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Abstract

Dopamine, the main catecholamine neurotransmitter in the brain, is predominately produced in 

the basal ganglia and released to various brain regions including the frontal cortex, midbrain and 

brainstem. Dopamine’s effects are widespread and include modulation of a number of voluntary 

and innate behaviors. Vigilant regulation and modulation of dopamine levels throughout the brain 

is imperative for proper execution of motor behaviors, in particular speech and other types of 

vocalizations. While dopamine’s role in motor circuitry is widely accepted, its unique function 

in normal and abnormal speech production is not fully understood. In this perspective, we first 

review the role of dopaminergic circuits in vocal production. We then discuss and propose the 

conceivable involvement of astrocytes, the numerous star-shaped glia cells of the brain, in the 

dopaminergic network modulating normal and abnormal vocal productions.
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1. Introduction

Speech production is one of the most complex motor behaviors, requiring precise 

coordination of activities between multiple functional areas in the brain and more than 

100 muscles in the body, including laryngeal, supralaryngeal, and respiratory muscles. The 

complete brain circuitry involved in vocal production is not fully identified; however, it 

has been established that both archetypal brain regions [i.e., nucleus ambiguous (NA), 
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periaqueductal gray (PAG), and striatum] as well as highly developed areas [i.e., laryngeal 

motor cortex (LMC) and supplementary motor area (SMA)] are critically involved in the 

motor control and modulation of vocalizations (i.e. vocal production) (Alm, 2004; Jarvis, 

2019a; Uwe Jürgens, 2002; Simonyan, 2014). Moreover, orofacial precision for articulation, 

synchronization of breathing behaviors with speech output, and higher level motor controls 

are critically involved and synchronized in successful generation of fluent speech (Jarvis, 

2019a; Uwe Jürgens, 2002; Sommer, Koch, Paulus, Weiller, & Büchel, 2002). Better 

understanding the brain motor circuits controlling vocal communication may help identify 

pathophysiology of speech motor disorders.

Similar to other complex motor behaviors, elaborative circuitry and numerous 

neurotransmitters are involved in conducting the intricacies of vocal production circuits. 

It was proposed that vocalization is dependent on circuits stemming from the basal ganglia, 

a telencephalic brain region integral for initiation and maintenance of motor behavior, to 

multiple brain areas including the cerebral cortex, midbrain and the brainstem (Figure 

1) (Creese & Iversen, 1975; Scheel-Krüger & Randrup, 1967). Moreover, studies in 

experimental animal models, including rodents, songbirds, and non-human primates (NHPs) 

(Arriaga, Zhou, & Jarvis, 2012; Ciucci, Vinney, Wahoske, & Connor, 2010; Jarvis, 2019a; 

Uwe Jürgens, 2002), suggest that dopamine, a neurotransmitter intimately involved in 

motor behaviors, plays a central role in vocal production circuits of the brain (Dastur, 

McGregor, & Brown, 1999; de Lanerolle & Youngren, 1978; Jenner et al., 1984; Rose, 

Nomoto, Jenner, & Marsden, 1989; Sasaki, Sotnikova, Gainetdinov, & Jarvis, 2006). These 

models, in conjunctions with human imaging studies, have been imperative for defining the 

dopaminergic circuitry controlling the vocal production network (Fuertinger, Zinn, Sharan, 

Hamzei-Sichani, & Simonyan, 2018; Simonyan & Fuertinger, 2015; Simonyan, Herscovitch, 

& Horwitz, 2013).

Similar to other communication systems, both production and perception of vocalization are 

critical aspects of vocal communication. Vocalization control circuits integrate a myriad 

of sensory functions and information from various brain regions, notably the auditory 

cortex (Eliades & Wang, 2003; Moore & Woolley, 2019), somatosensory cortex, cerebellum, 

and thalamus (Riecker, Kassubek, Gröschel, Grodd, & Ackermann, 2006). In doing so, 

communication can become a conversation through combining new information, articulating 

thoughts, producing meaningful speech and incorporating realtime feedback to correct 

mistakes (Chow & Chang, 2017). Although acoustic feedback control of speech is critical 

for vocal production, we do not discuss audio-motor interactions here, as it is reviewed 

comprehensively elsewhere (Poeppel & Assaneo, 2020). Moreover, it is critical to note 

a distinction between innate and learned vocalizations. While vocal communications with 

conspecifics in some species, such as humans and songbirds, is mainly learned, other 

species, such as rodents, mostly use innate vocalizations to communicate (Jarvis, 2007, 

2019a; Petkov & Jarvis, 2012; Shu et al., 2005). This distinction is important when 

considering the brain regions involved in the vocalization circuits (Arriaga et al., 2012). 

In addition, it has been shown recently that astrocytes are critically involved in the control of 

complex motor behaviors (Morquette et al., 2015; Sheikhbahaei, Turovsky, et al., 2018) and 

can modulate dopaminergic neural circuits (Corkrum et al., 2020; Khan, Koulen, Rubinstein, 

Grandy, & Goldman-Rakic, 2001; Xin et al., 2019). In this perspective, we focus on vocal 
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production circuits in the brain and the role of dopamine in regulation of these circuits. 

We then discuss the role of dopamine and the basal ganglia in normal and abnormal vocal 

production. Lastly, we propose a possible mechanism for involvement of astrocytes in the 

dopaminergic modulation of vocalization. A disruption to the proposed mechanism might 

lead to speech disorders, including stuttering disorders.

