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Introduction. Health monitoring and remote diagnosis can be realized through Smart Healthcare. In view of the existing problems
such as simple measurement parameters of wearable devices, huge computing pressure of cloud servers, and lack of individ-
ualization of diagnosis, a novel Cloud-Internet of )ings (C-IOT) framework for medical monitoring is put forward. Methods.
Smart phones are adopted as gateway devices to achieve data standardization and preprocess to generate health gray-scale map
uploaded to the cloud server. )e cloud server realizes the business logic processing and uses the deep learning model to carry out
the gray-scale map calculation of health parameters. A deep learning model based on the convolution neural network (CNN) is
constructed, in which six volunteers are selected to participate in the experiment, and their health data are marked by private
doctors to generate initial data set. Results. Experimental results show the feasibility of the proposed framework.)e test data set is
used to test the CNN model after training; the forecast accuracy is over 77.6%. Conclusion. )e CNN model performs well in the
recognition of health status. Collectively, this Smart Healthcare System is expected to assist doctors by improving the diagnosis of
health status in clinical practice.

1. Introduction

By the end of 2015, there were about 220 million people
aged 60 or above in China, accounting for 16.1% of the
total population. Among them, 140 million were over 65
years old, accounting for 10.5% of the total population. In
this context, healthcare for the elderly has increasingly
aroused social concern [1]. )e rapid development of
wearable devices, IOT, and cloud computing has brought
about significant development opportunities and affected
every aspect of people’s lives. In the field of healthcare,
the adoption of IOT can bring us health monitoring all
the time [2]. With the popularity of smart phones, smart
bracelets, and other devices, a variety of sensors can
monitor health indicators timely and accurately [3–5].
Deep learning is an implementation method of machine
learning, which is different from the traditional shallow
models such as artificial neural network. Deep learning
usually has a deeper model structure with five or six layers
or even over ten layers or more hidden layers [6]. In

addition, the importance of feature learning is high-
lighted [7, 8]. )e feature representation of samples in the
original space is transformed into a new feature space by
means of feature transformation layer by layer. Deep
learning is widely used in image and voice processing and
develops rapidly in the medical and health field [8–10].
)e study in [11] proposed a human fall early warning
algorithm based on RNN and compared it with tradi-
tional machine learning algorithms such as SVM to verify
its excellent performance. )e study in [12] compared
and studied the application of CNN, RNN, LSTM, and
other deep learning models in the evaluation of sleep
quality.

With the increase of the number of IOT devices and
sensors, medical IOT system also highlights more problems
in the development process, mainly including the following:

(1) )e measurement parameters of existing wearable
health monitoring devices are relatively simple, such
as pedometers and intelligent sphygmomanometers.
)e common pedometer devices can connect with
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smart phones via Bluetooth and other communi-
cation means, and upload data to the cloud server, so
it is possible to view data such as exercise amount
and sports assessment report through the phone
APPs. Various forms of wearable health monitoring
devices fail to share data due to different manufac-
turers and communication protocols.

(2) Limited by memory capacity and computing power,
wearable devices may upload the collected data to the
cloud server through smart phones or home gate-
ways. )e cloud server needs to store and process a
large amount of collected data. )e server and
network have great transmission pressure, which
reduces the real-time processing capacity.

(3) At present, many telemedicine monitoring systems
based on IOTcarry out certain disease early warning
according to a set of diagnostic schemes, and it is
difficult to develop personalized diagnosis and
treatment schemes according to individual physio-
logical characteristics and historical parameter
changes.

(4) Intelligent diagnosis methods based on the uploaded
data of health monitoring devices mainly include
system-based diagnosis methods of experts and in-
telligent diagnosis methods based on sample data.
Back Propagation (BP) neural network algorithm
[13] and Support Vector Machines (SVM) algorithm
have been applied to the classification of diagnosis
results. Although deep learning algorithm has been
applied in sleep quality and other fields [12], the
application of intelligent diagnosis algorithm based
on deep learning is rarely seen.

In view of the above problems, a healthcare monitoring
system based on Cloud-Internet of)ings (C-IOT) and deep
learning is proposed, and the major work includes the
following aspects:

(1) A health data acquisition system is designed based on
C-IOT and the acquisition of parameters such as
human blood pressure, body temperature, body
weight/fat, and exercise amount is realized. )e
shortcoming that the acquisition of simple physio-
logical parameters fails to evaluate and diagnose the
user’s health effectively is avoided.

