
Research Article
Identifying Prognostic Significance of RCL1 and Four-Gene
Signature as Novel Potential Biomarkers in HCC Patients

Jun Liu ,1 Shan-Qiang Zhang,1 Jing Chen,2 Zhi-Bin Li,2 Jia-Xi Chen,2 Qi-Qi Lu,1

Yu-Shuai Han,2 Wenjie Dai,1 Chongwei Xie,1 and Ji-Cheng Li 1,2

1Medical Research Center,�e Affiliated Yue Bei People’s Hospital, Shantou UniversityMedical College, Shaoguan 512025, China
2Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China

Correspondence should be addressed to Ji-Cheng Li; lijichen@zju.edu.cn

Received 25 March 2021; Accepted 5 June 2021; Published 29 June 2021

Academic Editor: Zhixiong Liu

Copyright © 2021 Jun Liu et al.)is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Hepatocellular carcinoma (HCC) is a highly malignant disease, and it is characterized by rapid progression and low
five-year survival rate. At present, there are no effective methods for monitoring the treatment and prognosis of HCC. Methods.
)e transcriptome and gene expression profiles of HCC were obtained from the Cancer Genome Atlas (TCGA) program,
International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) databases. )e random forest method
was applied to construct a four-gene prognostic model based on RNA terminal phosphate cyclase like 1 (RCL1) expression. )e
Kaplan-Meier method was performed to evaluate the prognostic value of RCL1, long noncoding RNAs (AC079061, AL354872,
and LINC01093), and four-gene signature (SPP1, MYBL2, TRNP1, and FTCD). We examined the relationship between RCL1
expression and immune cells infiltration, tumor mutation burden (TMB), and microsatellite instability (MSI). Results. )e results
of multiple databases indicated that the aberrant expression of RCL1 was associated with clinical outcome, immune cells in-
filtration, TMB, and MSI in HCC patients. Meanwhile, we found that long noncoding RNAs (AC079061, AL354872, and
LINC01093) and RCL1 were significantly coexpressed in HCC patients. We also confirmed that the four-gene signature was an
independent prognostic factor for HCC patients. Ferroptosis potential index, immune checkpoint molecules, and clinical feature
were found to have obvious correlations with risk score. )e area under the receiver operating characteristic curve values for the
model were 0.7–0.8 in the training set and the validation set, suggesting high robustness of the four-gene signature.We then built a
nomogram for facilitating the use in clinical practice. Conclusion. Our study demonstrated that RCL1 and a novel four-gene
signature can be used as prognostic biomarkers for predicting clinical outcome in HCC patients; and this model may assist in
individualized treatment monitoring of HCC patients in clinical practice.

1. Introduction

Hepatocellular carcinoma (HCC) is the most common
primary liver cancer worldwide and the third most common
cause of cancer-related deaths [1]. Although various diag-
nostic and treatment strategies, including cascade screening
and immunotherapy, have been adopted, the overall inci-
dence and mortality rates of HCC have increased [2]. In
Europe and America, the 5-year survival rate for HCC is
18%, and its mortality is second only to pancreatic cancer
[3]. Notably, the overall 5-year survival rate for HCC pa-
tients in China is only 12% [4]. However, the molecular

mechanisms underlying the development of HCC remain
unknown. )erefore, identification of new biomarkers that
can accurately predict HCC prognosis would be of great
significance for monitoring and developing individualized
treatment strategies and preventing recurrence of HCC.

RNA terminal phosphate cyclase Like 1 (RCL1) encodes
a highly conserved RNA 3-terminal phosphorylation cyclase
like protein, which plays a central role in 18s RNA matu-
ration and ribosome biogenesis [5, 6]. RCL1 is widely
expressed in various tissues with relatively higher expression
in the liver and fat tissues (https://gtexportal.org/home/
gene/RCL1). Recent studies showed that RCL1 is
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expressed in the human brain, and its deletion is associated
with the occurrence of depression [7]. Further researches
demonstrated that the expression of RCL1 increases with the
development of brain, and RCL1 deletion can cause a variety
of neurological diseases [8]. However, the expression of
RCL1 and its prognostic value in HCC have not been
reported.