2. Vocal production circuits

2.1 Physiological considerations in vocalization pathways

Breathing is vital for voice production. The normal breathing cycle consists of three 

behaviorally distinct sequential phases: inspiration, post-inspiration, and expiration (Del 

Negro, Funk, & Feldman, 2018; Richter & Smith, 2014). Breathing and vocalization are 

highly coordinated, as vocalization is restricted to periods during post-inspiration and 

expiration. Therefore, speech production requires a precise coordination of laryngeal muscle 

action with activities of brain circuits controlling orofacial and respiratory movements. In 

addition, proprioceptive input from mechanoreceptors and chemoreceptors in the larynx, 

orofacial region, and respiratory system that affect rhythm or pattern of breathing may 

provide feedback controls and might affect vocal production (Andalman, Foerster, & Fee, 

2011; Dutschmann & Herbert, 2006; Forster, 2003; Uwe Jürgens, 2002; Mörschel & 

Dutschmann, 2009; Mulkey et al., 2004; O’Regan & Majcherczyk, 1982; Sheikhbahaei, 

Turovsky, et al., 2018; Sheikhbahaei, Gourine, & Smith, 2017; Sheikhbahaei & Smith, 2017; 

Teppema & Dahan, 2010).

2.2 Involvement of the Basal Ganglia

It has been shown that the basal ganglia and its main neurotransmitter, dopamine, have 

an important role in speech production (U Jürgens, 2009; Uwe Jürgens, 2002; Kristina 

Simonyan et al., 2013; Kristina Simonyan, Horwitz, & Jarvis, 2012). The conventional 

model suggests that neurons from the LMC project to the striatum (putamen and caudate 

nucleus) which itself sends projections to the NA, the brainstem motor nucleus that 

enervates laryngeal muscles (Uwe Jürgens, 2002; Kristina Simonyan & Jürgens, 2003; 

Kristina Simonyan, Ostuni, Ludlow, & Horwitz, 2009). In addition to NA, the motor nuclei 

of the trigeminal, facial (VII), and hypoglossal (XII) are also involved in vocal production 

(Uwe Jürgens, 2002) (Figure 1).

In addition to the established model, an "anterior pathway," including the anterior SMA, 

and vocal premotor cortex, namely premotor laryngeal motor cortex (preLMC) and inferior 

frontal gyrus (Broca's area), are also suggested to be involved in speech production (Jarvis, 

2019b). Brain regions in this pathway send converging projections to the anterior striatum 

(Figure 1B). This information is integrated into the basal ganglia thalamo-cortical loop, a 

network that connects the motor circuits of the basal ganglia to the higher order processing 

centers in the cortex through the relay station in the thalamus. Specifically, the ventral 

tegmental area (VTA) as well as the substantia nigra pars compacta (SN) have been found in 

NHPs to send direct projections to LMC (Jürgens, 1982; K Simonyan & Jürgens, 2005). For 

speech motor learning, the anterior striatum sends projections to the anterior thalamus which 

relays back to the preLMC (Jarvis, 2019a).
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As discussed above, various regions of the basal ganglia are involved in vocal production, 

however, the anterior striatum and the subthalamic nucleus receive direct dopaminergic input 

from the SNc and VTA (Hornykiewicz, 1966; Rice, Patel, & Cragg, 2011) and may have 

a direct role in speech production. In this setting, the striatum is proposed to have specific 

roles in speech initiation and vocal production and cessation of vocalizations (Price, 2010), 

the subthalamic nucleus may also be involved in initiation of speech production (Hebb, 

Darvas, & Miller, 2012).

3. Dopamine

Dopamine is one of the main catecholamine neurotransmitters in the central nervous system 

(CNS) (Hornykiewicz, 1966). The level of dopamine in the basal ganglia is well regulated 

via various mechanisms involves neurons and astrocytes (Adrover et al., 2020; Björklund 

& Dunnett, 2007; Rice et al., 2011; Y Smith & Kieval, 2000; Vaughan & Foster, 2013). 

Hypoactivity or hyperactivity of dopamine lead to a general inhibition or disinhibition of 

motor behaviors, respectively, that manifest in a range of motor control disorders, such 

as Parkinson’s disease, amyotrophic lateral sclerosis (ALS), Tourette’s Syndrome, and 

developmental stuttering (Alm, 2004; Bromberg-Martin, Matsumoto, & Hikosaka, 2010; 

Crocker, 1997; Groenewegen, 2003; Laverty, 1978).

3.1 Dopamine synthesis

Catecholamines are synthesized through a number of steps with tyrosine hydroxylase 

catalyzing the rate limiting step of this process, converting tyrosine to Levodopa (L-DOPA). 

L-DOPA is then decarboxylated by amino acid decarboxylase to form an early form of 

dopamine (Kaushik, Gorin, & Vali, 2007; Vaughan & Foster, 2013). This predopamine 

transmitter is packaged into a vesicle along with other enzymes to continue dopamine 

synthesis inside the transmission vesicles in pre-synaptic neurons (Daubner, Le, & 

Wang, 2011; Hornykiewicz, 1966; Kaushik et al., 2007; Sourkes, 1971). Upon neuronal 

activation, dopamine is released into the synaptic cleft where it can bind to receptors 

on post-synaptic cell membranes. The excess dopamine is subsequently recycled back to 

the pre-synaptic neuron through the dopamine transporter (DAT) or is broken down by 

monoamine oxidase (MAO) and/or catechol-O-methyltransferase (COMT). This synthesis­

release-reuptake process controls and regulates physiological dopaminergic responses to 

bodily demands (Blakely & Bauman, 2000; Rice et al., 2011; Vaughan & Foster, 2013).

3.2 Dopamine functions

Dopamine is involved in activities of many brain circuits including those that control 

movement (Creese & Iversen, 1974; Hornykiewicz, 1973), cognition (Brozoski, Brown, 

Rosvold, & Goldman, 1979; Joseph, Frith, & Waddington, 1979; Nakajima et al., 2013), 

emotion (de Lanerolle & Youngren, 1978; Goschke & Bolte, 2014; Laverty, 1978), reward 

(Bromberg-Martin et al., 2010; Christie & Crow, 1971; Schultz, 2007; Shugart et al., 2004; 

Vaughan & Foster, 2013), and others. Interestingly, although dopamine is involved in a 

variety of behaviors, the majority of dopamine in the brain is released by a subpopulation 

of neurons in the SNc and VTA that provide the neurotransmitter dopamine to the rest of 

the brain (Björklund & Dunnett, 2007; Fürtinger, Zinn, & Simonyan, 2014; Fuxe, 1965; 
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Hornykiewicz, 1966; Lewis & Sesack, 1997; Rommelfanger & Wichmann, 2010; Simonyan 

et al., 2012).

