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Abstract

Tau neurofibrillary tangles, a pathophysiological hallmark of Alzheimer’s disease (AD), exhibit a 

stereotypical spatiotemporal trajectory that is strongly correlated with disease progression and 

cognitive decline. Personalized prediction of tau progression is, therefore, vital for the early 

diagnosis and prognosis of AD. Evidence from both animal and human studies is suggestive of tau 

transmission along the brain’s preexisting neural connectivity conduits. We present here an 

analytic graph diffusion framework for individualized predictive modeling of tau progression 

along the structural connectome. To account for physiological processes that lead to active 

generation and clearance of tau alongside passive diffusion, our model uses an inhomogenous 

graph diffusion equation with a source term and provides closed-form solutions to this equation 

for linear and exponential source functionals. Longitudinal imaging data from two cohorts, the 

Harvard Aging Brain Study (HABS) and the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI), were used to validate the model. The clinical data used for developing and validating the 

model include regional tau measures extracted from longitudinal positron emission tomography 

(PET) scans based on the 18F-Flortaucipir radiotracer and individual structural connectivity maps 

computed from diffusion tensor imaging (DTI) by means of tractography and streamline counting. 

Two-timepoint tau PET scans were used to assess the goodness of model fit. Three-timepoint tau 

PET scans were used to assess predictive accuracy via comparison of predicted and observed tau 

measures at the third timepoint. Our results show high consistency between predicted and 

observed tau and differential tau from region-based analysis. While the prognostic value of this 

approach needs to be validated in a larger cohort, our preliminary results suggest that our 

longitudinal predictive model, which offers an in vivo macroscopic perspective on tau progression 

in the brain, is potentially promising as a personalizable predictive framework for AD.
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1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder which is the most 

prevalent form of dementia and is a looming public health challenge [1]. Extracellular 

amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles are two misfolded 

protein aggregates implicated in AD pathophysiology [2]. These pathological proteins are 

known to appear in the brain long before the manifestation of clinical and cognitive 

symptoms and are key to the early diagnosis of AD during its preclinical (asymptomatic) 

phase [3–5]. Positron emission tomography (PET) radioligands that avidly and selectively 

bind to misfolded Aβ and tau have enabled 3D visualization and longitudinal quantitation of 

these proteins and catalyzed in vivo investigations on the biological underpinnings of this 

complex and heterogeneous disorder [6–9]. While the mechanistic basis of AD and the 

precise links between Aβ and tau aggregation remain unclear, key differences have been 

noted between the natures of these two underlying proteinopathies. Unlike Aβ, tau 

aggregation is strongly correlated with neurodegeneration and cognitive impairment [10–

17]. The two proteins exhibit distinct trajectories of spatial spread as the disease progresses. 

Whereas Aβ travels from the neocortex to the brainstem and cerebellum, tau first appears in 

the locus coeruleus and the transentorhinal cortex, spreads to the entorhinal cortex and 

hippocampus, and finally ascends to the neocortex [18, 19]. While tau accumulation in the 

medial temporal lobe (MTL) is recognized as a feature of normal aging, its spread outside 

the MTL in conjunction with elevated Aβ is thought to mark the transition from the 

asymptomatic to the symptomatic phase of AD and the onset of cognitive impairment [20]. 

Methods to model and predict the spatiotemporal spread of tau are, therefore, vital for the 

early diagnosis and prognosis of AD.

The spatiotemporal propagation pattern of tau lies at the heart of the seminal Braak staging 

scheme for AD [2]. Recent studies using the PET radiotracer 18F-Flortaucipir have 

successfully recapitulated histopathological Braak staging in vivo both cross-sectionally 

[21–26] and longitudinally [27–29]. The stereotypic spatial topography and temporal 

trajectory of tau have led to the idea that tau may spread from cell to cell via anatomical or 

synaptic connectivity in a prion-like fashion [30–33]. Initial evidence for this hypothesis 

emerged from animal models [34–36]. In vivo imaging studies in humans using 18F-

Flortaucipir PET have lent further support to this idea by demonstrating strong region-

specific associations between regional mean or covariance measures derived from tau PET 

and localized measures of structural [37] or functional [38–40] connectivity. Graph theory 

metrics have been used to investigate the temporal directionality in longitudinal Aβ and tau 

datasets [41]. Building on seminal work on network diffusion models (NDMs) for 

neuropathological spread [42, 43], we published, as part of our prior work, a proof of 

concept of structural connectivity dependent tau spread using human 18F-Flortaucipir PET 

and diffusion tensor imaging (DTI) data from the Harvard Aging Brain Study [44]. Very 

recently, a landmark paper featuring an epidemic spread model (ESM) for tau provided 

rigorous clinical validation of a connectivity-based approach for tau prediction [45]. 

Underlying both NDM and ESM is the idea of propagation of pathophysiological entities 

along the brain’s preexisting, stereotyped neural connectivity conduits captured 

mathematically by a graph Laplacian matrix (in NDMs) or an equivalent anatomical 
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connection probability matrix (in ESMs). Compared to the ESM [46], which is a 

probabilistic model, the NDM [42, 43, 47] takes an analytic and deterministic approach 

based on graph-domain partial differential equations (PDEs) and, therefore, is more intuitive 

and computationally efficient. Existing literature on NDMs, however, is based either on 

PDEs that are homogeneous (source-free) and rely on passive diffusion or on PDEs with 

impulse sources sporadically distributed in time. While these frameworks provide qualitative 

explanations for disease spread and enable source inference, they are less suitable for 

modeling the simultaneous accretion and propagation of tau for quantitative prediction. 