In this study, the mRNA expression level of RCL1 in
HCC tissues and adjacent normal tissues was detected in
multiple cohorts, including the TCGA, ICGC, and
GES14520 cohorts. Meanwhile, we also analyzed the rela-
tionship between RCL1 abnormal expression and poor
prognosis of HCC. Furthermore, we explored the potential
function of RCL1 in the occurrence of HCC and identified
the long noncoding RNAs (LncRNAs) that can be involved
in the regulation of RCL1 expression. Finally, we integrated
multiple datasets to construct a prediction model of four
genes. )us, we identified that the abnormal expression of
RCL1 is associated with poor prognosis of HCC, and RCL1
can used as a potential biomarker for HCC prognosis.

2. Materials and Methods

2.1. Data Collection and Preprocessing. )e TCGA level 3
data for HCC RNA-seq and single nucleotide polymorphism
were collected from the UCSC Cancer Genomics Browser
(https://genome-cancer.ucsc.edu). Meanwhile, the HCC
RNA-seq data (LIRI-JP) and the microarray data
(GSE14520, GPL3921) were downloaded from the Inter-
national Cancer Genome Consortium (ICGC) and Gene
Expression Omnibus (GEO), respectively. )e RNA-seq of
HCC from TCGA and ICGC was performed by
log2(FPKM+1), and GSE14520 expression profile data were
background-corrected and quantile-normalized using the
“limma” package in R, and the “sva” package in R was used
to remove batch effects. Corresponding detailed clinical data
for HCC patients were also obtained.

2.2. Analysis of Expression and Clinical Characteristics.
)e Wilcoxon test and paired t-test were performed to
identify the difference in RCL1 expression between HCC
tissues and adjacent normal tissues. )e Wilcoxon test was
also used to check the RCL1 expression in different clinical
features.)e Kaplan-Meier (K-M) curve was used to explore
the effects of RCL1 aberrant expression on HCC clinical
outcome. )e “surv-cutpoint” function in the survminer R
package was used to identify the best split. HCC patients
were divided into the high RCL1 expression group and the
low RCL1 expression group.

2.3. �e Association between RCL1 Expression and Immune
Cells Infiltration, TumorMutation Burden, andMicrosatellite
Instability. Tumor IMmune Estimation Resource (TIMER)
is a tool for estimating immune cells infiltration abundance
based on RNA-seq [9]. )e TIMER database was used to
assess the relationship between RCL1 expression and six
immune cell types, including B cells, CD4+ T cells, CD8+
T cells, macrophages, neutrophils, and dendritic cells. )e

prognostic value of Microsatellite Instability (MSI) and
Tumor Mutation Burden (TMB) in HCC was investigated
using the K-M plotter based on best separation methods.
Subsequently, the correlation between RCL1 aberrant ex-
pression and immune cells infiltration/TMB/MSI was
evaluated.

2.4. Integrated Network and Gene Set Enrichment Analysis
(GSEA). GeneMANIA (http://genemania.org/) was used to
construct the protein-protein interaction network of RCL1
and to predict the potential function of RCL1. )e network
was built through physical interactions, gene coexpression,
website prediction, and gene colocalization in GeneMANIA
database. )e GSEA software (http://www.broadinstitute.
org/gsea) was used for pathway enrichment analysis. For
Gene sets, a false discovery rate (FDR) was <0.05 and a
family-wise error rate was <0.05.

2.5. LncRNAs Coexpression Analysis. Spearman correlation
coefficient was used to discriminate the LncRNAs coex-
pressed with RCL1; and for the LncRNAs with coefficient
>0.5, p< 0.001 was selected. )en the K-M analysis was
performed to estimate the prognostic value of LncRNAs in
HCC.