4. Dopamine in vocalization circuits

The structure and function of the vocal production circuits and the involvement of dopamine 

in this network has been studied in several animal models , including chickens, songbirds, 

rodents, and NHPs. As previously noted and in comparison to the innate vocalizations in 

chicken and rodents, speech and song in human and songbirds, respectively, are considerered 

as learned vocalizations. In young chicks, where trill calls can be evaluated, injection 

of apomorphine hydrochloride, a dopaminergic receptors agonist, elicited a significantly 

higher rate of trill calls (de Lanerolle & Youngren, 1978) elucidating the possible role 

that dopamine is modulating chick vocal production. Songbirds are another animal model 

that has been used extensively to look at vocalization and in particular, vocal learning 

(Chakraborty et al., 2017; A. N. Chen & Meliza, 2020; Jarvis, 2019a; Kubikova et al., 

2014). In vivo microdialysis (see also Appendix A for more details) of dopamine in awake, 

behaving songbirds has established that singing induces an increase in dopamine in area 

X, a nucleus located within the equivalent to the human striatum and similarly receives 

dopaminergic input from VTA and SNc, (Sasaki et al., 2006). Lesion studies in area X 

lead to increased syllable repetitions and a stuttering-like vocalization phenotype (Kubikova 

et al., 2014). Moreover, overexpression of N-methyl-D-aspartate (NMDA) subtype 2B 

glutamate receptor (NR2B) gene in lateral magnocellular nucleus of the anterior nidopallium 

(LMAN), a cortical region that has direct connections to area X, also induced changes 

in pitch and rhythmicity of vocalizations (i.e., stuttering-like vocalization) (Chakraborty 

et al., 2017). These studies help define a prominent role for both the basal ganglia and 

cortical-basal ganglia circuits in songbird vocalization.

In rodent pups, injection of either an agonists of dopamine receptor D1 (D1R) or dopamine 

receptor D3 (D3R) reduced the frequency of ultrasonic vocalizations (Dastur et al., 1999), 

further suggesting a critical role for dopamine in the vocalization pathway of rodents too. 

These studies suggest that dopamine’s effects within the basal ganglia and cerebral cortex 

dictate the ability to produce a vocalization. Dopamine may also have the capability to create 

proper pitch and fluidity of vocalization (Bragoni et al., 2000; Goberman & Blomgren, 

2003; Uwe Jürgens, 2002; Lan et al., 2009; Poeppel & Assaneo, 2020; Simonyan et 

al., 2012). In particular, dopamine released in the striatum, may directly modulate neural 

activities of the speech motor regions in the basal ganglia and primary motor cortex 

(Crocker, 1997; Salamone, 1992). Similar to many motor behaviors, the basal ganglia­

thalamo-cortical connections are also involved in speech production. The difference arises 

from where the dopamine release occurs; and for vocalization circuits, this termination 

occurs in the LMC (Boë, Fagot, Perrier, & Schwartz, 2017; Kumar, Croxson, & Simonyan, 

2016; Mor, Simonyan, & Blitzer, 2018; Simonyan et al., 2012).

Clinical studies in humans further evaluated the involvement of dopamine in vocalization 

and speech (Bragoni et al., 2000; Goberman & Blomgren, 2003). The left hemisphere 

of the human brain is well-known for its particular involvement in speech production 

(Fuertinger et al., 2018; Jackson, 1915; Loring et al., 1990; Vigneau et al., 2006). Recently, 
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combinations of positron emission tomography (PET) with dopamine receptors radioligands, 

functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI) and/or 

diffusion-weighed MRI (Fuertinger et al., 2018; Simonyan et al., 2013) were used to show 

that during speech production, release of dopamine from the SNc and VTA was lateralized 

to the left ventromedial striatum (Fuertinger et al., 2018; Simonyan et al., 2013) and LMC 

(Fuertinger et al., 2018).

Evaluating the dopaminergic circuits in various animal models is crucial to understand 

how this system works and to gain insight on the role of dopamine in human brain. It is 

imperative that there be an understanding of similarities and differences between animal 

models and humans such that the information can be properly taken into account when 

treating human patients. An investigation of the basal level of plasma dopamine in various 

species, including rodents and humans, shed light on the fact that the resting dopamine 

values vary greatly between humans and rats (Bühler, da Prada, Haefely, & Picotti, 1978). 

Not only are the basal levels different, but the mechanisms of action to breakdown dopamine 

seem to differ as well. Whereas primates (including humans and NHPs) use MAO-A 

predominately, rodents seem to use MAO-B (Garrick & Murphy, 1980). However, while 

these differences exist, commonalities between species are apparent too. Most species seem 

to use the various dopamine receptors similarly (Bäckman et al., 2011; Seamans & Yang, 

2004; Zahrt, Taylor, Mathew, & Arnsten, 1997) and commonalities in dopamine release into 

neural networks, particularly in motor control and reward circuits (Chini & Hanganu-Opatz, 

2020; Grimm, Balsters, & Zerbi, 2020; Peters, Liu, & Komiyama, 2017; Walton & Bouret, 

2019), have allowed investigators to confidently use various animal models to understand the 

dopaminergic circuits at large.

In addition to physiological functions, the role of dopamine in the control of speech 

production circuits can be further understood through its role in the pathophysiology 

of disorders that affect the control of motor circuits, such as Parkinson’s disease and 

developmental stuttering disorder (Alm, 2004; Elgueta et al., 2017; Goberman & Blomgren, 

2003; Yoland Smith & Villalba, 2008; Tani & Sakai, 2011). A precise control of dopamine 

release creates an intricate balance in the brain and modulation of dopamine release is 

associated with impairments in vocalization, such that a decrease in dopamine affects 

vocalization in Parkinson’s disease, whereas an increase in dopamine level is associated with 

childhood-onset fluency disorder (also known as stuttering). In patients with Parkinson’s 

disease, in which dopaminergic neurons in the striatum prominently degenerate, changes 

in vocalization quality, including a declined loudness, decrease in a range of vocal pitch, 

and a lack of expression during speaking are reported (Ciucci et al., 2010; Goberman & 

Blomgren, 2003; Walsh & Smith, 2011). Interestingly, Parkinson’s patients treated with 

dopamine receptor antagonists report alterations in vocal production that reverse once the 

patients stops taking the medication (Newton-John, 1988; Warren & Thompson, 1998).