Here, we use an analytic graph diffusion approach to quantitatively model the aggregation 

and propagation of tau along the structural network of the brain.

While passive diffusion from localized sources can qualitatively characterize the spread of 

misfolded proteins or surrogate measures like atrophy [47, 48], spatiotemporal impulses do 

not capture the continuous proteopathic seeding processes that underlie tau aggregation [49, 

50]. Tau molecular “seeds” are thought to be monomeric or oligomeric forms of the protein 

that recruit monomeric tau and facilitate misfolding [51]. Recent histological data suggest 

high expression of seed proteins in the entorhinal cortex, some downstream sites along the 

Braak pathway, and some white matter tracts [52]. New studies have also emphasized the 

role of Aβ in potentiating the seeding processes that lead to misfolding [53, 54]. Evidence 

from cell lines suggests a sigmoidal evolution of tau seeding featuring an exponential growth 

phase [49]. Concomitantly with seeding that leads to misfolded tau accretion, tau clearance 

is mediated by a combination of proteasomal and autophagic degradative processes [55, 56] 

with increased emphasis being placed on peripheral pathways and the glymphatic system 

[57, 58]. While the exact mechanisms of tau clearance remain an active area of research, 

they are a key therapeutic target for tauopathies [59]. Clearance mechanisms have been 

previously incorporated in spread models for misfolded proteins [46, 60]. To accommodate 

the cumulative effects of tau seeding and removal, our model is based on an inhomogeneous 

PDE that includes a source term capturing local trends of active generation and clearance 

alongside passive diffusion along the structural network of the brain.

In this work, we use regional tau measures derived from longitudinal 18F-Flortaucipir tau 

PET data collected at two and three timepoints as part of the Harvard Aging Brain Study 

[61, 22]. We perform additional validation on three-timepoint 18F-Flortaucipir tau PET scans 

from the Alzheimer’s Disease Neuroimaging Initiative database. Unlike previous works that 

have modeled misfolded protein dynamics starting from one or more focal point sources and 

tested the goodness of fit using single-timepoint observations, we model tau seeding and 

clearance as a continuous-time process and quantitatively validate our model predictions 

using 18F-Flortaucipir PET measures at a future timepoint. Instead of a population-level 

healthy structural or functional connectome as used in most prior studies on 

neuropathological spread, we use structural connectivity information extracted from 

individual diffusion-weighted magnetic resonance imaging (MRI) scans. Our model allows 

us to separate passive diffusion trends from active generation/clearance trends for each 

anatomical region-of-interest (ROI). In section 2, we derive closed-form analytic solutions 

for two inhomogeneous graph diffusion PDEs both based on continuous-time source 

functionals – one linear in time and another exponential. We then present data acquisition 

and processing details. Our main findings are reported in section 3. We demonstrate model 
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fitting using two-timepoint data and validate the model in three-timepoint datasets. Finally, 

in sections 4 and 5, we summarize this work, discuss its strengths and limitations, and 

present our envisioned future directions.

2. Methods

2.1. Theory

The spread of a physiological variable can be modeled as a diffusion process along the 

brain’s structural connectome using a graph diffusion equation. The network underlying the 

diffusion process is defined as a graph G = (V, ℰ) where the ith node, νi ∈ V, represents the 

ith gray matter parcellation or anatomical ROI, |V | = N is the number of ROIs, and ϵij ∈ ℰ
represents the connectivity strength between node νi and node νj. To model the spread of 

pathological tau species along the brain’s structural network, we represent the regional tau 

burden as a time-varying graph signal vector x(t) = x νi, t , νi ∈ V , x(t) ∈ ℝN, where t is a 

scalar time variable. x(t) is the solution to a first-order PDE, usually referred to as the 

network diffusion equation:

∂x(t)
∂t = − βLx(t), (1)

where L ∈ ℝN × N is the normalized graph Laplacian matrix. Solutions to the homogeneous 

PDE shown in (1) are of the form:

x(t) = e−βL t − t0 x t0 , (2)

where x(t0) is the initial tau burden at time t0. To model active generation or clearance 

alongside passive spread, a source term, s(t), can be added to (1) leading to an 

inhomogeneous PDE:

∂x(t)
∂t = − βLx(t) + s(t) . (3)

Analytic graph diffusion models have evolved from purely qualitative models based on 

passive diffusion [42] to those that incorporate impulse sources of brain atrophy [47, 62]. 

While past work on NDMs has reported high correlations between observed atrophy and 

predicted atrophy based on inferred point sources earlier in time, quantitative predictions 

using serialized measures entails modeling of seeding and clearance processes between 

timepoints. The first model tested here assumes a spatially heterogeneous source linearly 

varying in time. Building on empirical evidence that tau seeding is a sigmoidal process with 

an exponential phase after an initial lag, the second model is based on an exponential source 

term. For both models, the solution to (3) can be computed as a sum of the solution to the 

homogeneous counterpart and an integral that is derived from the source term as follows:

x(t) = e−βL t − t0 x t0 + e−βLt∫t0

t
eβLτs(τ)dτ . (4)
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2.1.1. Linear Source Model

The first model assumes that tau model production and clearance follow a spatially 

heterogeneous and temporally linear source term s(t) formulated as:

s(t) = rt . (5)

Here r ∈ ℝN is a linear rate vector. The corresponding PDE is given by:

∂x(t)
∂t = − βLx(t) + rt . (6)

The integrand in (4) for the source term in (5) is:

∫t0

t
eβLτrτdτ = ∫t0

t
eβLττdτ r = 1

β L−1 ∫t0

t
(βL)eβLττdτ r (7)

Using the matrix integration by parts formula, we get the following solution to the 

inhomogeneous PDE in (6):

x(t) = e−βL t − t0 x t0 + e−βLt 1
β L−1(eβLtt − eβLt0t0 − 1

β L−1 eβLt − eβLt0) r . (8)

We use the eigenvalue decomposition of the Laplacian, L = QΛQ−1 and utilize special 

properties of products of matrix exponentials to simplify the terms as follows:

x(t) = e−βL t − t0 x t0 + 1
β tL−1 − t0L−1e−βL t − t0 r − 1

β2L−2 I − e−βL t − t0 r

.
(9)

The time gap between two sequential PET scans in the HABS cohort is about 2 years. 

Accounting for the slow pace of tau accumulation in this time frame, we linearize this 

equation to obtain:

x(t) ≈ (I − βLΔt)x t0 + t0Δtr . (10)

where Δt = t − t0 and I ∈ ℝN × N is the identity matrix. The inter-scan time, Δt, is a known 

entity for each individual. To fit the resultant model to a two-timepoint dataset, we solve for 

the model parameters β and r by minimizing the following cost function:

ΦLIN(β, r) = 1
2 f x0, β, r − xt 2

2, (11)

where we denote x(t0) as x0 and x(t) as xt and summarize the model as a function f(x0, β, r) 

of the unknown parameters. We adopt a gradient descent strategy to solve the optimization 
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problem. The gradient derivation is provided in the appendix. To ensure that we have 

reached the global minimum, we use a multi-start approach with random initializations.

2.1.2. Exponential Source Model

The second model seeks to emulate an exponential seeding profile by defining a source term 

featuring a global parameter σ governing the rate of production/clearance and a spatially 

heterogeneous entity α ∈ ℝN, which captures production or clearance of tau at different 

ROIs. The resultant source term is formulated as:

s(t) = α eσt − 1 , (12)

The corresponding PDE is given by:

∂x(t)
∂t = − βLx(t) + α eσt − 1 . (13)

We computed the solution to this equation in closed form from (4) and (12) as:

x(t) = e−βL t − t0 x t0 + σI + βL −1 eσIt − eβL t0 − t eσIt0 α

− βL −1 I − eβL t0 − t α .
(14)

As with the linear source model, given the proximity of serial scans, we approximate this 

model and express it in terms of Δt = t − t0 as follows:

x(t) ≈ (I − βLΔt)x t0
+ σI + βL −1 σIΔt + βLΔt I + σIt0 α − IΔtα .

(15)

To fit this model to a two-timepoint dataset, we solve for the model parameters β, α, and r 
by minimizing the following cost function:

ΦEXP(β, α, σ) = 1
2 f x0, β, α, σ − xt 2

2, (16)

where we denote x(t0) as x0 and x(t) as xt and summarize the model as a function f(x0, β, α, 

σ) of the unknown parameters. Once again, we use gradient descent to minimize the cost 

function. The gradient derivation is provided in the appendix. We used a multi-start 

approach with random initializations to attain global minima.

2.2. Data Description

2.2.1. Participants—The overall workflow is summarized in Fig. 1. Our model 

validation relies on two independent data sources: the Harvard Aging Brain Study (HABS) 

and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We use longitudinal 

structural MRI, diffusion MRI, and 18F-Flortaucipir PET imaging for tau from both 
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repositories. Additionally, for each HABS data sample, we utilize our knowledge of each 

individual’s Aβ-status derived from 11C-Pittsburgh Compound-B (PiB) PET imaging.

HABS is an ongoing longitudinal study designed to further our understanding of what 

differentiates normal aging from preclinical AD. Preclinical AD refers to the 

presymptomatic stage of AD which is usually tracked using pathophysiological biomarkers, 

e.g., Aβ and tau measures from PET or cerebrospinal fluid [63]. HABS participants who 

underwent 3T diffusion-weighted MRI scans at baseline and subsequently underwent serial 
18F-Flortaucipir PET scans at two or three timepoints were included in our data analysis. All 

participants were cognitively normal (CN) elderly individuals. Of the n = 68 HABS 

participants used in this work, 59 had only two 18F-Flortaucipir scans (baseline and follow-

up), while the remaining nine had a third 18F-Flortaucipir scan (baseline and two follow-

ups). Henceforth, we will refer to these two subsets as the HABS-2TP (two-timepoint) and 

HABS-3TP (three-timepoint) datasets respectively. The HABS-2TP dataset is used for 

parameter computation and assessing the goodness of model fitting while the HABS-3TP 

dataset is utilized for validation of downstream prediction of tau.

ADNI is a multisite study that features serial collection of neuroimaging, 

neuropsychological, biochemical, genetic, and other measures from cognitively normal and 

impaired human subjects (http://adni.loni.usc.edu/). In our work, we use data from n = 22 

ADNI3 participants who underwent 3T MRI and 18F-Flortaucipir PET scans at baseline and 

subsequently underwent serial MRI and 18F-Flortaucipir PET scans after 24- and 48-month 

followup timepoints. 10 of these subjects are elderly CN individuals, 7 had mild cognitive 

impairment (MCI), and 5 were AD patients. Henceforth, we will refer to this dataset as the 

ADNI-3TP (three-timepoint) dataset. Aβ PET scans are not available for all subjects in the 

ADNI-3TP dataset. Therefore, we do not consider ADNI Aβ-status in our analysis.

