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SUMMARY
Adoptive cell therapywith virus-specific T cells has been used successfully to treat life-threatening viral infec-
tions, supporting application of this approach to coronavirus disease 2019 (COVID-19). We expand severe
acute respiratory syndromecoronavirus 2 (SARS-CoV-2) T cells from theperipheral bloodofCOVID-19-recov-
ered donors and non-exposed controls using different culture conditions. We observe that the choice of cy-
tokines modulates the expansion, phenotype, and hierarchy of antigenic recognition by SARS-CoV-2 T cells.
Culture with interleukin (IL)-2/4/7, but not under other cytokine-driven conditions, results in more than 1,000-
fold expansion in SARS-CoV-2 T cells with a retained phenotype, function, and hierarchy of antigenic recog-
nition compared with baseline (pre-expansion) samples. Expanded cytotoxic T lymphocytes (CTLs) are
directed against structural SARS-CoV-2 proteins, including the receptor-binding domain of Spike. SARS-
CoV-2Tcells cannotbeexpandedefficiently from theperipheral bloodof non-exposedcontrols.Becausecor-
ticosteroids are used for management of severe COVID-19, we propose an efficient strategy to inactivate the
glucocorticoid receptor gene (NR3C1) in SARS-CoV-2 CTLs using CRISPR-Cas9 gene editing.
INTRODUCTION

The emergence of severe acute respiratory syndrome coronavi-

rus 2 (SARS-CoV-2) in 2019 marks the third and most devas-

tating large-scale epidemic of coronavirus infection (known as

coronavirus disease 2019 [COVID-19]) in recent times. A number

of potential treatment options for SARS-CoV-2 are under inves-

tigation, including use of convalescent plasma, remdesivir, lopi-

navir/ritonavir, and interferon-beta (Beigel et al., 2020; Cao et al.,

2020; Casadevall and Pirofski, 2020; Hung et al., 2020; Clinical-

Trials.gov: NCT04315948). So far, none appear to be curative,

making it critical to develop novel therapeutic strategies.

SARS-CoV-2 infection is characterized by profound T-lym-

phopenia associated with a dysregulated/excessive innate

response, thought to be the underlying mechanism of acute res-

piratory distress syndrome (ARDS), the major cause of morbidity

andmortality with this virus (Fathi and Rezaei, 2020; Mehta et al.,

2020). Recent studies of individuals with COVID-19 point to an

important role of T cell adaptive immunity in protection and clear-

ance of the virus (Braun et al., 2020), with T cell responses docu-
This is an open access article und
mented against the structural SARS-CoV-2 viral proteins Spike

(S), Membrane (M), and Nucleocapsid (N) (Grifoni et al., 2020;

Ni et al., 2020; Sekine et al., 2020; Thieme et al., 2020). Indeed,

in preclinical models of SARS-CoV-1 infection, adoptive transfer

of virus-specific T cells (VSTs) has been shown to be curative in

infected mice, supporting use of adoptive cell therapy (ACT) in

coronavirus-related infection. ACT with allogeneic cytotoxic T

lymphocytes (CTLs) has been used successfully to treat other

severe viral infections, such as cytomegalovirus (CMV), adeno-

virus, BK virus (BKV), Epstein-Barr virus, and human herpes virus

6 in immunosuppressed individuals, with responses ranging

from 60%–100% (Haque et al., 2007; Muftuoglu et al., 2018;

O’Reilly et al., 2016; Tzannou et al., 2017). Thus, ACT may be

an attractive approach for management of COVID-19-related

disease. However, many individuals with severe COVID-19

receive corticosteroids, which, because of their lymphocytotoxic

effects, limit the efficacy of ACT. Here we describe a novel

approach for generation of highly functional and steroid-resis-

tant SARS-CoV-2-reactive T cells for immunotherapy of individ-

uals with COVID-19.
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Figure 1. Successful expansion of SARS-CoV-2 T cells from COVID-19-RDs

(A) Bar graph showing the log 10-fold expansion of SARS-CoV-2 T cells cultured with different cytokine cocktails: IL-2/4/7 (blue), IL-2/7/15 (red), IL-2/4/21 (green),

and IL-2/7/21 (purple).

(B) Bar graphs showing the log 10-fold expansion of the CD4+ (blue) and CD8+ (red) subsets of SARS-CoV-2 T cells cultured under the different cytokine

stimulation conditions.