5. Dopamine in childhood-onset fluency disorder (stuttering)

Childhood-onset fluency disorder is a neurodevelopmental disorder (Ludlow & Loucks, 

2003; Mawson, Radford, & Jacob, 2016; A. Smith & Weber, 2016; Watkins, Smith, 

Davis, & Howell, 2008) that affects normal fluency of speech which is not appropriate 
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for individual’s age (American Psychiatric Association, 2013). Although the etiology 

of stuttering is not fully understood, many lines of evidence suggest that defects in 

dopaminergic circuits in the basal ganglia may be involved in the development of stuttering 

disorders in a subgroup of people who stutter; some adults who stutter may have three-times 

higher level of dopamine precursors in the basal ganglia (Wu et al., 1995, 1997).

This excess dopamine hypothesis of stuttering is supported by recent clinical and imaging 

studies (Alm, 2004; Chang & Guenther, 2019; G A Maguire, Riley, Franklin, & Gottschalk, 

2000; Gerald A. Maguire et al., 2004; Gerald A Maguire et al., 2019; Gerald A 

Maguire, Nguyen, Simonson, & Kurz, 2020; Gerald A. Maguire, Yeh, & Ito, 2012; 

Gerald A. Maguire, Yoo, & SheikhBahaei, 2021). Because of this unique relationship, 

dopaminergic agents have been used as a potential therapy in clinical trials for patients with 

stuttering disorders. Although dopamine receptor D2 (D2R) blockers (such as risperidone, 

olanzapine, and haloperidol) reduce stuttering symptoms significantly, their broader effects 

on modulation of serotonin (5-HT), acetylcholine, and glutamate receptors, have limited 

their usage. Recently, Ecopipam, a selective D1R antagonist, and lurasidone, antagonist 

of D2, 5HT2a and partial agonist at 5HT1a, have been proposed as novel therapies for 

stuttering disorders (Charoensook & Maguire, 2017; Gerald A Maguire et al., 2019, 2020). 

Both clinical studies in humans and experiments on animal model further the importance of 

dopaminergic signaling in vocal production circuits of the basal ganglia.

6. Astrocytes, dopamine and stuttering

Astrocytes, the numerous star-shaped glial cells of the brain, play a myriad of roles 

including regulation of extracellular concentration of ions and neurotransmitters, regulation 

of the blood-brain barrier, and have been proposed to regulate neuronal excitability and 

synaptic plasticity (Abbott, Rönnbäck, & Hansson, 2006; Alfonso Araque et al., 2014; 

Haydon & Carmignoto, 2006). Physiology of glial cells is managed by changes in their 

intracellular Ca2+ concentration ([Ca2+]i) in a way that increases in [Ca2+]i triggers release 

of gliotransmitters (such as ATP/adenosine, D-serine, glutamate and others) (Heinrich, 

Andó, Túri, Rózsa, & Sperlágh, 2012; Marina et al., 2018; Martineau et al., 2013; 

Sheikhbahaei, Turovsky, et al., 2018).

Recent studies have suggested that in addition to their neuro-regulatory effects, astrocytes 

can directly modulate motor circuits in vivo and impact complex behaviors (Sheikhbahaei, 

Turovsky, et al., 2018). While the exact role of astrocytes in motor circuitry remains elusive, 

key features of astrocytes provide evidence for their importance. For instance, changes 

of [Ca2+]i in astrocytes in response to neuronal activity not only triggers gliotransmitter 

release but also may modulate neuronal activity (A Araque, Carmignoto, & Haydon, 2001; 

Alfonso Araque et al., 2014; Haydon & Carmignoto, 2006; Marina et al., 2018; Pascual 

et al., 2005; Santello, Calì, & Bezzi, 2012). Accumulating evidence for this glia-induced 

modulation of complex behaviors is illustrated in many circuits. For instance, in locomotor 

circuits where it is postulated that rhythmic releases of [Ca2+]i modulate the neural circuit 

of locomotion (Christensen, Petersen, & Perrier, 2013; Hegyi et al., 2018; Hegyi, Kis, 

Holló, Ledent, & Antal, 2009), in mastication circuitry where astrocytes seem to be involved 

in the regulation of extracellular Ca2+ by release of s100ß (Morquette et al., 2015), and 
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in respiratory circuitry where [Ca2+]i-dependent release of ATP from brainstem astrocytes 

regulate breathing rhythms (Sheikhbahaei, Turovsky, et al., 2018), respiratory responses to 

hypoxia (low inspired oxygen) (Angelova et al., 2015; Rajani et al., 2018; Sheikhbahaei, 

Turovsky, et al., 2018), hypercapnia (high inspired carbon dioxide), and determine exercise 

capacity (Sheikhbahaei, Turovsky, et al., 2018).

One of the main functions of astrocytes throughout the brain is to maintain a level of 

homeostasis. One way in which astrocytes accomplish this goal is through the regulation 

of extracellular neurotransmitter concentrations (Barres, 2008; Clarke & Barres, 2013). As 

previously mentioned, dopamine has a number of reuptake mechanisms to regulate the levels 

of extracellular dopamine, and in addition to neurons, astrocytes also express DAT (which 

recycles the dopamine back to the cell), and COMT/MAO (which break dopamine down 

into metabolites) (Asanuma, Miyazaki, Murakami, Diaz-Corrales, & Ogawa, 2014; Hansson 

& Sellström, 1983; Karakaya, Kipp, & Beyer, 2007; Takeda, Inazu, & Matsumiya, 2002). 