(2) Data preprocessing of each acquisition device is
realized locally to eliminate noise interference. By
communicating with the user’s smart phones
through Bluetooth, the smart phones may display the
collected data in real time, preprocess the data of
each device, and upload them to the cloud server.
)e processing and integration of local data can
reduce the computing pressure of cloud server and
transmission pressure of network.

(3) )e private doctor evaluates the user’s health con-
dition according to the data on the cloud server and
establishes the initial data set. )e cloud server uses
the deep learning algorithm (CNN) to train the user
health evaluation model according to the initial data

set. )e newly uploaded data are calculated by a
depth model to automatically give health assessment
results. )e model is a process of dynamic change.
)e private doctor will manually evaluate the user’s
health status and update the user data set on a regular
basis as well as the parameter values of the depth
model. )e model can realize personalized health
assessment.

2. Materials and Methods

2.1. System Architecture. Figure 1 indicates the architecture
of health monitoring system based on C-IOT and deep
learning proposed in this paper. It is improved from the
traditional three-layer architecture of the IOT, and described
from the perspective of system implementation and data
flow, including data collection layer, data preprocessing and
net layer, data processing, and application layer.

Data collection layer is responsible for the acquisition of
physiological parameters of health, which is mainly com-
posed of a number of Internet-connected or wearable de-
vices. Temperature, body fat/weight, blood pressure
parameters, and exercise parameters are measured. In
general, data collection layer devices have small data storage
capacity and low computing capacity [14–16]. In order to
reduce data redundancy, network transmission pressure,
and power consumption, the data denoising, digital filtering,
and power management based on rules can be realized
locally. High-frequency noise is eliminated by digital low-
pass filter and band-pass filter. In addition, the special value
in the collected data is removed based on rules. )e data
collection layer device may be connected to smart phones or
other mobile intelligent terminals through Bluetooth.

)e data preprocessing and net layer are mainly com-
posed of smart phones and other intelligent mobile termi-
nals. Smart phone devices not only serve as network layer
devices to realize data communication function of medical
IOT gateway, but also install application layer APP software
to realize local data preprocessing, parameter display, and
device control. )e smart phone connects to the data col-
lection layer device through Bluetooth to receive mea-
surement information reported by the blood pressure meter,
weight/fat meter, pedometer, thermometer, and other data
acquisition devices, and display the real-time information on
the mobile APPs. Preprocessing data are uploaded to the
cloud server through Wifi, 4G, and other communication
means. Data preprocessing includes data normalization,
data dimension transformation, data fusion, and other
functions to generate images of health parameters. In terms
of data normalization, body weight, body temperature, and
other measurement parameters are normalized according to
the grade to the gray value ranging from 0 to 255. In terms of
data dimension transformation, original measurement pa-
rameters are extended in dimension, such as heart rate,
systolic pressure and diastolic blood pressure measured by
sphygmomanometer extended to ambulatory pulse pressure
(APP), mean arterial pressure (MAP), and ambulatory rate-
pressure product (ARPP), which are often used to diagnose
cardiovascular diseases more effectively. )e application
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software of mobile phones can also fuse the physiological
parameter measurement data after normalization of gray
value and dimension expansion into the image of health
parameters, upload them to the cloud server in the form of
two-dimensional image, and use the deep learning model to
solve the health parameter image to give the health index
report. )e users may receive and display the health report
issued by the cloud server through smart phones. Making
full use of the computing power of intelligent equipment for
data preprocessing can effectively reduce the transmission
pressure of database and network. With the rapid im-
provement of the computing power of intelligent terminal
equipment, more andmore data processing functions will be
completed directly in the intelligent terminals.

)e data processing and application layer mainly includes
database and distributed server, web server, and deep learning
model engine. )e database stores and manages users’ per-
sonal information/health monitoring data, personal doctor
information, equipment information, etc., the distributed
server realizes various business processing logic, and the web
server provides users and personal doctors with friendly web
interface for background operation. )e deep learning model
engine is used to train the deep learning model, and the

trained deep learning model is used to solve the health pa-
rameter image. With the increase of user data, private doctors
can annotate the data, enrich the personal health data set, and
retrain and update the deep learning model.