2.6. Construction of Risk Signature. )e “limma” R package
was used to identify the differentially expressed genes be-
tween the low RCL1 expression group and the high RCL1
expression group with |log2 fold change FC|> 1 and false
discovery rate (FDR)< 0.05 as a screening criterion. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis for the differentially
expressed genes were conducted and visualized using the
“clusterProfiler” and “ggplot2” R package. )e univariate
Cox regression analysis was used to identify genes associated
with overall survival (p< 0.05). )en the importance of the
survival related differential genes was calculated and ranked
using the random forest via the “randomForestSRC” R
package. Next, the analysis of survival related genes was
performed to build a risk signature as follows: risk
score� β1x1 +β2x2+β3x3+,. . .,+ βnxn.

Furthermore, the final gene model was screened by
combining the gene number and log-rank p value based on
the K-M analysis. Univariate and multivariate Cox regres-
sion analyses were performed to assess whether the risk
signature was an independent prognostic factor.)e receiver
operating characteristic (ROC) curve was used to evaluate
the predictive power of the signature.

2.7. Correlation Analyses between Risk Model and Tumor
Microenvironment. )e immune checkpoint molecules,
including PDCD1, CTLA4, CD80, CD86, CD274,
PDCD1LG2, CD276, and VTCN1, were identified and
differentially expressed in high-risk and low-risk groups.)e
hypoxia-related genes and the ferroptosis potential index
(FPI) were obtained from previous literature and the ex-
pression levels in high-risk and low-risk groups were
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checked [10, 11]. Meanwhile, the association between risk
score and survival status, clinical stage, and pathological
grade was analyzed.

2.8. Construction and Evaluation of the Nomogram. In this
study, clinical stage and risk score both were independent
prognostic factors for HCC patients. In order to facilitate the
potential clinical utility, the nomogram included risk score
and clinical stage was constructed for assessing the 1-year, 3-
year, and 5-year survival probabilities. Meanwhile the cal-
ibration curve of the nomogram evaluated the agreement
between the observed rates and predicted overall survival.
)e ROC and decision curve analysis (DCA) were per-
formed to assess the clinical application quality of the
nomogram.

3. Results

3.1. Clinical Characteristics of the Study Population. In this
study, 221, 370, and 232 HCC tissue samples were obtained
with corresponding clinical data from the GEO, TCGA, and
ICGC databases, respectively. )e details of clinical stage,
pathological grade, sex, age, and survival rate are shown in
Table 1.

3.2. Differential Expression Analysis. We evaluated the
mRNA expression level of RCL1 in HCC intratumoral tissue
(IT) and peritumoral normal tissue (PT) based on the GEO,
TCGA, and ICGC databases. )e results indicated relatively
lower RCL1 expression levels in HCC IT, compared with the
PT (Figures 1(a)–1(c)). Meanwhile, we further analyzed the
RCL1 expression level via paired t-test, and the results also
indicated lower RCL1 expression levels in HCC IT, com-
pared with the PT (Figures 1(d)–1(f )). Next, we examined
the RCL1 expression level in various normal tissues based on
Genotype-Tissue Expression (GTEx) data via the HCCDB
database (http://lifeome.net/database/hccdb/home.html)
[12], and the results showed higher expression levels of RCL1
in the liver tissue (Figure S1(a)). Meanwhile, we also ex-
plored the RCL1 expression level in TCGA by the HCCDB
database, and the results showed that the difference in RCLI
expression between HCC adjacent normal tissue and tumor
tissue was highly significant compared with the other
cancers (Figure S1(b)). )ese results suggested that RCL1
was specifically underexpressed in the IT of HCC patients.
Moreover, based on the GEO database, it was observed that
the RCL1 expression was lower in high pathological stage,
high AFP level, and large tumor size compared with the
corresponding low pathological stage, low AFP level, and
small tumor size (Figures 2(a)–2(f)). )e results from the
TCGA and ICGC databases were consistent with the results
of GEO database (Figures 2(g)–2(l)).