(C) Quantification of EM (CD45RO+ CD45RA�CD62L�, left panel), CM (CD45RO+ CD45RA�CD62+, center panel), and EMRA (CD45RO�CD45RA+ CD62L�,

right panel) cells among SARS-CoV-2 T cells expanded with IL-2/4/7 (blue) or IL-2/7/15 (red) (n = 8 samples per group); bars represent median values with

interquartile range. p values are indicated at the top of each graph.

(legend continued on next page)
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RESULTS

Expansion of SARS-CoV-2-reactive T cells from COVID-
19-recovered donors
Our group has previously reported the feasibility of generating

VSTs from the peripheral blood (PB) of healthy donors for ACT

(Muftuoglu et al., 2018). Here we utilized this approach to derive

and expand SARS-CoV-2-specific T cells. Briefly, peripheral

blood mononuclear cells (PBMCs) from 10 CoV19-recovered

donors (RDs) were cultured with 11 different peptide libraries

(15-mers overlapping by 11 amino acids) spanning the entire

sequence of the SARS-CoV-2 antigens, including the structural

(S, M, N, and E) and non-structural (AP3A, Y14, NS6, NS7a,

NS7B, NS8, ORF9B, and ORF10) proteins in the presence of

interleukin (IL)-2/4/7, IL-2/7/15, IL-2/4/21, or IL-2/7/21 for

14 days. At the end of the culture period, SARS-CoV-2-reactive

T cells were enumerated based on their ability to produce inter-

feron-gamma (IFN-g) in response to ex vivo stimulation with the

viral antigens. When cultured in the presence of IL-2/4/7 or IL-2/

7/15, expansion was successful in 8 of 10 cases, with a median

fold expansion of 719.14 (range, 7.16–45572.50) and 1138.41

(range, 15.97–27716.61), respectively. However, expansion us-

ing IL-2/4/21 or IL-2/7/21 was suboptimal, with a median fold

expansion of only 0.71 (range, 0.08–996.18) and 2.72 (range,

0.85–415.98), respectively (Figure 1A; Tables 1, S2, and S3).

IL-2/4/7 and IL-2/7/15 culture conditions supported expansion

of CD4+ and CD8+ SARS-CoV-2-specific T cells with a predom-

inance of CD4+ T cells, whereas expansion with IL-2/4/21 and

IL-2/7/21 failed to result in significant expansion of SARS-

CoV-2 CD4+ or CD8+ T cells (Figure 1B).

SARS-CoV-2-reactive T cells generated from CoV-RDs
are polyfunctional
We next interrogated the functional phenotype of the ex-vivo-

expanded SARS-CoV-2 CTLs. Because IL-2/4/7 and IL-2/7/15

resulted in the best cell expansion, we focused our analysis on

SARS-CoV-2 CTLs generated using these two conditions. Both

culture conditions supported expansion of effector memory

(EM) and central memory (CM) T cells, although use of IL-2/7/

15 resulted in expansion of CM T cells (Figure 1C).

Previous studies of individuals with severe COVID-19 have

reported the presence of T cells with an exhausted phenotype

and reduced polyfunctionality (Chen et al., 2020; Zheng et al.,
(D) Mass cytometry analysis of T cells (gated on CD45+CD3+) expanded from 8 R

(IL-2/4/7 and IL-27/15 conditions are overlapped in this phenograph). The t-distr

highlighted in a corresponding color. Cluster 32 (circled) represents polyfunction

(E) Individual tSNEmaps showing expression of IFN-g, TNF-a, andMIP-1bmostly

from blue, representing low expression, to red, representing high expression.

(F) Cluster identity and frequency are summarized in heatmaps showing marker

different cytokine cocktails IL-2/4/7 (left heatmap) or IL-2/7/15 (right heatmap)

indicated below each heatmap. Expression level is indicated by a color scale ran

(G) Bar graph showing the percentage of dead (Annexin V+ and live/dead+) ce

proteins) cultured alone (purple) or in the presence of expanded CTLs (red) for 16 h

plotted as a negative control.

