs in electrode CPz, the late
detection effect in the direct report task appears to emerge as early as
200 ms (compare Fig. 4C). However, the BMS results indicate that
the detection effect only started at ~350 ms, whereas earlier time
points were explained by stimulus intensity. This suggests that,
although target detection in near-threshold trials seems to have had
some effect on the signal already at 200 ms, the intensity model still
did a better job at explaining the data at this point and only later, at
~350ms, did the detection model become the most dominant.
Similar conclusions may be drawn for the early phase of the N140.

Effects across time and space

To obtain a more global impression of the spatiotemporal evolu-
tion of model probabilities, we determined the overall model per-
formances across time as defined by the proportion of electrodes
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BMS results across electrodes in the matching task (A) and the direct report task (B). For each task, scalp topographies for time points of interest (top) and model time courses

across electrodes (bottom) are displayed. The scalp topographies indicate winning models in electrodes surpassing the threshold criteria using colors as in Figure 3. The circled electrodes at
0ms represent electrodes CP4, C6, and CPz. Model time courses are plotted as the proportion of electrodes showing above-threshold effects over time. The results suggest a striking reduction
of target detection effects (red) in the matching task compared with the direct report task, especially in late time windows >350 ms.

showing above-threshold effects for each model (Fig. 5). As
expected, activity in the baseline period was best explained by the
null model, validating the specificity of our analysis approach.
The intensity model showed similar effects in both tasks: the first
clear evidence of somatosensory stimulus processing emerged at
~50ms, consistent with the P50 response. The BMS topogra-
phies at this time point showed a widespread intensity effect in
contralateral somatosensory and frontal electrodes, which
rotated slightly throughout the following ~100ms to include
more centroparietal electrodes. Then, starting at ~250 ms, a sec-
ond strong intensity effect occurred, encompassing primarily
centroparietal electrodes. The detection probability model first
explained the data in the matching task at ~120 ms and showed
an additional late effect starting at ~250ms that paralleled the
late intensity effect. Both of these effects showed a centroparietal
topography, but the intensity effect occurred primarily in contra-
lateral electrodes, whereas the detection probability effect was
mostly found in slightly more posterior midline and ipsilateral
electrodes. In the direct report task, the detection probability
model showed several smaller peaks with similar topographies as
the early intensity effect, but across time and electrodes the
detection probability model did not explain the data well in this
experiment. The detection model showed the most striking dif-
ference between the two experiments. In the matching task, the
earliest effect of target detection was observed at the N140 la-
tency, and this effect was confined to only two electrodes (C6
and FC6) and a brief period of time. Likewise, detection effects
in later time windows were sparse with only very brief effects in
isolated electrodes. In contrast, in the direct report task, the

earliest detection effect occurred at ~90 ms in ipsilateral tempo-
ral electrodes, followed by a more widespread detection effect in
contralateral central and frontal electrodes at ~120 ms (includ-
ing the N140) and yet another effect at ~250 ms in ipsilateral
central electrodes. Finally, from ~350ms onwards, a large cen-
troparietal electrode cluster reflected target detection throughout
the rest of the time window. These results suggest a striking dif-
ference between the two tasks, with a widespread centroparietal
detection effect at ~350 ms in the direct report task that was vir-
tually absent in the matching task. Surprisingly, neither the
uncertainty nor the match model scored high EPs in either task,
and this lack of effects was unaltered by inspecting later time
points or data segments that had not passed the threshold crite-
ria. However, we found effects of the matching cue in both tasks,
starting at ~90ms in occipital electrodes. In the matching task,
this effect lasted slightly longer (until ~300ms) and encom-
passed frontal and parietal electrodes. This difference was unsur-
prising given that further processing of the matching cue was
vital to the matching task but not to the direct report task.

Discussion

In this study, we scrutinized the relevance of early and late ERP
components as markers of somatosensory awareness. Both in a
revised detection task that used a matching procedure to control
for report requirements and a control experiment with direct
reports, the somatosensory P50 component was modulated by
physical stimulus intensity, confirming Hypothesis 1. The N140
was modulated by target detection in both tasks, although in the
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matching task, this modulation occurred later and was preceded
by an effect of stimulus intensity, such that Hypothesis 2 was
only partly confirmed. The P300 was clearly task-dependent,
showing a widespread detection effect in the direct report task
that was largely absent in the matching task, when report
requirements were controlled for. These results confirmed
Hypothesis 3 and suggest that the P300 is not a reliable marker
of somatosensory awareness but reflects postperceptual
processing.