3.3. Survival Analysis. To determine the predictive value of
RCL1 in HCC, we performed overall survival (OS) analysis
via the K-M method. )e results indicated that lower RCL1
expression was associated with poor OS in the TCGA, GEO,

and ICGC databases (Figures 3(a)–3(c)). Furthermore, we
confirmed that HCC patients with lower RCL1 expression
had poor disease-free survival (DFS) in the TCGA and GEO
cohorts (Figures 3(d) and 3(e)).

3.4. Immune Cells Infiltration, TMB, and MSI Analysis.
We analyzed the relationship between RCL1 expression and
immune cells infiltration. )e results showed that RCL1
expression was negatively associated with B cells, CD4+
T cells, macrophages, neutrophils, and dendritic cells infil-
tration score. Particularly, a strong correlation was observed
between macrophages and RCLI expression (Figure 4(a)).
We further investigated the prognostic value of immune
cells infiltration and RCL1 expression in HCC patients based
on the TIMER database. )e results indicated that immune
cells infiltration did not affect OS, while the RCL1 aberrant
expression had a significant effect on OS in HCC patients
(Figure 4(b)). Furthermore, we divided HCC patients from
the TCGA cohort into four groups according to the RCL1
expression and immune cells infiltration score. We found
that the lower RCL1 expression level combined with the
lower B cells, CD8+ T cells, and dendritic cells infiltration
was associated with a poor OS in HCC patients, compared
with the higher RCL1 expression level (Figures 4(c), 4(d),
and 4(h)). However, the lower RCL1 expression level in-
dicated poor OS, compared with the higher RCL1 expression
level in HCC patients regardless of CD4+ T cells and
neutrophils infiltration (Figures 4(e) and 4(g)). Meanwhile,
the lower RCL1 expression level combined with the higher
macrophages score predicted an unfavorable OS in HCC
patients (Figure 4(f )). )is may be due to the fact that M2
macrophages accounted for a greater ratio of tumor-asso-
ciated macrophages in HCC tumor microenvironment.

Previous studies have demonstrated that TMB and MSI
are poor prognostic indicators in multiple cancers [13, 14].
In the present study, we found that higher TMB had a
tendency for shorter OS, although it was not statistically
significant (Figure 5(a)). Meanwhile, HCC patients with the
lower RCL1 expression level and higher TBM had unfa-
vorable OS, and the patients with lower TMB and higher
RCL1 expression had better OS (Figure 5(b)). Subsequently,
we analyzed the potential role ofMSI in HCC, and the results
demonstrated that higher MSI was associated with poor OS
(Figure 5(c)). )e patients with lower RCL1 expression and
higher MSI had worst OS among the four groups
(Figure 5(d)).

3.5. Enrichment Analysis. To understand the potential
function of RCL1 in HCC development, the protein-protein
interaction network was constructed through GeneMANIA
database. )e results exhibited that RCL1 may interact with
RTCA, KRR1, OGG1, and BMS1, and these genes may be
involved in ribosome biogenesis, ribonucleoprotein complex
biogenesis, and ncRNA processing (Figure 6(a)). We also
found that Notch signaling pathway, pancreatic cancer,
RNA degradation, VEGF signaling pathway, and WNT
signaling pathway were enriched in the low RCL1 expression
group via GSEA (Figure 6(b)).
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3.6. LncRNAsCoregulated Analysis. LncRNAs are known to
be involved in various stages of tumorigenesis. In this
study, we explored whether LncRNAs were involved in
regulating the expression of RCL1 through coexpression
analysis. Based on the TCGA cohort, we selected the
LncRNAs (AC079061, AL354872, and LINC01093) with
correlation coefficients more than 0.5 and RCL1 as po-
tential regulatory genes (Figure 7(a)). )e K-M survival
analysis also showed that the aberrant expression of these
LncRNAs was associated with poor clinical outcome
(Figure 7(b)).