(H) Violin plots comparing expression of TIM3, LAG3, T cell immunoreceptor with

stimulation conditions IL-2/4/7 (blue) and IL-2/7/15 (red); n = 8 samples per grou

The bars represent median values with interquartile ranges. Statistical analysis by

test (B, C, and G), or Wilcoxon signed-rank test (H).
2020a, 2020b). Thus, we performed a comprehensive single-

cell analysis of expanded SARS-CoV-2 CTLs from 8 RDs using

mass cytometry. Phenotypic assessment of SARS-CoV-2-reac-

tive T cells expanded with IL-2/4/7 or IL-2/7/15 (identified

based on their ability to produce IFN-g in response to ex vivo

stimulation with a mixture of S, M, and N peptide libraries) re-

vealed that SARS-CoV-2-specific CTLs are polyfunctional

based on their ability to secrete multiple cytokines, including

IFN-g, tumor necrosis factor alpha (TNF-a), and MIP-1b (cluster

32; Figures 1D and 1E) and chemokine receptors that support

trafficking to the lungs, such as CXCR3 and CCR4 (Figure S1).

Moreover, ex-vivo-expanded SARS-CoV-2 CTLs did not ex-

press high levels of inhibitory/checkpoint molecules, arguing

against an exhausted phenotype (cluster 32; Figure 1F). Indeed,

analysis of functional markers revealed a cytotoxic Th1 pheno-

type, characterized by expression of IFN-g, TNF-a, CD107a,

and granzyme B (GrB) (Figure 1F) and the ability to kill SARS-

CoV-2 PepMix-loaded autologous PBMCs by Annexin V killing

assay (Figure 1G). These data indicate a direct antiviral killing

capacity of our CTLs, although we are unable to discriminate

between TNF-a- or perforin-dependent killing, given the longer

duration of the cytotoxicity assay used in our experiment.

SARS-CoV-2 CTLs did not produce significant amounts of

IL-2 in response to antigenic stimulation. Single-cell phenotypic

comparison of SARS-CoV-2 CTLs expanded using the two

different culture conditions did not reveal major differences in

the expression patterns of activation and functional markers

between these two groups (Figure 1F). However, cells

expanded in the presence of IL-2/4/7 expressed lower levels

of some exhaustion markers, such as TIM3 and LAG3,

compared with cells expanded with IL-2/7/15 (Figure 1H).

These data support the notion that polyfunctional, non-ex-

hausted T cells capable of reacting against SARS-CoV-2 anti-

gens can be expanded from the PB of CoV-RDs.

We also performed a multiplex analysis to measure cytokines

in supernatants collected from cultures of SARS-CoV-2 CTLs

with SARS-CoV-2 antigens (n = 4 samples for each of the culture

conditions: IL-2/4/7 and IL-2/7/15). As expected, the expanded

SARS-CoV-2 CTLs released effector cytokines such as IFN-g,

TNF-a, andMIP-1b in response to antigenic stimulation. Notably,

they did not produce cytokines, such as IL-6, IL-1a, or IL-10, that

could contribute to a higher risk of toxicity or cytokine release

syndrome (CRS) (Figure S2).
Ds using a combination of M, N, and S peptide libraries and cytokine cocktails

ibuted neighbor embedding (tSNE) map shows the 32 clusters obtained, each

al SARS-CoV-2 T cells.

restricted to cluster 32. Expression levels are indicated by a color scale ranging

expression levels (x axis) for T cell populations (y axis) expanded with the two

. Markers associated with function, phenotype, activation, or exhaustion are

ging from low (blue) to high (red). Cluster 32 is indicated with a black rectangle.

lls in autologous PBMCs pre-loaded with SARS-CoV-2 PepMix (M, N, and S

at a 1:1 ratio. The percentage of dead cells in CTLs cultured alone (blue) is also

Ig and ITIM domains (TIGIT), PD-1, and CTLA-4 and between the two cytokine

p. p values are indicated at the top of each graph.

one-way ANOVA with Tukey’s correction for multiple comparisons (A), paired t
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Table 1. Cytokine production of SARS-CoV-2 T cells from RDs expanded with different cytokine cocktails against the M, N, and S