Table 1 presents a summary of participant demographics. The time gap between the DTI 

scan and the baseline 18F-Flortaucipir PET is indicated as ΔtDTI-PET. HABS uses the average 

PiB distribution volume ratio in frontal, lateral temporoparietal, and retrosplenial (FLR) 

ROIs for Aβ quantitation. This measure is reported in the “PiB FLR” column.

2.2.2. Data Acquisition—For the HABS dataset, all MRI scanning was performed on a 

Siemens Tim Trio 3T imaging system with a 12-channel phased-array head coil. T1-

weighted scans were based on a Magnetization Prepared Rapid Gradient-Echo (MPRAGE) 

sequence with a voxel size of 1.05×1.05×1.2 mm3. The diffusion-weighted scans were 

acquired using a spin-echo echo-planar imaging sequence: echo time (TE) 84 ms, repetition 

time (TR) 8,040 ms, field-of-view (FOV) 256×256×128, voxel size 2 mm isotropic with 30 

isotropically distributed orientations for the diffusion-sensitizing gradients at a b-value of 

700 s/mm2. PET scans were performed on a Siemens ECAT PET HR+ scanner (3D mode, 

63 image planes, 15.2 cm axial FOV, 5.6 mm transaxial resolution, and 2.4 mm slice 

interval). For PiB PET scans, an 8.5–15 mCi bolus injection was immediately followed by a 

60-minute dynamic acquisition. 18F-Flortaucipir PET data were acquired for the 80 to 100 

minute time window following a 10 ± 1 mCi bolus injection. Serial tau PET imaging was 

conducted with intervals of 25.5 ± 8.4 months between consecutive scans.
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For the ADNI dataset, all MRI data was obtained on Siemens Prisma 3T scanners. T1-

weighted anatomical scans were based on an MPRAGE sequence with voxel size 1×1×1 

mm3, FOV 208×240×256, TE 3 ms, TR 2,300 ms, and inversion time (TI) 900 ms. The 

diffusion-weighted scans were acquired with TE 56 ms, TR 7,200 ms, FOV 232×232×160, 

voxel size 2 mm, and diffusion-sensitizing gradients at a b-value of 1000 s/mm2. 18F-

Flortaucipir PET data were acquired for the 75 to 105 minute time window following a 10±1 

mCi bolus injection. Serial tau PET imaging was conducted with intervals of 24 months 

between consecutive scans.

2.3. Data Processing

2.3.1. Computation of Tau Measures—T1-weighted MRI preprocessing was 

performed using FreeSurfer v6.0 [64, 65]. We utilized the FreeSurfer based auto-

reconstruction process that incorporates motion correction, intensity normalization, skull 

stripping, and linear and nonlinear volumetric registration leading to anatomical (cortical 

and subcortical) parcellations.

PET images were rigidly coregistered to the T1 MR images using FSL [66–68]. FreeSurfer 

ROIs defined by MR as described above were transformed into the PET native space. For 

both HABS and ADNI, standardized uptake value ratios (SUVRs; cerebellar gray matter 

reference) were computed for 18F-Flortaucipir PET. For HABS PiB PET scans, and 

distribution volume ratios (DVRs; cerebellar reference) were computed, and Aβ+/− status 

was determined by using a cutoff of 1.20 on the PiB FLR DVR.

85 ROIs were retained from the 112 regions defined by the FreeSurfer Desikan-Killiany 

atlas after discarding white matter ROIs and ROIs that are known to have high off-target 

binding. We extracted mean SUVRs for the 85 ROIs to form an 85 × 1 intensity vector from 

each 18F-Flortaucipir PET image.

2.3.2. Structural Connectome Computation—The diffusion MRI scans were 

preprocessed using FSL to correct discrepancies arising from subject motion, eddy current 

distortion, and susceptibility. Diffusion tensors were reconstructed using DSI Studio, and 

deterministic fiber tracking was performed to obtain the streamlines between different brain 

regions. Whole-brain seeding was used. The termination criterion was decided by fractional 

anisotropy. An “end in region” criterion was applied to retain only those streamlines that end 

in an ROI thereby ensuring that the final set of streamlines are representative of the actual 

inter-ROI connectivity. We used an angular threshold of 45°, an anisotropy threshold of 0.6 

times Otsu’s threshold (effective range of 0.14 to 0.45 across the subjects), a total of 50,000 

seeds, and a fiber length range of 30 to 300 mm. The fiber trajectories were smoothed by 

averaging the propagation direction with 40% of the previous direction. We used identical 

parameter settings for all participants.

The tracts were normalized by length, and only those ending in the 85 retained gray-matter 

ROIs from the FreeSurfer Desikan-Killiany atlas were considered. The streamlines between 

each pair of ROIs were counted to generate pairwise inter-ROI connection strengths. 

Individual 85×85 adjacency matrices were thus created for ROI-based analysis to capture 
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individualized structural connectivity profiles for each human subject. Normalized weighted 

Laplacian matrices were computed from the adjacency matrices.