3.7. Differential Genes and Enrichment Analysis. We split
HCC patients from the TCGA cohort into two groups
based on RCL1 expression, and the differentially
expressed genes were identified. )e volcano plot showed
30 upregulated and 90 downregulated genes (Figure 8(a)).
)e expression of top 20 upregulated and downregulated
genes is shown in the heatmap (Figure 8(b)). Moreover,
we performed GO and KEGG pathway enrichment
analysis for differentially expressed genes (Figures 8(c)
and 8(d)); and the results indicated that differentially

expressed genes were mainly involved in multiple meta-
bolic processes.

3.8. Construction and Verification of Four-Gene Signature.
In the TCGA cohort, we used the univariate Cox re-
gression analysis to select the OS related differential genes
(p< 0.05) and found that 43 genes were associated with OS
(Figure 9(a)). We next ranked the relative importance of
43 OS related genes by the random forest, and top 10 genes
were selected (SPP1, CDC20, MYBL2, UBE2C, TRNP1,
MTTP, CDO1, CYP2C9, FTCD, and FMO3, Figure 9(b)).
Based on these 10 genes, more than 1000 risk models were
constituted. Subsequently, we further screened the risk
model with smallest p value based on the K-M plotter
(Figure 9(c)); and the four-gene signature was then built
as follows: risk score � 0.085 ∗ SPP1 + 0.125 ∗MYBL2 +
(–0.113 ∗ FTCD) + 0.091 ∗TRNP1. )e training set
(TCGA cohort) and the validation set (ICGC cohort) were
divided into the high-risk group and the low-risk group
based on the median value of risk score. We found that the
patients in the high-risk group had higher risk score and
poor survival status compared with the low-risk group in

Table 1: )e clinical characteristics of HCC patients.

Clinical characteristics — TCGA % ICGC % GEO %
— — 370 — 232 — 221

Survival status Survival 244 65.95 189 81.47 136 61.5
Death 126 34.05 43 18.53 85 38.5

Age ≤65 years 232 62.70 90 38.79 200 90.5
>65 years 138 37.30 142 61.21 21 9.5

Gender Male 249 67.30 171 73.71 191 86.4
Female 121 32.70 61 26.29 30 13.6

Histological grade

G1 55 14.86 NA — NA —
G2 177 47.84 NA — NA —
G3 121 32.70 NA — NA —
G4 12 3.24 NA — NA —

Stage

I 171 46.22 36 15.52 93 42.1
II 85 22.97 106 15.69 77 34.8
III 85 22.97 71 30.60 50 22.6
IV 5 1.35 19 8.19 NA 0.5

T classification

T1 181 48.92 NA — NA —
T2 93 25.14 NA — NA —
T3 80 21.62 NA — NA —
T4 13 3.51 NA — NA —
TX 1 0.27 NA — NA —

M classification
M0 266 71.89 NA — NA —
M1 4 1.08 NA — NA —
MX 100 27.03 NA — NA —

N classification
N0 252 68.11 NA — NA —
N1 4 1.08 NA — NA —
NX 113 30.54 NA — NA —

Prior malignancy No NA NA 202 87.07 NA —
Yes NA NA 30 12.93 NA —

Tumor size Small NA — NA — 140 63.3
Large NA — NA — 80 36.2

Cirrhosis No NA — NA — 18 8.1
Yes NA — NA — 203 91.9
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Figure 1: Expression of RCL1 in HCC. (a) )e mRNA expression of RCL1 in HCC intratumoral tissue and adjacent tissue based on GEO
(A), TCGA (b), and ICGC (c) cohorts. )e Wilcoxon test was used to calculate p value. Expression distribution of RCL1 in pairwise
comparisons in GEO (d), TCGA (e), and ICGC (f) cohorts. Paired t-test was performed.
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the training set and the validation set (Figures 9(d) and
9(e)). Also, Principal Component Analysis (PCA) results
exhibited a good separation between the high-risk group
and the low-risk group (Figures 9(d) and 9(e)).