structural proteins

CD3% CD4% CD8%

M N S M N S M N S

IL-2/4/7 IFN-g median 4.27 4.98 10.60 4.24 5.88 10.65 2.42 4.81 0.82

IFN-g min 0.11 0.12 0.21 0.14 0.14 0.22 0.10 0.05 0.25

IFN-g max 33.60 17.10 14.80 33.40 18.90 20.10 42.00 19.40 3.99

IL-2 median 0.68 1.01 0.96 0.41 0.70 0.90 0.42 0.42 0.27

IL-2 min 0.14 0.23 0.20 0.14 0.18 0.16 0.00 0.16 0.18

IL-2 max 1.41 1.85 2.31 1.44 2.09 1.82 1.20 0.71 0.79

TNF-a median 2.80 2.35 3.99 2.64 2.09 4.59 1.45 0.97 0.61

TNF-a min 0.19 0.22 0.25 0.05 0.04 0.07 0.10 0.00 0.09

TNF-a max 12.90 7.50 7.86 12.90 8.41 7.90 5.65 3.70 2.42

IL-2/7/15 IFN-g median 6.05 3.60 4.47 6.00 3.61 4.55 0.33 3.13 1.15

IFN-g min 0.15 0.17 0.48 0.13 0.21 0.42 0.09 0.04 0.12

IFN-g max 20.80 15.50 26.00 34.20 16.10 29.40 47.30 20.50 2.65

IL-2 median 1.03 0.53 0.79 0.68 0.58 0.80 0.37 0.49 0.41

IL-2 min 0.15 0.32 0.31 0.20 0.28 0.22 0.20 0.23 0.27

IL-2 max 2.55 1.56 6.59 1.64 0.91 6.52 2.24 1.16 1.75

TNF-a median 4.18 1.70 2.37 3.90 1.46 2.74 0.69 1.29 0.76

TNF-a min 0.24 0.38 0.78 0.10 0.48 0.33 0.00 0.10 0.24

TNF-a max 7.06 4.20 10.10 12.60 4.50 11.20 18.50 7.27 3.61

IL-2/4/21 IFN-g median 0.30 0.20 0.36 0.51 0.29 0.16 0.00 0.00 0.00

IFN-g min 0.03 0.14 0.08 0.00 0.00 0.00 0.00 0.00 0.00

IFN-g max 2.46 0.64 2.53 4.99 1.08 3.63 3.37 0.22 0.97

IL-2 median 0.16 0.21 0.16 0.13 0.20 0.16 0.00 0.00 0.00

IL-2 min 0.10 0.09 0.09 0.00 0.09 0.06 0.00 0.00 0.00

IL-2 max 0.40 0.84 1.02 0.52 0.33 0.81 0.24 0.48 2.17

TNF-a median 0.40 0.15 0.14 0.34 0.20 0.14 0.00 0.00 0.00

TNF-a min 0.10 0.09 0.00 0.06 0.00 0.00 0.00 0.00 0.00

TNF-a max 0.93 0.47 1.66 1.95 0.50 2.36 3.70 7.69 0.00

IL-2/7/21 IFN-g median 0.74 0.25 0.29 1.27 0.16 0.18 0.00 0.33 0.41

IFN-g min 0.14 0.06 0.11 0.07 0.00 0.00 0.00 0.00 0.00

IFN-g max 0.97 0.38 0.50 2.93 0.81 1.36 1.52 5.82 1.11

IL-2 median 0.09 0.07 0.11 0.20 0.22 0.14 0.10 0.13 0.34

IL-2 min 0.03 0.05 0.07 0.10 0.00 0.00 0.00 0.00 0.00

IL-2 max 0.73 0.66 0.31 1.27 1.10 0.57 1.75 0.60 0.83

TNF-a median 0.19 0.19 0.20 0.45 0.33 0.59 0.39 0.53 0.10

TNF-a min 0.13 0.07 0.14 0.17 0.19 0.18 0.00 0.00 0.00

TNF-a max 1.70 0.31 0.26 2.55 1.01 2.58 0.94 0.72 0.93

Shown are percent IFN-g, IL-2, and TNF-a production (median, minimum [min], and maximum [max] values) from the CD3+, CD4+, and CD8+ com-

partments of SARS-CoV-2 T cells stimulated with the peptide libraries derived from the M, N, and S structural proteins after expansion under the

different culture conditions with the four different cytokine cocktails IL-2/4/7, IL-2/7/15, IL-2/4/21, and IL-2/7/21.
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Expanded SARS-CoV-2 CTLs fromCoV-RDs are directed
against structural proteins, including the C and N
termini of the S protein
To identify the dominant antigen(s) driving expansion of SARS-