2.3.3. Model Implementation and Validation—Model parameters for both the linear 

and exponential source models were fitted by minimizing the cost functions in (11) and (16) 

respectively. The cost functions were iteratively minimized using an alternating gradient 

strategy with the linear parameters (e.g., the vector parameters α and r) and the nonlinear 

parameters (e.g., the scalar parameters β and σ) updated in sequential sub-iterations. All 

gradients were computed analytically as described in the appendix. The HABS-2TP dataset 

was used to demonstrate model fitting performance. The HABS-3TP and ADNI-3TP 

datasets were used for independent validation at the third timepoint. For assessment of 

model fitting in the HABS-2TP dataset and prediction accuracy in the HABS-3TP and 

ADNI-3TP datasets, we compare predicted and observed SUVRs and differential SUVRs 

(dSUVRs). We use the normalized root-mean-square error (NRMSE) and the normalized 

mean absolute error (NMAE) between the observed and predicted SUVRs and dSUVRs as 

quantitative and objective figures-of-merit to assess model performance. The NRMSE is 

based on an L2 norm of the differences between observed and predicted measures, while the 

NMAE is based on the L1 norm. While both metrics are quantitative in nature, they penalize 

larger and smaller errors to different relative extents. Both metrics are, therefore, used for 

robust assessment of model accuracy.

3. Results

3.1. Goodness of Fit in HABS-2TP Data

Parameter fitting was done for individual subjects in the HABS-2TP dataset using the linear 

and exponential source models. Recent literature highlights the predictive value of tracking 

the longitudinal change in inferior temporal lobe (IFT) tau [29]. Accordingly, in our 

analysis, we separate individuals with more than 1% increase in IFT tau burden from 

baseline to follow-up (tau ↑) from those with no discernible increase (< 1%) in IFT tau 

burden from baseline to follow-up (tau ).

We also separate the subjects based on their Aβ status into Aβ+ and Aβ− categories. 

Furthermore, since tau evolution can be conceptualized as a slow-moving process, a high 

degree of correlation could exist between the two timepoints. Therefore, alongside 

computing ROI mean SUVRs to assess goodness of fit, we also computed dSUVRs. Fig. 2 

depicts observed and predicted mean SUVRs and dSUVRs in 10 ROIs deemed critical for 

tau in preclinical AD for two representative individuals – a tau ↑ subject and a tau 

subject. These ROIs were selected for visualization based on recent literature that identified 

several regions in the brain that optimally capture longitudinal change early in the 

Alzheimer’s continuum [27, 69]. While there is good agreement between observed and 

predicted SUVRs for both the linear and exponential source models, the latter more robustly 

estimates dSUVRs. Table 2 shows quantitative metrics for the goodness of fit, namely the 

NRMSE and NMAE between the observed and predicted SUVRs and dSUVRs for all ROIs. 

Consistent trends for the two metrics, as observed here, are indicative of robustness, as the 

two metrics penalize larger and smaller errors to different extents. The exponential source 
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model led to smaller errors in dSUVRs than the linear model for all subjects and for the tau 

↑ and tau  subgroups. We also separately report performance for Aβ+ and Aβ− cases. The 

exponential source model performed better in the tau ↑ subgroup, which features a greater 

proportion of signal over noise in the dSUVRs, compared to the tau  subgroup, which 

exhibits relatively subtle longitudinal changes that are more susceptible to noise-induced 

variations. The reverse was true for the linear source model. In comparison, there was a 

smaller difference in the data fidelity metrics between the Aβ+ and Aβ− groups. This could 

be explained by the fact that the Aβ+ subgroup in our cohort includes many tau  subjects, 

while the Aβ− subgroup includes many tau ↑ subjects.

3.2. Model Interpretation

To facilitate model interpretation, we separately examine the propagative and generative 

components for the exponential source model. Fig. 3 shows a connectogram summarizing 

the results of model fitting. The plot uses a circular layout with all fitted ROIs indicated on 

the outer annulus (Annulus 4). The inter-ROI links in the center offer a population-level 

snapshot of structural connectivity with the link thickness commensurate with pairwise 

connection strengths scaled by the reciprocal of the ROI size (scaling done for improved 

visibility). The critical ROIs highlighted in Fig. 2 and their connectivities are indicated in 

red. In a graph diffusion model, −Lx(t) is proportional to the rate of aggregation in each ROI 

purely due to passive diffusion from its connected neighbors. Annulus 1 depicts for each 

ROI a bar graph of the distribution of Lx(t) across subjects sorted from most negative 

(inward diffusion or accumulation – yellow) to most positive (outward diffusion or 

dissipation – green). Based on the sign of the median value of this measure, each ROI can be 

determined to be either a dissipator or an accumulator. In the exponential source model in 

(13), the vector α acts as a source/producer or sink/remover depending on its sign and could 

be linked to the physiological processes of seeding or clearance. Annulus 2 depicts for each 

ROI a bar graph of the distribution of α across subjects sorted from most negative (remover 

or sink – blue) to most positive (producer or source – red). Based on the sign of the median 

value of this measure, each ROI can be determined to be either a source or a sink. All ROIs 

can be placed into one of four classes depending on its source/sink and accumulator/

dissipator status based on medians. This overall classification is indicated in Annulus 4 for 

four cross-sectional subgroups: (1) Tau , Aβ−, n = 21, (2) Tau , Aβ+, n = 11, (3) Tau ↑, 

Aβ−, n = 17, and (4) Tau ↑, Aβ+, n = 10. This analysis suggests that several of the ROIs 

critical in early AD switch classes from sink+dissipator to source+dissipator when the tau or 

Aβ status changes.