Subsequently, theK-Mplotterwas performed to evaluate the
OS difference between the high-risk group and the low-risk
group. )e results indicated that patients in the high-risk group

had significantly poorer OS than that of patients in the low-risk
group in the TCGA and ICGC cohorts (Figures 10(a) and
10(b)). Meanwhile, the area under the ROC curve (AUC) was
applied to assess the predictive power of four-gene signature.
)e AUC for 0.5, 1, 2, 3, and 5 years were 0.75, 0.74, 0.72, 0.68,
and 0.70, respectively, in the TCGA cohort (Figure 10(c)); and
the AUC for 0.5, 1, 2, 3, and 5 years were 0.70, 0.74, 0.78, 0.83,
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Figure 2: Correlation analysis between RCL1 expression and clinical characteristics. Expression distribution of RCL1 in different TNM
stage (a), AFP group (b), tumor size (c), recur status (d), cirrhosis status (e), and sex (f ) based on GEO cohort. )e expression of RCL1 in
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Figure 3: Overall survival (OS) and disease-free survival (DFS) analysis of RCL1. Kaplan-Meier plot of the correlation between RCL1
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and 0.80, respectively, in the ICGC cohort (Figure 10(d)). )ese
results demonstrated excellent prediction ability of the four-gene
signature for OS in HCC patients.

Furthermore, univariate and multivariate Cox regres-
sion analyses were carried out to evaluate whether the four-
gene signature was a prognosis-related marker. In the
TCGA cohort, the results of univariate Cox regression
analysis suggested that clinical stage and risk score were
associated with OS in HCC patients (Figure 11(a)). )e
multivariate Cox regression analysis confirmed that clinical
stage and risk score were independent prognostic factors
(Figure 11(a)). We further verified this in the ICGC cohort,
and the results showed that clinical stage and risk score
remained independent OS predictor (Figure 11(b)). Finally,
we evaluated the prognostic value of SPP1, MYBL2,
TRNP1, and FTCD genes via the K-Mmethod in the TCGA
cohort and found that these genes were associated with OS
(Figures 11(c)–11(f )).

3.9.AssociationRiskScorewith ImmuneCheckpoint,Hypoxia,
FPI, and Clinical Feature. )e expression of immune check-
point molecules was strongly associated with immune escape.
We analyzed the expression of eight common immune
checkpoint molecules between high-risk and low-risk groups
based on TCGA cohort. )e results indicated that PDCD1,
CTLA4, CD80, CD86, CD276, and VTCN1 presented higher
expression in high-risk group compared to low-risk group
(Figure 12(a)). Meanwhile, the expressions of sixteen hypoxia-
related genes were also higher in the high-risk group compared
with the low-risk group (Figure 12(b)). )ese results suggested
that patients with high risk showed unfavorable immune mi-
croenvironment. Ferroptosis is mediated by iron metabolism, a
novel type of cell death, and playing crucial role in prompting
aggressive malignancies [15]. In this study, we found that the
patients with high risk had higher FPI than those with low risk
(Figure 12(c)). Furthermore, we explored the relationship be-
tween risk score and clinical feature. )e results demonstrated
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Figure 4:)e association between RCL1 expression and immune cell filtration. (a) Assessment of the relationship between RCL1 expression
and six-type immune cell score from TIMER database. (b) Overall survival (OS) analysis of six-type immune cell and RCL1 with patients of
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that risk-score was remarkably increased in dead patients
compared with living patients (Figure 12(d)). Meanwhile, the
risk-score presented an elevated tendency with advanced
pathological stage and grade (Figures 12(e) and 12(f)).