2.2. Measurement of Blood Pressure. For blood pressure
acquisition nodes, the oscillometric method is used to
measure blood pressure [17], and the pressure value of the
pressure sensor is filtered by low-pass filter and band-pass
filter to obtain the static pressure value and the dynamic
pressure value. In the measurement process, the dynamic
pressure value amplitude increases gradually and then de-
creases. When the dynamic pressure value amplitude is
multiplied by the normalized coefficients (Ks and Kd), the
dynamic pressure value amplitude corresponding to the
systolic pressure and the diastolic pressure can be obtained,
respectively, and the human blood pressure value can be
obtained by reverse check, as shown in Figure 2. According
to the conclusions of Mauro’s mathematical model, the
normalized coefficient Ks was 0.46–0.64, and the normalized
coefficient Kd was 0.43–0.73 [18]. In this paper, the am-
plitude coefficients commonly used in clinical medicine are
Ks� 0.48 and Kd� 0.58 [19].
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In order to obtain the optimal pulse oscillation ampli-
tude envelope, Gaussian fitting method is used for data

fitting: a set of sample data (xi, yi)(i � 1, 2, 3 . . . N) can be
described by Gaussian functions as shown in the following
equation:

yi � ymax ∗ exp −
xi − xmax( 􏼁

2
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It is simplified as

Z � XB. (5)

According to the principle of least squares, the gener-
alized solution of least squares for matrix B is

B � X
T
X􏼐 􏼑

− 1
X

T
Z. (6)

)en, the estimated parameters (b0, b1, b2) are
substituted into equation (1) to obtain the fitted Gaussian
function. Both the measuring speed and accuracy are im-
proved by using Gaussian fitting function.

2.3. Data Preprocessing. After the human physiological
parameter monitoring equipment transmits the measure-
ment results to a smart phone via Bluetooth, data

preprocessing shall be conducted through the application
software installed in the smart phone, which mainly includes
dimensional transformation of data, data standardization,
and generation of two-dimensional gray image for human
health.

In order to optimize the input vector, the measurement
data uploaded by monitoring equipment need to be
transformed into a certain dimension. )e measured data
including heart rate (HR), systolic blood pressure (SP), and
diastolic blood pressure (DP) are converted into three pa-
rameters, namely, mean arterial pressure (MAP), ambula-
tory pulse pressure (APP), and ambulatory rate-pressure
product (ARPP).

APP � F1(SP,DP) � SP − DP,

MAP � F2(SP,DP) �
DP +(SP − DP)

3
,

ARPP � F3(HR, SP) � HR∗ SP.

(7)

Step number, motion distance, fast motion time, fast
motion distance, length of sleeping, and length of awakening
are obtained according to the step number and time mea-
sured by the pedometer after dimension expansion. Data
standardization converts the data of each index into the gray
value ranged from 0 to 255 according to the scaling, so as to
facilitate the synthesis of health status matrix for uploading
to the cloud server for processing. )e corresponding range
relationship between the measured value of each index and
the standardized value is shown in Table 1.

In this paper, the deep learning method is adopted to
evaluate the human health status. )e input data of the deep
learning model are the measured values after the stan-
dardization of each physiological parameter of human body
in a day. In order to better serve as the input of CNN, the
standardized data need to be processed in two dimensions to
generate the health status matrix. )e health status matrix is

PcPs Pd

Kd = Ad/Amax
Ks = As/Amax

Pt

At

Figure 2: Blood pressure measurement method.
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organized into 2D images. As required, the subjects shall
have their blood pressure and body temperature measured
once every morning and every evening, have their weight/fat
measured once every day, and wear a pedometer 24 hours a
day. On the smart phone side, 36-pixel 2D images of human
health are generated every day, as shown in Table 2. Figure 3
is an example 2D image of health status matrix according to
Table 2.

2.4.CollectionofDataSet. )e training of deep learningmodel
shall be supported by a certain amount of labeled data set. In this
study, the gray-scale chart of health monitoring parameters in
one day is obtained by combining measurement and con-
struction. Six volunteers are selected, including 3 males and 3
females (including 2 adolescents, 2 middle-aged, and 2 elderly).
)e volunteers are required to test the blood pressure each
morning and evening, the body temperature once, and the
weight/fat once. )ey are also required to wear a pedometer
device for 24 hours and upload data to the cloud server at 6
o’clock each morning through the phone APP. )en, private
doctors will grade their health status according to the uploaded
data and user information such as age and gender and then
divide them into three types: health, sub-health, and illness.)e
initial data set is generated by continuously tracking and an-
notating the user’s data for 100 days. In addition, the initial data
set of each user constructed and annotated by private doctors
according to the user’s historical data information is 3,000, and
these three types account for 1/3. 80% of the extended initial
data set is selected as the training sample to train the user’s
personalized deep learning model, and 20% is used as the test
sample to test the model’s performance.