The intensity effect observed in the P50 component replicates
a recent ERP study that has similarly shown scaling of the P50
amplitude with stimulus strength (Forschack et al., 2020). More
generally, our finding concurs with research showing that early
stimulus processing in primary somatosensory cortex does
not differentiate between detected and undetected stimuli
but reflects physical stimulus properties in both humans
(Schroder et al., 2019) and macaques (de Lafuente and
Romo, 2005, 2006). We thus add to the growing consensus
that very early sensory potentials index preconscious proc-
essing (Railo et al., 2011; Wiihle et al., 2011; Rutiku et al,,
2016; Forschack et al., 2020) and support the notion that
initial feedforward processing in early sensory regions is
not sufficient for conscious perception (Lamme, 2006).

The degree to which early negativities are task-dependent is
not well understood. Here, the somatosensory N140 component
was modulated by target detection even when postperceptual
requirements were controlled for, corroborating its relevance for
somatosensory awareness (Schubert et al, 2006; Zhang and
Ding, 2010; Auksztulewicz et al, 2012; Auksztulewicz and
Blankenburg, 2013; Al et al, 2020; Forschack et al., 2020).
However, the BMS analysis revealed that, in the matching task,
the N140 was first modulated by stimulus intensity before transi-
tioning to an effect of target detection. Conversely, the N140 in
the direct report task was exclusively modulated by target detec-
tion, suggesting that the different task demands had a consider-
able influence on the component’s timing and distribution.
Indeed, the N140 has previously been reported to be modulated
by exogenous attention (Mena et al., 2020). The matching task
enforced a reduction of poststimulus attentional engagement
compared with the direct report task, which may have resulted in
the reduced detection effect. This finding could have important
implications for the interpretation of awareness-related negativ-
ities in general. Similar to the visual awareness negativity
(Koivisto and Grassini, 2016) and auditory awareness negativity
(Giani et al., 2015), the N140 has been suggested to result from
recurrent interactions between sensory cortices (Auksztulewicz
etal., 2012). Accordingly, these potentials have been taken as evi-
dence for the Recurrent Processing Theory of conscious percep-
tion, which assumes that perceptual awareness emerges as soon
as initial feedforward activity in sensory cortices is consolidated
by re-entrant feedback (Lamme, 2006). Indeed, a number of
studies have demonstrated detection-related feedback signals
from secondary to primary somatosensory cortex in humans
(Jones et al., 2007; Auksztulewicz et al., 2012; Auksztulewicz
and Blankenburg, 2013), mice (Kwon et al.,, 2016; Yang et al,,
2016), and macaques (Cauller and Kulics, 1991), supporting
the role of local recurrent processing for somatosensory
awareness. Our results are in principle compatible with
Recurrent Processing Theory, but they also suggest that at
least part of the awareness effects routinely reported at the
N140 latency may be due to uncontrolled processes; and more
direct manipulations of attentional allocation are necessary to
elucidate this issue.
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The P300 has previously been demonstrated to depend on
report requirements in visual tasks (Pitts et al., 2014; Cohen et
al., 2020; Schlossmacher et al., 2020), and we show that the same
is true in the somatosensory modality. In opposition to early neg-
ativities, the P300 has been taken as evidence in support of the
Global Neuronal Workspace Theory. Global Neuronal
Workspace Theory assumes that any conscious percept presup-
poses a nonlinear “ignition” of global workspace neurons that
are distributed across a network of brain regions, primarily in
frontal and parietal cortices (Dehaene and Naccache, 2001).
Given that several studies have now shown that the P300, often
considered a hallmark of ignition (Dehaene and Changeux,
2011), vanishes in no-report paradigms, some researchers have
suggested that early activity may reflect general “information
accessibility,” whereas late activity reflects proper “conscious
access,” which might be lacking when perception is not reported
(Mashour et al., 2020). However, this explanation is not compati-
ble with our results, since we show that a P300 can be elicited
regardless of conscious access, further corroborating its postper-
ceptual nature. Alternatively, one might argue that, because
attentional resources had to be divided between the somatosen-
sory and visual inputs in the matching task, the attention allo-
cated to the electrical stimuli was not sufficient for them to truly
become conscious, such that they remained “preconscious”
(Dehaene et al.,, 2006). However, both the somatosensory and
visual stimuli were highly relevant to the task, making it unlikely
that attention was withdrawn to the point that the electrical
pulses were prevented from becoming conscious. Moreover, we
did not find any differences in psychometric functions between
the experiments, which one might expect if they differed in their
levels of conscious processing. Thus, although we cannot entirely
exclude the possibility that there were subtle differences in per-
ceptual experience between the two tasks, the task requirements
and behavioral data lead us to believe that the electrical targets
were indeed consciously perceived in both tasks, especially given
that many of them were presented at superthreshold intensities.
Our findings concur with results from fMRI studies showing
that frontoparietal network activity does not correlate with con-
scious access when reports are controlled for (Frissle et al., 2014;
Farooqui and Manly, 2018; Schroder et al., 2019). The apparent
absence of any sign of ignition in these studies seems to suggest
that such widespread, nonlinear activity may not be as relevant
for conscious perception as postulated by Global Neuronal
Workspace Theory. However, we must note that such findings
do not necessarily invalidate the role of frontal or parietal regions
for conscious perception, since univariate EEG and fMRI analy-
ses are limited to studying the collective activity of large popula-
tions of neurons. It may well be that smaller assemblies or
patterns of neurons in these regions correlate with awareness
even when task demands are controlled for (see e.g., Kapoor et
al., 2020). Nonetheless, research such as ours certainly suggests
that the correlates of perceptual awareness are much more subtle
than often claimed and that findings from studies showing large
signal divergences for conscious stimuli without properly con-
trolling for task demands cannot unreservedly be taken as evi-
dence for any theory of conscious perception (Pitts et al., 2014;
Tsuchiya et al., 2015).