Astrocytes from the rodent cortex have been found to be sensitive to various dopamine 

concentrations (Requardt et al., 2012; Vaarmann, Gandhi, & Abramov, 2010). It was shown 

that over 80% of cortical astrocytes took up and metabolized dopamine using COMT and 

MAO (Hansson & Sellström, 1983; Pelton, Kimelberg, Shipherd, & Bourke, 1981; Takeda 

et al., 2002). On the other hand, astrocytes from striatum and midbrain express DAT and 

recycle dopamine through this transporter and break it down into its precursor to be reused 

(Asanuma et al., 2014; Karakaya et al., 2007).

Astrocytes are heterogenous and may play a variety of modulatory roles depending on 

their regional location in the brain (Chai et al., 2017; Sheikhbahaei, Morris, et al., 

2018; Zhang & Barres, 2010). Recent comparative genomic, structural, and physiological 

studies have provided clear evidence for circuit-dependent specialization of astrocytes 

and their functional diversity (Chai et al., 2017; Doyle et al., 2008; Khakh, 2019). In 

dopaminergic circuits, dopamine-induced calcium transients in astrocytes is independent 

of neuronal activity (Fischer, Scheffler, & Lohr, 2020). Recently it was shown that even 

a moderate increase of astroglial resting [Ca2+]i can translate into a considerable increase 

of gliotransmitter release (King et al., 2020). Therefore, dopamine can induce release of 

gliotransmitters in a Ca2+-dependent manner. This intimate relationship with dopamine 

seems to also extend throughout the ventral midbrain dopaminergic circuit where astrocytes 

have critical functions in the SNc, VTA (Xin et al., 2019) and NAc (Corkrum et al., 2020), 

and possibly in other regions. In these regions and in response to dopamine and in particular, 

D2R modulation, astrocytes show a change in [Ca2+]i activity which may lead to a release 

of gliotransmitters (such as ATP), (Corkrum et al., 2020; Khan et al., 2001; Xin et al., 2019) 

suggesting that astrocytes may be regulating the dopaminergic circuits in a similar fashion to 

other motor circuits (Figure 2A).

In addition to these physiological roles, astrocytes are proposed to be involved in the 

pathogenesis of numerous motor disorders, including Parkinson’s disease (Booth, Hirst, 

& Wade-Martins, 2017; P.-C. Chen et al., 2009; Cressatti et al., 2019; Rappold & Tieu, 

2010; Yun et al., 2018), amyotrophic lateral sclerosis (Haidet-Phillips et al., 2011; Meyer 

et al., 2014; Nagai et al., 2007; Yamanaka & Komine, 2018), and Tourette’s Syndrome 

(de Leeuw et al., 2015; van Passel, Schlooz, Lamers, Lemmens, & Rotteveel, 2001). In 
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Parkinson’s disease, for instance, one of the main pathological features is aggregation of 

protein alpha-synuclein (α-syn). α-syn will aggregate in the dopaminergic neurons but will 

also be released into the synapse and taken up by nearby astrocytes (Cressatti et al., 2019; 

Lee et al., 2011). The lack of available dopamine and the presence of this aggregated protein 

cause an increase in [Ca2+]i activity in astrocytes (Sonninen et al., 2020) which may lead to 

an increase in gliotransmitter release, in particular, adenosine. Adenosine will in turn affect 

the nearby neurons and cause motor symptoms seen in Parkinson’s disease (Hosford et al., 

2020; Rappold & Tieu, 2010; Sonninen et al., 2020) (Figure 2B).

Considering the anatomical and functional relationship between dopamine, the motor 

circuits, and astrocytes, it is plausible that astrocytes can have a significant role in 

pathogenesis of other disorder that affects motor patterns, such as developmental stuttering. 

Interestingly, in the newly established mouse models of stuttering (Barnes et al., 2016; Han 

et al., 2019) (see Appendix B for details), the number of astrocytes in the corpus collosum 

was decreased (Han et al., 2019). Although the role of astrocytes in the pathogenesis of 

stuttering is not defined yet, a recent study suggests that the effects of D2R blockers in 

increasing speech fluency in patients who stutter are mainly due to an increase of astrocytes’ 

metabolism in the striatum (Gerald A. Maguire et al., 2021). According to this hypothesis, 

hypoactivity of striatal astrocytes due to excess dopamine concentration in the dopaminergic 

circuits of the basal ganglia could be one of the mechanisms that might lead to stuttering 

behavior (Figure 2B). We propose that similar to what is reported in the VTA (Xin et al., 

2019), excess dopamine decreases the [Ca2+]i activity of striatal astrocytes. In this model, 

lower [Ca2+]i in astrocytes leads to less gliotransmitter release and implabance activity of 

stiatal neurons. Interestingly, it has been shown recently that decreases in [Ca2+]i in striatal 

astrocytes is linked to repetitive behaviors in rodents (Yu et al., 2018). More experiments 

are required to idendify the main gliotransmitter released from astrocytes that may affect 

vocal production circuits, and in general, to further elucidate how astrocytes regulate striatal 

neurons, dopaminergic circuits, and vocalization behaviors.

7. Summary

In summary, dopamine projection from the basal ganglia to a variety of brain regions 

involved in motor functions, implicates its importance in voluntary and involuntary complex 

movements, especially in speech and other types of vocalizations. Recent studies illustrating 

dopaminergic release in vocal production regions further elucidates the strong possibility 

that dopamine plays an important role in vocal production. Further, recent data are 

uncovering the involvement of astrocytes in physiology of motor circuit activities and 

pathophysiology of motor disorders. This information, together with the fact that astrocytes 

have a close-knit relationship with the dopaminergic circuit strongly suggest that these glia 

cells have a critical role in modulating vocal production circuitry. Involvement of astroglial 

cells in these circuits will provide additional therapeutic target for disorders that affect motor 

control of speech production, such as stuttering disorder.
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Appendix A ∣: Approaches to quantify dopamine in vivo

Four general approaches have evolved to quantify dopamine or its dynamics in the brain of 

humans and animals in vivo. They are governed by distinctively different principles, with 

contrasting advantages and disadvantages.