2.5. Deep Learning Model. Deep learning model is con-
structed and trained in the cloud server, and CNN is the
most commonly used deep learning model, which has
been widely used in the field of image processing. )e
classic LeNet-5 [20] CNN model is adopted and modified
to simplify a pooling layer. )e CNN model constructed
is shown in Figure 4, which contains two convolution
layers, a pooling layer, and a full connection layer. )e
CNNs have 2 × 2 kernels for the convolutional layers with

3 and 9 filters, respectively, and a scaling of 2 for the max-
pooling layers. )e output layer outputs the health as-
sessment results, including health, sub-health, and
illness.

3. Results and Discussion

3.1.Measurement and Test of Blood Pressure. )e method of
using medical blood pressure meter and blood pressure
measurement node at the same time for the same subject
is used for comparative verification. A health monitor
(PM-900S, Biocare Technology Co. Ltd., Shenzhen,
China) is selected as the comparison device. )e verifi-
cation results are shown in Table 3, and the measurement
results indicate that the relative error is within the range
of 6%. Figure 5(a) is the photo of blood pressure mea-
surement node device.

Also, the method of wearing commercial pedometer
and step monitoring node is used for comparative ver-
ification. A sports bracelet (Honor 3, HUAWEI Tech-
nology Co. LTD, Shenzhen, China) is selected as the
comparison experiment device. )e test subjects wear
sports bracelets and step monitoring nodes at the same
time. )e measured data of the previous day is read after
the subjects get up at 6 o’clock in the morning. )e
verification results are shown in Table 4, and the mea-
surement results indicate that the relative error is within
the range of 9%. Figure 5(b) is the photo of step moni-
toring node.

3.2. Evaluation of Deep Learning Algorithm and Model.
For each subject, the accuracy of average recognition of
the three health states is studied. Apart from that, recall
and precision and F1_score are used for model evaluation
in respect of each category [21]. )e data of test set in data
set are used as model input. TP denotes number of true
positive (labeled correctly). FP denotes number of false
positive (other activity labeled as the sub-health and
illness). Furthermore, TN denotes number of true neg-
atives (correct rejection), and FN denotes number of false
negatives (missed detections).

Table 1: Data standardization.

Index Range of measurement value Range of standard value
Weight 0–150 kg 0–255
Fat 0%–50% 0–255
SP 0–250mmHg 0–255
DP 0–250mmHg 0–255
HR 0–200 bpm 0–255
APP 0–200mmHg 0–255
MAP 0–300mmHg 0–255
ARPP 0–50000 0–255
Step num 0–30000 0–255
Distance 0–20 km 0–255
Fast motion time 0–24 h 0–255
Fast motion distance 0–20 km 0–255
Length of sleeping 0–24 h 0–255
Length of awakening 0–24 h 0–255
Body temperature 30–45°C 0–255

Journal of Healthcare Engineering 5



Accuracy �
TP + TN

TP + FP + FN + TN
,

recall �
TP

TP + FN
,

precision �
TP

TP + FP
,

F1 score �
2precision∗ recall
precision + recall

.

(8)

Figure 6 exhibits the accuracy of the average classi-
fication of each subject. Error bars display the standard
deviation of the recognition accuracy of the three health
categories for each subject. As can be seen from the figure,
the results of different subjects are of obvious differences.
)e highest recognition accuracy of CNN model is 84.2%

(S4) and the lowest is 68.5% (S3). )e standard deviation
of recognition accuracy is all within 15 and the maximum
is 14.94 (S5). For 6 subjects, the average accuracy of CNN
model is 77.61%.

Figure 7 indicates the confusion matrices of 6 subjects
acquired by CNN model. It can be revealed that the rec-
ognition performance of the model for health categories is
obviously superior to the other two categories. In 200
samples, the highest recognition accuracy is 182 (S6). )e
capability to recognize sub-health categories is relatively
poor, and S5 can only recognize 110 out of 200 samples
correctly.