Whereas the entorhinal cortex (ERC) and the IFT regions are a source+dissipator in all but 

the tau , Aβ− subgroup, the hippocampus (HIP) is a source+dissipator only for tau ↑ cases 

while the the amygdala (AMG) and the parahippocampal gyrus (PHG) are a source

+dissipator only for the tau ↑, Aβ+ subgroup. While these groupings are cross-sectional, the 

sequence is consistent with a recently reported tau seeding assay suggesting that the HIP and 

PHG are prominent downstream sites of seeding following the ERC [52]. This sequence of 

seeding sites is also consistent with the Braak pathway. As per the histological evidence 

underlying Braak’s landmark paper [2], whereas stage I is associated with isolated or low 

levels of neurofibrillary tangles in the trans-ERC and ERC sub-regions, the new areas 
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recruited in stage II include pyramidal cells in the HIP and the AMG. The connectivity 

profile in our data also confirms strong ERC-HIP, ERC-PHG, and HIP-AMG connectivity.

3.3. Model Validation with HABS-3TP Data

To test the model’s predictive capability of downstream tau aggregation from baseline, we 

validated the model using the HABS-3TP cohort. The model parameters are fitted by 

utilizing the first two timepoints, while prediction accuracy is assessed at the third timepoint. 

It should be noted that the parameter fitting step is not allowed access to any data from the 

third timepoint.

Fig. 4 shows observed and predicted mean SUVRs and dSUVRs in the 10 ROIs that are 

critical for tau in preclinical AD for two representative individuals – a tau ↑ subject and a tau 

 subject from the HABS-3TP cohort. Table 3 presents NRMSE and NMAE between the 

observed and predicted SUVRs and dSUVRs for all ROIs.

The degradation of performance from the model fitting task to the prediction task is an 

expected outcome as the third timepoint is not previously seen by the model and also 

because, in many regions, the differential fitted by the model is dominated by noise. The 

relative performance of the exponential and linear source models at the prediction task is 

consistent with the model fitting results.

3.4. Secondary Validation with ADNI-3TP Data

For additional validation, we tested the predictive capability of our model on the ADNI-3TP 

dataset. Model fitting and prediction steps similar to those performed for HABS were 

repeated on this cohort. Fig. 5 shows observed and predicted mean SUVRs and dSUVRs in 

the 10 tau-critical ROIs for two representative individuals – a tau ↑ subject and a tau 

subject from the ADNI-3TP cohort. Table 4 presents NRMSE and NMAE between the 

observed and predicted SUVRs and dSUVRs for all ROIs. The trends in the ADNI results 

are consistent with those in HABS results that confirming the overall robustness of the 

predictive model.

4. Discussion

Motivated by literary evidence that the spatiotemporal trajectory of misfolded tau protein 

may provide clues to the course of AD, we modeled pathological tau spread via an 

inhomogeneous PDE. This equation builds on the well-established NDM that portrays tau 

propagation as a passive diffusion process along conduits determined by the brain’s 

structural network. Though we recognize the role that diffusion plays in modeling the 

transmission of tau across brain regions, passive diffusion cannot alone explain the 

escalation in tau burden that is a signature of AD progression. We thus assign to the NDM 

an additional source term thereby creating an inhomogeneous PDE. We generated closed-

form solutions to this equation for linear and exponential source functionals. The resultant 

parametric models were fitted by iterative computation of the model parameters using tau 

PET data at two timepoints. To test the model’s accuracy, we compared predicted and 

observed tau at a third timepoint. For this comparison, we used ROI mean SUVRs as 

measures of localized tau burden and additionally used dSUVRs to quantify the change 
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across timepoints. As quantitative figures of merit, we use the NRMSE and NMAE error 

measures. The exponential source model outperformed the linear source for all data 

groupings.

Source modeling allows us to examine the source/sink and accumulator/dissipator status of 

each ROI based on the medians. Many ROIs considered critical in early AD were classified 

as sink+dissipator for the tau , Aβ− subgroup and switched to source+dissipator when the 

tau or Aβ status changed. The posterior cingulate cortex (PCC) showed a reverse transition 

from source+dissipator to sink+dissipator from the Aβ− to the Aβ+ subgroups. The latter 

observation is interesting since prior work in both cross-sectional [70] and longitudinal [37] 

cohorts suggests the PCC region to be an important site of interaction between Aβ and tau.

A key challenge toward capturing in vivo tau measures using PET is the off-target binding of 
18F-Flortaucipir in several ROIs, including the basal ganglia, choroid plexus, and the 

meninges. At the ROI level, we circumvented this impediment by removing several ROIs 

that exhibit high off-target binding. As future work, we will address off-target effects 

enhanced by spillover by partial volume correcting our data via image deblurring [71] and 

examine the impact of this on model fitting and prediction. Consistent with the focus of the 

HABS cohort for preclinical AD, we centered our attention on ROIs that exhibit 

pathological tau in the early and asymptomatic disease stages. While the subtle but 

detectable changes in in vivo tau burden in the preclinical stage are of particular significance 

in the early diagnosis and prognosis of AD, a major challenge is posed by the noise 

susceptibility of the differential tau PET signals. For more robust interpretation, our future 

work will involve validation at multiple timepoints, which will be achievable within a few 

years as more three-timepoint and some four-timepoint datasets become available in the 

HABS cohort. While, due to the availability of only two timepoints for fitting, we have 

restricted ourselves to linearized source models, as more timepoints are available, we will be 

able to investigate fully nonlinear solutions and explore more sophisticated source 

functionals.