3.10. Constructing and Evaluating a Nomogram. A nomo-
gram was constructed incorporating two independent

prognostic factors, risk score, and clinical stage to facilitate
clinical application for predicting the probability of 1-year,
3-year, and 5-year overall survival in the TCGA cohrt
(Figure 13(a)). Next, the calibration cure was performed to
assess the classification performance of nomogram, and the
diagonal dashed line showed the best prediction. )e cali-
bration cure suggested that the nomogram had a good
predictive ability (Figure 13(b)). Meanwhile, the ROC of the
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Figure 5: Overall survival (OS) analysis of Microsatellite Instability (MSI) and Tumor Mutation Burden (TMB). (a))e prognostic value of
TMB in HCC based on TCGA cohort. (b) OS analysis of combinations of TMB and RCL1 expression in HCC. (c) )e prognostic value of
MSI in HCC based on TCGA cohort. (d) OS analysis of combinations of MSI and RCL1 expression in HCC.
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nomogram was the largest, and the AUC of 1, 3, and 5 years
were above 0.7 (Figure 13(c)).)e DCA also showed that the
nomogram had the best net benefit compared to the risk
model and stage model (Figure 13(d)).

4. Discussion

RCL1, an RNA 3′-terminal phosphate cyclase-like pro-
tein, is ubiquitously expressed in various tissues and has
been shown to participate in the ribosome biogenesis,
rRNA processing, and Gene Expression pathway (https://
www.genecards.org/cgi-bin/carddisp.pl?gene�RCL1)
[6, 16–18]. Defects in the ribosomal biogenesis can result
in cirrhosis and P53 activation and are associated with
tumorigenesis [19, 20]. )e results from the GETx data-
base showed that RCL1 was most abundantly expressed in
the liver compared with the other normal tissues.

Meanwhile, we found that RCL1 was downregulated in
HCC tissue, and lower expression of RCL1 was associated
with poor OS, based on the GEO, TCGA, and ICGC
databases.

)e tumor microenvironment (TME) is crucial for tu-
mor initiation and worsening [21, 22]. Immune cells are
important components of TME; in particular, tumor asso-
ciated macrophages (TAM) are the most abundant cells in
TME [23, 24]. Moreover, previous studies have found that
gene expression was associated with immune cell infiltration
and affected the prognosis of oncology patients [25, 26]. In
this study, we analyzed the relationship between RCL1
expression and immune cells infiltration, and the results
indicated that the expression level of RCL1 was strongly
associated with macrophages infiltration. Meanwhile, the
K-M analysis showed that HCC patients with the lower
RCL1 expression level and higher macrophages infiltration
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Figure 9: Screen of important genes and construction of gene signature. (a) Volcano plot displayed the survival-related genes through
univariate Cox regression analysis. (b) Identification of relative important genes via random survival forest algorithms. (c) Top 20 gene
signatures were ranked by –log 10 p value using Kaplan-Meier plotter calculated.)e distribution of risk score and survival time in high-risk
and low-risk groups in training (d) and validation (e) sets. Principal Component Analysis (PCA) showed the difference between high-risk
and low-risk groups.
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score had poor OS. Previous studies revealed that the Notch
signaling pathway and the WNT signaling pathway are
involved in regulating TME [27, 28]. In our study, the GSEA
showed that the gene in the low RCL1 expression group was
mainly enriched in the Notch signaling pathway and WNT
signaling pathway. In addition, we also explored the role of
TMB andMSI in HCC and analyzed the correlation of RCL1
aberrant expression associating TMB/MSI with OS. )e
results indicated that RCL1 aberrant expression was related

to TME and genome instability in HCC, and RCL1 could act
as a potential prognostic biomarker for HCC.

LncRNAs play a crucial role in regulating gene ex-
pression and stability [29, 30]. In this study, three survival-
related LncRNAs, AC079061, AL354872, and LINC01093,
were identified, and these LncRNAs had a strong correlation
with RCL1 expression. LINC01093 has been shown to be
significantly downregulated in HCC and was correlated with
tumor cell proliferation and metastasis [31–33]. However,
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Figure 10: Overall survival (OS) and receiver operating curve (ROC) analysis of four-gene signature. (a) )e OS analysis of four-gene
signature in TCGA cohort. (b) )e OS analysis of four-gene signature in ICGC cohort. (c) )e ROC of four-gene signature for 0.5, 1, 2, 3,
and 5 years in TCGA cohort. (d) )e ROC of four-gene signature for 0.5, 1, 2, 3, and 5 years in ICGC cohort.
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the function of AC079061 and AL354872 in HCC remained
unclear. )is study showed that AC079061, AL354872, and
LINC01093 were associated with OS and may interact with
RCL1.