CoV-2 CTLs, the expanded cells were stimulated ex vivo with

peptide libraries derived from M, N, S, or E (structural proteins)

or AP3A, Y14, NS6, NS7a, NS7B, NS8, ORF9B, or ORF10 (non-

structural proteins). Analysis of IFN-g production showed that,
4 Cell Reports 36, 109432, July 20, 2021
for the CTL lines expanded with IL-2/4/7, the antiviral response

was mostly directed against S (median, 10.60%; range, 0.21%–

4.8%), with the remaining cells responding to M (median,

4.27%; range, 0.11%–33.6%) or N (median, 4.98%; range,

0.12%–17.10%) (Figure 2A). For the lines expanded with IL-2/7/

15, the antiviral response favored M (median, 6.05%; range,

0.15%–20.80%), followed by S (median, 4.47%; range, 0.48%–

26.00%) and N (median, 3.60%; range, 0.17%–15.50%)
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Figure 2. Expanded SARS-CoV-2 CTLs are

directed against structural proteins,

including the C andN termini of the S protein

(A) Bar graphs showing the percentage of total IFN-

g (+) SARS-CoV-2 CD3+ T cells stimulated with the

peptide libraries derived from the different struc-

tural proteins M (blue), N (red), and S (green)

cultured with different cytokine cocktails: IL-2/4/7

(left panel) or IL-2/7/15 (right panel).

(B) Bar graphs showing IFN-g (+) expression in

CD4+ and CD8+ T cell subsets of SARS-CoV-2

T cells stimulated with the peptide libraries derived

from the different structural proteins M (blue), N

(red), and S (green) cultured with IL-2/4/7 (left

panels) or IL-2/7/15 (right panels).

(C) Quantification of IFN-g (+) SARS-CoV-2 T cells

subsets (CD4+ or CD8+) directed against the N

terminus (S1, dark green) or C terminus (S2, light

green) of the S protein under IL-2/4/7 (left panels)

and IL-2/7/15 (right panels) stimulation conditions

(n = 8 samples per group).

The bars represent median values with interquartile

range. p values are indicated at the top of each

graph. Statistical analysis by paired t test.
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(Figure 2A). In sum, for the IL-2/4/7 and IL-2/7/15 culture settings,

seven lines were directed against M, N, and S; one line was

directed against S and N; and no line reacted to M and N in the

absence of S. There was no significant expansion of CTLs in

response to the non-structural proteins or the structural E protein.

When we considered the CD4+ and CD8+ T cell responses

separately, we found that the response of CD4+ T cells to individ-

ual SARS-CoV-2 antigens followed a pattern similar to that

observed in the overall CD3+ T cell population. Interestingly,

however, CD8+ T cell responses were mostly directed against

the N protein, irrespective of the cytokine cocktail used for

SARS-CoV-2 CTL expansion (Figure 2B; Table 1).

Peptides derived from the C terminus of the S protein have

higher homology with the S glycoprotein of human endemic

‘‘common cold’’ coronaviruses; in contrast, the N terminus of

the S protein includes peptides from the receptor-binding

domain (the target of neutralizing antibodies) that are more spe-

cific to SARS-CoV-2 (Braun et al., 2020; Walls et al., 2020). Our

expanded CD4+ and CD8+ SARS-CoV-2 CTLs were capable

of reacting to epitopes found on the N or C terminus or the S pro-

tein (peptide pools 1 and 2, respectively), indicating their speci-
ficity for the receptor binding domain

(RBD) of SARS-CoV-2 (Figure 2C; Tables

2, S4, and S5).

Culture with IL-2/4/7 results in
preferential expansion of T cells
against the N terminus of the S
protein
Because the choice of cytokines used to

expand SARS-CoV-2 T cells modulates

the hierarchy of antigenic response, we

compared the T cell response against S

(S1 and S2), M, and N proteins of
SARS-CoV-2 in PB samples at baseline (prior to expansion)

with that observed in paired expanded CTLs from CoV-RDs.

At baseline (pre-expansion), the responses were mostly CD4

dominant (Figure 3A) and directed against the S protein (median,

0.21%; range, 0.02%–0.56%), followed by N (median, 0.15%;

range, 0.01%–0.33%) and M (median, 0.11%; range, 0.01%–

0.24%) (Figure 3B), indicating an immunogenic dominance for

S protein human leukocyte antigen (HLA) class II epitopes. We

did not detectmeasurable responses against non-structural pro-

teins (data not shown). Following expansion, culture with IL-2/4/

7 maintained the hierarchy of CD4+ T cell response toward the S

protein (Figures 2B, 3C, and 3D), with a greater proportion of

T cells directed against S1, whereas culture with IL-2/7/15

favored a response toward the M protein (Figures 2B, 3C, and

3D). Expansion with IL-2/4/21 and IL-2/7/21 yielded very low

numbers of CTLs, most of which were CD4+. Interestingly, the

pattern of antigenic response for cells cultured using these two

conditions differed from that observed for IL-2/4/7 and was

similar to IL-2/7/15 in that the majority of CD4+ CTLs reacted

instead to the M and N proteins (Figure S3A). For CTLs that did

show a response to the S protein, further analysis detected no
Cell Reports 36, 109432, July 20, 2021 5