A key limitation of the current study is the small size of our dataset. 18F-Flortaucipir PET is 

a relatively recent technology, which makes the cohort sizes for serial datasets too small for 

robust statistical analyses. But, as more data become available in the HABS and ADNI 

cohorts, the increased statistical power may be harnessed to more robustly validate 

longitudinal tau progression models.

Very recent literature suggests the superiority of probabilistic tractography over the 

deterministic approach used in this paper [72]. As future work, we will use probabilistic and 

anatomically corrected tractography to create structural connectomes and compare the 

relative merits of probabilistic and deterministic tractography in the context of tau 

progression modeling.

It should be noted that neurodegenerative diseases like AD lead to gradual changes in the 

structural connectome. Similar to past efforts by other research groups on spread models for 

neurodegenerative diseases, we consider a static structural connectivity profile in our model. 
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As future research, we will investigate models that accommodate an evolving differential 

operator.

5. Conclusion

We presented here a model to capture the spatiotemporal evolution of tau and validated it 

using data from the HABS and ADNI cohorts. By combining PET and DTI, we offered a 

macroscopic perspective on tau propagation along neural pathways. The structural network 

of the brain was reconstructed via a tractography-derived connectome while longitudinal tau 

measures based on 18F-Flortaucipir PET scans were used to capture the temporal evolution 

of misfolded tau. We performed quantitative assessment of model fitting and prediction 

accuracy based on both SUVRs and dSUVRs. To our knowledge, this is the first attempt to 

model tau progression in an individualized manner with model validation performed using 

longitudinal observations. Our approach is distinct from prior efforts in that it is data-driven 

and does not start with a (hypothetical) focal seed. As an analytic model, this approach is 

more intuitive and computationally efficient than alternative probabilistic models of protein 

dynamics. Our model lays the groundwork for an analytic framework for personalized 

prediction of disease progression based on individual (rather than group-level) connectivity 

graphs. At a preliminary level, our model appears promising as a tool for longitudinal 

tracking of tau aggregation. Since the model has only been tested for a small number of 

subjects, studies in larger cohorts need to be performed to assess its full prognostic potential.
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Appendix

Gradient Computation for the Linear Source Model

Minimization of the cost function in (11) requires the computation of gradients of f(x0, β, r) 

with respect to β and r. These can be computed as follows:

∂f
∂β = − ΔtLx0 . (17)

∇rf = t0Δt1 . (18)

Gradient Computation for the Exponential Source Model

Minimization of the cost function in (16) requires the computation of the gradients of f(x0, 

β, α, σ) with respect to β, α, and r. The gradient of the data-fit cost ΦEXP(β, α, σ) with 

respect to an arbitrary parameter vector z ∈ ℝM (M = 1 for β and σ, M = N for α) can be 

computed from the gradient ∇zf using:
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∇zΦEXP = ∇zf f − xt . (19)

This would require us to tackle the matrix inverse in (15). To this end, we use the eigenvalue 

decomposition of the Laplacian given by L = QΛQ−1, where QT = Q−1 due to the symmetry 

of L. The matrix inverse term can then be written as:

M(β, σ) = σI + βL −1 = Q(σI)QT + Q(βΛ)QT −1

= Q σI + βΛ −1QT .
(20)

The derivatives of M(β, σ) with respect to the unknowns β and σ can be obtained as follows:

∂M
∂β = − QΛ σI + βΛ −2QT ,

∂M
∂σ = − Q σI + βΛ −2QT .

(21)

The required gradients can then be computed as follows:

∂f
∂β = − LΔtx0 + ∂M

∂β [σIΔt + βLΔt I + σIt0 ]α] + MLΔt I + σIt0 α,

∂f
∂σ = ∂M

∂σ [σIΔt + βLΔt I + σIt0 ]α + M[IΔt + βLΔtt0 ]α,

∇αf = M[σIΔt + βLΔt I + σIt0 ] − IΔt .

(22)
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Figure 1: 
Overall workflow showing sample images: T1-weighted MRI, the warped anatomical atlas, 

diffusion MRI, white matter fiber tracts, and 18F-Flortaucipir PET. The atlas is generated 

from FreeSurfer parcellation of the T1-weighted MR image. White matter fiber tracts are 

reconstructed from diffusion MRI via tractography. Fiber counting is performed on the 

segmented diffusion image volumes to derive pairwise inter-ROI connection strengths 

thereby yielding a graph adjacency matrix, from which a weighted Laplacian is computed. 

ROI means from 18F-Flortaucipir PET constitute the initial regional tau burden at baseline 

and are represented as a graph signal vector. The predicted final tau at follow-up is 

computed by solving an inhomogeneous PDE.
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Figure 2: 
Fitting results using the linear (LIN) and exponential (EXP) source models in the 

HABS-2TP dataset. (A) A coronal slice in MNI152 space showing 10 ROIs deemed critical 

for tau in early AD. The ROIs (based on the FreeSurfer Desikan-Killiany atlas) are overlaid 

on the MNI template. Observed and predicted ROI mean SUVRs and dSUVRs in (B) A 

subject with increasing IFT tau between baseline and follow-up and (C) A subject with no 

significant increase in IFT tau between baseline and follow-up.
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Figure 3: 
A connectogram summarizing model-fitting results. All ROIs are indicated on the outer 

annulus (Annulus 4) and color-coded based on their anatomical location. The inter-ROI links 

in the center offer a population-level snapshot of structural connectivity with the link 

thickness commensurate with pairwise connection strengths scaled by the reciprocal of the 