Recently, the clinical application of 21-gene signature in
breast cancer has been demonstrated [34, 35]. Currently,
many studies have focused on constructing risk model for
oncology patients in order to evaluate the clinical outcome.
Liu et al. and Cheng et al. constructed four-transcription
factor model and five pseudogenes for predicting the clinical
outcome of glioblastoma multiforme and brain lower-grade
glioma, respectively [36, 37]. Liang et al. built a 10-gene

signature for predicting OS in HCC patients through the
least absolute shrinkage and selection operator (LASSO)
method [38]. Du et al. showed that seven-mRNA signature
was related to recurrence of HCC [39]. In addition, Li et al.
also identified a novel six-gene model as biomarkers for
predicting HCC OS [40]. Despite these studies, the ex-
pression of mRNA as a biomarker for HCC prognosis and
therapeutic monitoring still remains exploratory. In this
study, the random forest method was applied to screen the
OS-related genes, and the risk model was further selected
according to the gene number and log rank p value of K-M.
Finally, the four-gene signature (SPP1, MYBL2, TRNP1, and
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Figure 11: Independent prognostic value of the four-gene signature and overall survival (OS) analysis of four genes. Univariate and
multivariate COX regression analysis of the four-gene signature in TCGA (a) and ICGC (b) cohorts. Kaplan-Meier plotter analysis of SPP1
(c), MYBL2 (d), TRNP1 (e), and FTCD (f) in TCGA cohort.
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FTCD) was identified from more than 1000 combinations
and splitting the HCC patients with different OS into the
low-risk and high-risk groups in the TCGA and ICGC
cohorts. Meanwhile, the ROC analysis showed that the four-
gene signature had excellent predictive capacity for OS in
HCC patients. Correlation analysis exhibited that the

patients with high risk had relatively harsh immune mi-
croenvironments and FPI. Furthermore, the risk score was
also positively related to clinical stage and grade. In this
study, FTCD was identified as a protective factor, whereas
SPP1, MYBL2, and TRNP1 were risk factors for HCC pa-
tients. Zhang et al. reported FTCD as a factor of six-gene
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Figure 12: Association analyses of risk score and immune checkpoint molecules (a), hypoxia-related genes (b), ferroptosis potential index
(c), survival status (d), clinical stage (e), and pathological stage (f ).
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Figure 13: Continued.
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model for predicting OS in HCC patients via single-cell data
[41]. Moreover, FTCD has been reported to interact with
HIF-1α and prompted chemosensitivity in HepG2 cells [42].
Several studies have shown that SPP1 is a poor prognostic
factor for HCC, and upregulation of SPP1 could induce
HCC cell proliferation [43]. Mybl2 can activate cell cycle
related pathways and can enhance HCC cell proliferation
and motility. It has been shown that targeting Mybl2 can
improve the clinical outcome in HCC patients with mutated
P53 [44, 45]. TRNP1 plays an important role in neural
development and regulating cell self-renewal [46, 47].
However, the role of TRNP1 in HCC development and
prognosis still remains unclear.

Although we analyzed the prognostic value of RCL1 and
four-gene signature in multiple datasets, there are still some
limitations in this study. Our study explored the relationship
between LncRNAs and RCL1, which needs to be further
verified in vitro and in vivo. Moreover, the clinical value of
the four-gene signature requires further investigation in a
larger cohort.

In conclusion, based on the analysis of 823 HCC tran-
scriptome profiles, our study suggested that RCL1 could
serve as a novel potential prognostic biomarker for pre-
dicting OS and DFS in HCC patients. Meanwhile,
AC079061, AL354872, LINC01093, and four-gene signature
can be used to predict the OS in HCC patients.
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