Microdialysis.

The most common approach to measure tonic, extracellular dopamine at nanomolar 

concentrations is microdialysis coupled with analytical separations methods (Benveniste 

& Hüttemeier, 1990; Sasaki et al., 2006). Microdialysis is an invasive sampling technique 

based on diffusion of small molecules (< 20 kDa) through a semi-permeable membrane 

and into a perfusing fluid (artificial cerebral spinal fluid for neural samples) (Benveniste & 

Hüttemeier, 1990; Bucher & Wightman, 2015; Darvesh et al., 2011; Stenken & Patton, 

n.d.). The collected dialysate is then analyzed, typically with high performance liquid 

chromatography (HPLC) or capillary electrophoresis (CE) (Jaquins-Gerstl & Michael, 2015; 

Lu, Peters, & Michael, 1998; Shou, Ferrario, Schultz, Robinson, & Kennedy, 2006). Tonic 

concentrations of dopamine as small as nanomolar can be detected by microdialysis, with 

temporal resolution in order of minute, (Heien et al., 2005; Lu et al., 1998; Shou et al., 

2006). Microdialysis probes are ≥ 200 μm in diameter, and therefore spatial resolution 

and tissue damage are matters of concern (Cenci, Kalén, Mandel, & Björklund, 1992; 

Jaquins-Gerstl & Michael, 2009; Justice, 1993; Parsons & Justice, 1992). Tissue damage can 

elucidate immune response leading to ineffective sampling (Jaquins-Gerstl & Michael, 2009; 

Mitala et al., 2008).

Electrochemical methods.

The most common techniques used to measure dopamine transients are amperometry 

(Dugast, Suaud-Chagny, & Gonon, 1994; Gulley, Larson, & Zahniser, 2007; D. J. Michael & 

Wightman, 1999; Willuhn, Wanat, Clark, & Phillips, 2010) and fast scan cyclic voltammetry 

(FSCV) (Bucher & Wightman, 2015; Heien, Johnson, & Wightman, 2004; Venton & Cao, 

2020; Wightman et al., 1988). Dopamine undergoes oxidation at the surface of an active 

electrode, generating a current with an amplitude proportional to dopamine concentration. 

FSCV has been a gold standard for monitoring naturally occurring or stimulated changes 

in dopamine concentration by repeatedly applying a triangular potential waveform at high 

scan rates (> 100 V/s) to a carbon fiber electrode (5 – 40 μm in diameter and 50 – 

200 μm in length), protruding from a sealed glass coating and inserted into tissue. Thus, 

high spatial resolution with minimal tissue damage at the tip is possible (Abdalla et al., 

2020; Adrover et al., 2020; Nguyen & Venton, 2015; Roberts, Lugo-Morales, Loziuk, & 

Sombers, 2013). FSCV can detect sub-micromolar changes in dopamine, at sub-second 

time scales (Arbuthnott & Wickens, 2007; Roberts et al., 2013; Robinson, Hermans, Seipel, 

& Wightman, 2008; Robinson, Venton, Heien, & Wightman, 2003), and can be used to 

complement microdialysis. The high scan rate leads to a large charging current that must be 

subtracted to obtain the current from dopamine (Bucher & Wightman, 2015; A. C. Michael 
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& Borland, 2007), leading to challenges with detection of basal levels (Bucher & Wightman, 

2015; Roberts & Sombers, 2018; Rodeberg, Sandberg, Johnson, Phillips, & Wightman, 

2017). Amperometry, which does not suffer from large charging currents can measure basal 

levels, but it does not provide much information about the identity of the detected substance 

and therefore selectivity to dopamine is a major challenge unless the probe is inserted into 

areas known to include measurable amounts of dopamine (Ganesana, Lee, Wang, & Venton, 

2017).

Genetically encoded fluorescent detectors:

Changes in concentration of dopamine can be tracked by coupling the binding–induced 

conformational changes in dopamine receptors to changes in the fluorescence intensity of 

circularly permuted green fluorescent protein (cpGFP) (Patriarchi et al., 2018). Dopamine 

chemical sensors such as dLight1 (an intensity-based genetically encoded dopamine 

indicator which was developed from D1R) (Patriarchi et al., 2018) or GRABDA (genetically 

encoded GPCR-activation-based-dopamine which was constructed from D2R) (Sun et 

al., 2018) indicate physiological or behaviorally relevant dopamine transients with high 

spatiotemporal optical resolution and provide high selectivity and sensitivity for dopamine 

dynamics (Patriarchi et al., 2018; Sun et al., 2018). Both dLight1 and GRABDA demonstrate 

similar performance, however, GRABDA has a narrower range of binding affinities (10 – 

130 nM vs. 300 nM – 1.6 μM in dLight1) (Patriarchi et al., 2018; Sun et al., 2018). The 

second-generation GRABDA has a 2–3-fold higher range for measuring dopamine dynamics 

(Sun et al., 2020). Other methods, such as Tango assays, in which the release of endogenous 

dopamine in vivo is reported as changes in the concentration, could be useful for circuit 

mapping, but they require longer signal amplification times (in order of hours) (Barnea et al., 

2008; Inagaki et al., 2012). These methods are the latest trend in detection of endogenous 

dopamine in deep brain structures; however, they require implantation of optical probes (> 

100 μm) that cause tissue damage and are incapable of measuring basal dopamine levels.

Positron emission tomography (PET).