Given the ubiquity of the P300 in studies on perceptual
awareness, it is worth considering which cognitive variables are
its most likely generators and should therefore be most rigor-
ously controlled. In a recent review, Verleger (2020) argues that
stimulus-response-link reactivation, memory storage, and clo-
sure of cognitive epochs are the most relevant candidates. In
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both our tasks, timing cues indicated the exact moment of a
potential stimulus delivery and, thus, controlled for closure of
cognitive epochs. However, the two tasks clearly differed in their
control of stimulus-response-link reactivation and memory stor-
age, which may have caused the different results. In the series of
no-report experiments conducted by Pitts and colleagues (Pitts
et al., 2014; Cohen et al., 2020; Schlossmacher et al., 2020), the
stimuli of interest were not relevant to the task, such that none of
the processes in question were initiated upon stimulus percep-
tion and no P300 was elicited. In contrast, Sanchez et al. (2020)
used a go/no-go paradigm with response reversals and were able
to decode target detection from late MEG activity. However,
because of unpredictable stimulus timing and a response delay,
their task was not controlled for closure or working memory
effects, which may have caused the late effects. Koivisto et al.
(2016) used a similar task but incorporated timing cues and
speeded responses, leading to better control of closure and mem-
ory effects, and they found a modulation of the P300 by reports.
However, the same task in the auditory modality did not reveal
any effect of reports on the P300 (Eklund et al., 2019). Whether
this discrepancy reflects genuine differences between modalities
or results from residual task confounds remains to be tested.

Although the P300 in our study was clearly affected by report
requirements, it did not correlate with reports in the matching
task. Indeed, the match and uncertainty models did not explain
any segments of the EEG data in either task. Possibly, the ana-
tomic locations of regions previously found to show such effects
(on the medial wall inside the longitudinal fissure or folded
deeply into the cortex) (Schroder et al., 2019) prevented strong
influences on the overall EEG signal, leading the respective
effects to go unnoticed or, alternatively, signals related to uncer-
tainty and matching reports may not have been time-locked to
the stimuli. Whatever the reason, since both perceptual uncer-
tainty and overt reports were controlled for in the matching task,
the observed detection effects were free of these confounds (for a
more extensive discussion of this point, see Schroder et al.,
2019). Instead of reflecting overt reports, the P300 in the match-
ing task was best explained by the intensity and detection proba-
bility models, potentially suggesting that neither of these models
perfectly accounted for the trial-to-trial response variations in
this component. A potential interpretation may be that these
models captured variability related to the perceptual quality of
the stimuli, which is expected to covary with stimulus intensity,
at least for detected targets. The goal of our study prohibited sub-
jective awareness ratings, but a previous study has indeed dem-
onstrated that the N140 and P300 amplitudes correlate with
graded awareness levels (Auksztulewicz and Blankenburg, 2013).
Assuming a graded nature of awareness (Overgaard et al., 2006)
might also explain why the effects of categorical target detection
were so limited in the matching task. Interestingly, in our fMRI
study using the same task (Schroder et al., 2019), effects of stimu-
lus intensity and detection probability were limited to areas in
primary and secondary somatosensory cortex. Whether the late
signals observed here also originate from these regions remains
to be established.

In conclusion, our study demonstrates that conscious access
of somatosensory information is not reflected in widespread
cortical activation as indexed by the P300 but instead seems to
manifest in earlier, locally restricted activity over somatosensory
regions. The generally sparse effects of categorical target detec-
tion in our study speak against global, nonlinear effects of con-
scious somatosensory perception. Indeed, focusing on large
signal divergences for perceived versus unperceived stimuli may
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be misleading as they seem to emphasize postperceptual process-
ing rather than perceptual awareness. Our study further stresses
the need for carefully controlled experimental paradigms to be
able to unequivocally attribute observed effects to stimulus
awareness and effectively further our understanding of the neural
processes supporting the emergence of conscious perception.
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