Figure 8 shows the precision, recall, and F1-score of 6
subjects in three categories acquired by CNN model. It
can be seen that CNN model boasts higher precision for
disease recognition than other two categories, except S2.
Nevertheless, the value of recall is higher than that of

Table 2: Human health map.
1 2 3 4 5 6

1 SP1 DP1 HR1 APP1 MAP1 ARPP1
2 SP2 DP2 HR2 APP2 MAP2 ARPP2
3 Weight Fat
4 Step num Distance Fast motion time Fast motion distance Length of sleeping Length of awakening
5 Body temperature1
6 Body temperature2
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Figure 3: 2D images of human health.
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Figure 4: CNN model architecture.
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Table 3: Blood pressure measurement verification results.

SP (mmHg) (PM-900S) SP (mmHg) (test node) Error (%) DP (mmHg) (PM-900S) DP (mmHg) (test node) Error (%)
1 120 123 2.5 83 86 3.6
2 107 112 4.7 78 82 5.1
3 124 130 4.8 89 86 3.4
4 109 105 3.7 78 81 3.8
5 140 145 3.6 95 99 4.2

(a) (b)

Figure 5: (a) Blood pressure measurement node device. (b) Step monitoring node device.

Table 4: Step monitoring node verification results.

Step num (honor3) Step num (test node) Error (%) Amount of sleep (h) (honor3) Amount of sleep (h) (test node) Error (%)
1 5600 5743 2.6 6.5 6.3 3.1
2 8212 7920 3.6 7.4 7.0 5.4
3 15401 16280 5.7 8.2 7.7 6.1
4 7231 7102 1.8 7.1 6.6 7.0
5 11005 10098 8.2 9.4 9.0 4.3

S1
0
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40

CNN

60

80

100

Ac
cu

ra
cy

 (%
)

S2 S3 S4 S5 S6 AVG

Figure 6: Classification accuracy of each subject. Each bar and the corresponding error bar show the average classification accuracy with
standard deviation of three health patterns.
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precision except S2. F1_score is a comprehensive index
reflecting the performance of the model. By observing the
F1_score curve of 6 subjects, the recognition performance
of the model for sub-health is worse than the other two
categories, with a minimum of 61.8% (S5).

)e current research suggests that it is feasible to
recognize and intelligently diagnose the preprocessed
data of the underlying devices of the medical Internet of
)ings with CNN model. In comparison with traditional
machine learning methods such as SVM [22] and LDA
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Figure 8: Precision, recall, and F1-score obtained by the CNN model. (a–f) )e result curves of S1–S6.
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Figure 7: Confusion matrices acquired by the CNN model. (a–f) )e confusion matrix of S1–S6.

8 Journal of Healthcare Engineering



[23], the depth learning method for intelligent diagnosis
does not require manual selection of data feature values.
)e depth model can automatically extract features and
perform high-level abstraction. For different subjects, the
optimal parameters of the model can be automatically
acquired through training, which is more flexible and
robust compared with traditional machine learning
methods. )e intelligent health management system ar-
chitecture based on deep learning proposed in the current
research can make the data set continuously grow under
the condition of user data accumulation, and cooperate
with doctors’ manual annotation, and can optimize
model training from time to time to achieve better rec-
ognition and diagnosis effects. Pretreatment of health
data at the bottom layer of Internet of )ings equipment
enhances the robustness of data and can tremendously
lower the computing pressure of servers.

For each subject, the accuracy of average recognition of
the three health states is studied. Apart from that, recall and
precision and F1_score are used for model evaluation in
respect of each category.

4. Conclusions

In view of the existing problems in the existing IOT medical
system, a new IOT architecture for medical monitoring is
proposed in this paper, in which smart phones are used as
gateway devices to realize data preprocessing of measurement
node devices, thus greatly reducing the computing pressure of
cloud servers and transmission pressure of network. Based on
the data sets generated from such data annotated by private
doctors, a CNN health recognition model is constructed to
realize personalized diagnosis and treatment of human health.
Six subjects are selected to wear wearable measuring devices for
a long time and physiological parameters are measured as
required. )e test sample set is input into the deep learning
model for identification, with a prediction accuracy of over 77%.
In the future work, the measurement types of human health
parameters will be added, such as ECG and EEG signals, etc. In
addition, the scale of the data set will be expanded, and the
training depth learning model will be updated continuously to
improve the prediction accuracy.
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