This non-invasive imaging technique has been used to assess dopamine systems in humans 

and animals (Drevets et al., 2001; Pal et al., 2001; Schiffer, Alexoff, Shea, Logan, & 

Dewey, 2005; Volkow, Fowler, Wang, Baler, & Telang, 2009). This method commonly uses 

intravenously-administered radiolabeled molecules, such as dopamine receptor ligands or 

precursors of dopamine, that decay and emit positrons, which upon encountering electrons 

in tissue create gamma rays that are detected by the PET camera. Ligands available for 

dopamine studies include [11C]raclopride for striatal dopamine receptors (Jonasson et al., 

2014) and [11C]fallypride for those in amygdala and media temporal lobe (Badgaiyan, 

Fischman, & Alpert, 2009). These ligands are displaced by endogenously released dopamine 

(Ganesana et al., 2017; Volkow et al., 1996). The local dopamine concentration is correlated 

to the quantity of displaced ligand (Volkow et al., 1996). It is challenging to identify optimal 

ligands that compete with small molecules like dopamine (Volkow et al., 1996) that will 

bind to certain receptors and also avoid non-specific binding, which adds noise and lowers 

sensitivity (Badgaiyan, 2014). Studies of task-induced or drug-induced changes in dopamine 
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concentration have achieved a temporal resolution of 30 – 60 s and a spatial resolution of 

millimeters (Ganesana et al., 2017; Volkow et al., 1996).

Appendix B ∣: Rodent models of speech disorders

Childhood-onset fluency disorder (stuttering) is a neurodevelopmental disorder (American 

Psychiatric Association, 2013) that affects more than 1 % of US adult populations (Yairi 

& Ambrose, 2013). It is now accepted that genetic substrates play a major role in 

pathophysiology of stuttering (Yairi & Ambrose, 2013). While a number of genes have 

been found to be important for speech (such as FOXP2, CNTNAP2, GNPTAB, GNPTG, 
NAGPA, AP4E1), three genes in particular, FOXP2, GNPTAB, and CNTNAP2, have been 

studied extensively.

FOXP2.

FOXP2 gene, located on chromosome 7q31, encodes a transcription factor with a forkhead 

and DNA binding domain (Lai, Fisher, Hurst, Vargha-Khadem, & Monaco, 2001; Shu et al., 

2005). As a transcription factor, its activity in binding to DNA affects downstream genes, 

some of which (for example CNTNAP2) have also been implicated in speech disorders 

(Newbury & Monaco, 2010). A mutation in FOXP2 and/or its translated protein reduces 

DNA binding and nuclear localization (Fujita et al., 2008) and causes speech deficits in 

humans as well as in rodents [such as reduced ultrasonic vocalizations and symptoms 

of developmental verbal dyspraxia (Castellucci, McGinley, & McCormick, 2016; Chabout 

et al., 2016; Fujita et al., 2008; Lai et al., 2001; Shu et al., 2005)]. In particular, the 

Foxp2 mutant mouse was found to produce simpler sequences of ultrasonic vocalizations 

(USVs) and was less able to switch to more complex sequences when compared to wild 

type mice (Castellucci et al., 2016; Chabout et al., 2016). Thus, using this mutant mouse 

model, it has been suggested that a mutation in Foxp2 in mice is similar to difficult in 

sequencing phonemes and syllable syntax to make complex words in humans (Chabout et 

al., 2016). Interestingly, FOXP2 is highly conserved among species, such that the human 

FOXP2 protein only varies from the mouse homolog by three amino acids (Shu et al., 

2005). Additionally, although FOXP2 expresses in a variety of regions including the basal 

ganglia, cortex and thalamus (Fujita et al., 2008; Shu et al., 2005), the expression is 

lower in the cortex (mostly restricted to layer VI) than in the striatum. In the thalamus, 

FOXP2 expression is higher in the ascending sensory nuclei. There are no known cases 

of humans with a complete deletion of FOXP2 mutation (Chabout et al., 2016). Similarly, 

mice with homozygous knockout of Foxp2 are not viable. These animals have severe motor 

and respiratory impairments, inaudible vocalizations and die in 3 – 4 weeks (Enard et 

al., 2009; French et al., 2007; Fujita et al., 2008; Shu et al., 2005). Therefore, multiple 

heterozygous knockout mouse models with varying degrees of phenotypic changes have 

been generated (Enard et al., 2009; French et al., 2007; French & Fisher, 2014; Shu et al., 

2005). In general, the heterozygous mouse models have fewer ultrasonic vocalizations and 

some motor impairments. A knock-in model of the Foxp2 mutation has also been illustrated 

to show a decrease in ultrasonic vocalization and an increase in motor and respiratory 

impairments (Castellucci et al., 2016).
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CNTNAP2

Contactin-associated protein-like 2 gene is located on chromosome 7q35 (Petrin et al., 2010; 

Rodenas-Cuadrado, Ho, & Vernes, 2014). The gene codes for CASPR2 protein which is part 

of the neurexin superfamily (Peñagarikano et al., 2011; Peñagarikano & Geschwind, 2012). 

Interestingly, in the common fruit fly (Drosophila Melanogaster), the homolog of this gene 

codes for neurexin IV and is intimately involved in the neuron-glia interactions necessary for 

myelination of axons in the cortex (Peñagarikano & Geschwind, 2012). CNTNAP2 has been 

found to be implicated in a variety of neurological disorders including schizophrenia and 

Tourette’s syndrome (Rodenas-Cuadrado et al., 2014), however, it is most well-known for its 

prominent role in neurodevelopmental disorders such as Autism Spectrum Disorder (ASD), 

epilepsy, and language impairment disorders (Peñagarikano et al., 2011; Peñagarikano & 

Geschwind, 2012; Rodenas-Cuadrado et al., 2014; Selimbeyoglu et al., 2017). A Cntnap2 
knockout mouse model shows similarities to human features of ASD and is created to 

evaluate behavioral and pathological features of ASD (Brunner et al., 2015; Peñagarikano 

et al., 2011; Peñagarikano & Geschwind, 2012; Selimbeyoglu et al., 2017). The interesting 

overlap between the Cntnap2 knock out mouse model used to study neurodevelopmental 

disorders and speech impairments is further elucidated through a chromosomal relationship. 