ROI size (scaling done for improved visibility). All fibers connected to the critical ROIs 

indicated in Fig. 2 are shown in red. Annulus 1 shows for each ROI a bar graph of the 

distribution of a diffusion measure across subjects sorted from most negative (inward 

diffusion or accumulation – yellow) to most positive (outward diffusion or dissipation – 

green). Annulus 2 shows for each ROI a bar graph of the distribution of the source/sink 

strength across subjects sorted from most negative (sink/remover – blue) to most positive 

(source/producer – red). All ROIs can be placed into one of four classes depending on its 

source/sink and accumulator/dissipator status. Annulus 3 shows this overall classification for 

four subject groups corresponding to the sub-annuli going radially outward: (Tau , Aβ−), 

(Tau , Aβ+), (Tau ↑, Aβ−), (Tau ↑, Aβ+).
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Figure 4: 
Prediction results using linear (LIN) and exponential (EXP) source models in the 

HABS-3TP dataset. (A) A coronal slice in MNI152 space showing 10 ROIs deemed critical 

for tau in early AD. The ROIs (based on the FreeSurfer Desikan-Killiany atlas) are overlaid 

on the MNI template. Observed and predicted ROI mean SUVRs and dSUVRs in (B) A 

subject with increasing IFT tau between baseline and follow-up and (C) A subject with no 

significant increase in IFT tau between baseline and follow-up.
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Figure 5: 
Prediction results using linear (LIN) and exponential (EXP) source models in the ADNI-3TP 

dataset. (A) A coronal slice in MNI152 space showing 10 ROIs deemed critical for tau in 

early AD. The ROIs (based on the FreeSurfer Desikan-Killiany atlas) are overlaid on the 

MNI template. Observed and predicted ROI mean SUVRs and dSUVRs in (B) A subject 

with increasing IFT tau between baseline and follow-up and (C) A subject with no 

significant increase in IFT tau between baseline and follow-up.
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Table 1:

Participant demographics*

Dataset n (female) Age (yrs.) ΔtDTI-PET (yrs.) MMSE CDR PiB FLR

HABS-2TP 59 (35) 76.07 ± 6.22 2.27 ± 1.03 29.29 ± 1.05 0 ± 0.07 1.48 ± 0.50

HABS-3TP 9 (1) 74.19 ± 5.08 2.37 ± 0.46 28.67 ± 1.58 0 ± 0 1.48 ± 0.28

ADNI-3TP 22 (17) 73.80 ± 9.55 −0.05 ± 0.23 27.55 ± 3.43 0.20 ± 0.33 N/A

*
Values are in the format mean ± standard deviation

MMSE: Mini-Mental State Examination

CDR: Clinical Dementia Rating
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Table 2:

Model fitting accuracy in the HABS-2TP dataset*

Metrics NRMSE NMAE

Model LIN EXP LIN EXP

Group (n) SUVR dSUVR SUVR dSUVR SUVR dSUVR SUVR dSUVR

All (59) 0.0370 0.0869 0.0227 0.0532 0.0365 0.0857 0.0147 0.0345

Tau ↑ (27) 0.0412 0.1011 0.0171 0.0421 0.0407 0.0999 0.0106 0.0260

Tau  (32) 0.0365 0.0859 0.0272 0.0639 0.0360 0.0846 0.0189 0.0444

Aβ+ (21) 0.0391 0.0966 0.0247 0.0612 0.0388 0.0959 0.0149 0.0369

Aβ− (38) 0.0378 0.0998 0.0227 0.0599 0.0372 0.0981 0.0153 0.0404

*
LIN: linear source model; EXP: exponential source model
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Table 3:

Prediction accuracy in the HABS-3TP dataset

Metrics NRMSE NMAE

Model LIN EXP LIN EXP

Group (n) SUVR dSUVR SUVR dSUVR SUVR dSUVR SUVR dSUVR

All (9) 0.1722 0.1804 0.0941 0.0985 0.1217 0.1274 0.0635 0.0665

Tau ↑ (6) 0.1785 0.1869 0.1195 0.1113 0.1287 0.1349 0.0778 0.0725

Tau  (3) 0.1813 0.4610 0.0644 0.1610 0.1183 0.3009 0.0489 0.1222

Aβ+ (6) 0.1913 0.2004 0.0876 0.0918 0.1418 0.1486 0.0753 0.0789

Aβ− (3) 0.1503 0.3417 0.0633 0.1439 0.0972 0.2210 0.0474 0.1078

*
LIN: linear source model; EXP: exponential source model
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Table 4:

Prediction accuracy in the ADNI-3TP dataset

Metrics NRMSE NMAE

Model LIN EXP LIN EXP

Group (n) SUVR dSUVR SUVR dSUVR SUVR dSUVR SUVR dSUVR

All (22) 0.0829 0.2754 0.0442 0.1470 0.0724 0.2406 0.0308 0.1023

Tau ↑ (10) 0.1006 0.3883 0.0566 0.2185 0.0889 0.3431 0.0393 0.1515

Tau  (12) 0.0799 0.2341 0.0384 0.1125 0.0712 0.2086 0.0289 0.0847

MCI (7) 0.0672 0.2662 0.0363 0.1438 0.0600 0.2378 0.0270 0.1069

CN (12) 0.1395 0.3697 0.0640 0.1695 0.1230 0.3258 0.0458 0.1214

AD (3) 0.1204 0.3418 0.0871 0.2473 0.1038 0.2949 0.0603 0.1712

*
LIN: linear source model; EXP: exponential source model
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