I Interestingly, intron 1 of CNTNAP2 gene contains a binding spot for FOXP2 (mentioned 

above) (Peñagarikano & Geschwind, 2012). Thus, when CNTNAP2 is mutated, and a 

region containing intron 1 is deleting from the gene, aside from neurodevelopmental delays, 

language impairments, and in particular stuttering is apparent.

GNPTAB.

GNPTAB codes for the N-acetylglucosamine-1-phosphate transferase alpha and beta 

subunits, an enzyme involved in the intracellular trafficking pathway (Kazemi, Estiar, 

Fazilaty, & Sakhinia, 2018; Newbury & Monaco, 2010; Raza et al., 2016). Four coding 

mutations in GNPTAB located in chromosome 14q that are linked to stuttering disorders 

have been identified so far (Kang et al., 2010; Kazemi et al., 2018; Raza et al., 2016). Along 

with this gene, a number of other genes closely related to GNPTAB and its function (i.e., 

GNPTG, NAGPA, AP4E1) have also been implicated in developmental stuttering.

The original transgenic mouse model of stuttering incorporated a Gnptab Glu1200Lys 

mutation (Barnes et al., 2016). Generated mice were on all accounts normal except for a 

deficit in the fluency of ultrasonic vocalizations (Barnes et al., 2016; Han et al., 2019). 

While this mutation seems to recapitulate the deficits seen in human stuttering disorders, 

other mutations in this gene have been tested too and a Ser321Gly mutation created a similar 

decrease in pup’s vocalizations (Han et al., 2019). In these mice, the number of astrocytes in 

the corpus callosum was lower, which suggests that astrocytes might play a significant role 

for proper vocalization (Han et al., 2019).
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High lights:

Dopamine’s role in regulation of motor circuits is accepted, but its function in speech 

production is not fully understood.

In this perspective, we reviewed the modulatory role of dopamine in vocal production 

circuits of the basal ganglia.

We proposed a modulatory role for astrocytes residing in the dopaminergic circuits of the 

basal ganglia in vocal productions.
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Figure 1 ∣. Basal ganglia and motor control of speech production circuits.
(A) The basal ganglia thalamo-cortical loop that connects the motor circuits of the basal 

ganglia to the laryngeal motor cortex through a relay station in the thalamus is important for 

speech production. The higher order brain structures, directly or indirectly [via periaquedutal 

gray (PAG)], modulate activities of orofacial and laryngeal motor neurons of facial (VII), 

hypoglossal (XII) nuclei and nucleus ambiguus (NA) located in the brainstem. (B) The 

laryngeal motor cortex (LMC) is located towards the ventro-lateral portion of primary 

motor cortex, and divided into dorsal (dLMC) and ventral (vLMC) regions. Both portions 

of LMC are involved in the vocal production circuits. Neurons in the preLMC sends 
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direct connections to dLMC and vLMC as well as to the anterior striatum. dLMC and 

vLMC neurons send projections to PAG and NA . (C) The Basal ganglia region includes 

the striatum (caudate and putamen), globus pallidus [external (GPe) and internal (GPi)], 

subthalamic nucleus (STN) and substantial nigra (SN). The intricate connectivity between 

these regions allows for proper execution of motor behaviors. Information from motor cortex 

is inputted to the striatum which in conjunction with dopaminergic inputs from the SN, 

sends information to two parallel pathways in the basal ganglia. In the first pathway (red 

arrows), the GPe received inhibitory signals from the striatum and relays inhibitory signals 

to the subthalamic nucleus. The subthalamic nucleus then send an excitatory signal to the 

GPi which in turn sends an output signal to the thalamus. In the second, parallel pathway 

(blue arrows), the striatum ends a direct inhibitory signal to the GPi which directly sends 

an output signal to the thalamus. By integrating inhibitory and excitatory signals, these two 

pathways can delicately modulate motor behaviors control, including speech production. 

Abbreviations: Cd – caudate, dLMC – dorsal laryngeal motor cortex, GPe – globus pallidus 

external, GPi – globus pallidus internal, NA – nucleus ambiguus, PAG – periaqueductal gray, 

preLMC – premotor laryngeal motor cortex, Pt – putamen, SN – Substantia Nigra, STN – 

sub thalamic nucleus, vLMC – ventral laryngeal motor cortex, VII – facial nucleus, XII – 

hypoglossal nucleus.
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Figure 2 ∣. Astrocytes in dopaminergic circuits of basal ganglia.
(A) (left) Presynaptic dopaminergic neuron releases dopamine (DA) into synaptic cleft, 

in which, DA binds to the postsynaptic DA receptor (such as D2R) and is also recycled 

back into the presynaptic neuron by DAT. However, some dopamine transmitter may also 

be recycled back through astrocytes potentially through DAT and/or COMT to recycle 

or break down dopamine, respectively. (right) Following the release of dopamine from 

the presynaptic terminal, dopamine may also bind to the D2R on astrocytes and lead to 

an increase in the levels of intracellular calcium ([Ca2+]i), which in turn facilitates the 

release of gliotransmitters (such as ATP/adenosine and others). The released gliotransmitters 

affect neurons in the region. (B) (left) Dopaminergic neuronal synapse in a Parkinson’s 

diseased brain where DA degeneration is prominent and less DA is released into the 

synapse. In addition to release of DA is release of aggregate alpha-synculein (α-syn). DA 

and aggregated alpha-synculein are taken up by astrocytes, which causes a dysregulation 

of [Ca2+]i and an increased release of adenosine. (right) Presynaptic dopamine release 

increases in the case of developmental stuttering disorder which accumulates in the synapse 

where it can bind to the postsynaptic receptors, be taken back up by the presynaptic 

neuron or by the nearby astrocyte. In the proposed model, this increase in DA causes a 

decrease in [Ca2+]i activity and a reduction in release of gliotransmitters. Abbreviations: 

[Ca2+]i – intracellular calcium concentrations, COMT - catechol-O-methyltransferase, D2R 

– dopamine receptor D2, D3R – dopamine receptor D3, DA - dopamine, DAT – dopamine 

transporter, MAO - monoamine oxidase.
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