Table 2. Cytokine production of SARS-CoV-2 T cells from RDs

expanded with different cytokine cocktails against S1 and S2 (N

and C termini of the S protein)

CD3% CD4% CD8%

S1 S2 S1 S2 S1 S2

IL-2/4/7 IFN-g median 5.81 3.88 6.40 1.55 3.02 3.26

IFN-g min 1.33 0.71 1.00 0.46 0.70 0.60

IFN-g max 26.50 8.54 20.80 6.60 13.20 6.29

IL-2 median 0.53 0.51 0.41 0.38 1.78 2.87

IL-2 min 0.14 0.24 0.06 0.07 0.00 0.15

IL-2 max 5.03 4.48 2.55 2.72 6.15 6.47

TNF-a median 3.24 1.41 2.56 0.87 5.51 1.80

TNF-a min 0.45 0.72 0.33 0.51 0.00 0.00

TNF-a max 9.47 2.63 12.80 1.60 27.30 14.70

IL-2/7/15 IFN-g median 5.94 2.99 2.61 2.27 3.59 2.22

IFN-g min 1.73 1.61 0.82 0.76 0.83 0.46

IFN-g max 18.00 14.60 15.80 10.50 10.10 7.77

IL-2 median 0.80 0.90 0.22 0.27 3.03 1.87

IL-2 min 0.12 0.05 0.05 0.03 0.14 0.40

IL-2 max 4.37 4.97 3.02 2.34 4.13 4.48

TNF-a median 2.20 2.02 2.62 1.36 10.27 11.38

TNF-a min 1.57 0.95 0.84 0.38 0.36 0.00

TNF-a max 10.50 4.14 13.90 3.05 26.20 22.60

IL-2/4/21 IFN-g median 0.17 0.14 0.14 0.22 0.00 0.00

IFN-g min 0.03 0.08 0.00 0.05 0.00 0.00

IFN-g max 4.15 0.26 6.21 0.60 0.67 0.00

IL-2 median 0.17 0.16 0.14 0.16 0.00 0.00

IL-2 min 0.00 0.08 0.00 0.00 0.00 0.00

IL-2 max 0.40 0.57 0.68 0.44 0.66 0.61

TNF-a median 0.23 0.14 0.29 0.18 0.00 0.00

TNF-a min 0.07 0.05 0.08 0.00 0.00 0.00

TNF-a max 1.78 0.72 2.69 0.30 0.00 1.59

IL-2/7/21 IFN-g median 0.20 0.12 0.23 0.10 0.43 0.00

IFN-g min 0.05 0.05 0.00 0.00 0.00 0.00

IFN-g max 0.89 0.63 2.22 1.24 0.63 0.47

IL-2 median 0.08 0.08 0.17 0.39 0.00 0.35

IL-2 min 0.06 0.04 0.09 0.11 0.00 0.00

IL-2 max 0.11 0.21 0.37 1.50 0.54 0.87

TNF-a median 0.20 0.09 0.35 0.21 0.00 0.00

TNF-a min 0.08 0.06 0.20 0.07 0.00 0.00

TNF-a max 0.37 0.31 1.18 1.50 0.63 0.83

Shown are percent IFN-g, IL-2, and TNF-a production (median, minimum

[min], andmaximum [max] values) from the CD3+, CD4+, andCD8+ com-

partments of SARS-CoV-2 T cells stimulated with the peptide libraries

derived from S1 and S2 (N and C-terminals of the S protein) after expan-

sion under different cytokine stimulation conditions (IL-2/4/7, IL-2/7/15,

IL-2/4/21 and IL-2/7/21).
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particular pattern of reactivity to either terminus of the protein

(Figure S3B).

Furthermore, we found a significant correlation (p = 0.002, R2 =

0.82) between the S protein immunoglobulin G (IgG) antibody

titer measured in plasma from RDs and the absolute number of
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SARS-CoV-2-specific T cells following expansion with IL-2/4/7

but not with the IL-2/7/15 cytokine cocktail (Figure S4A). Howev-

er, there was no correlation between the S protein IgG antibody

titer and the absolute number of SARS-CoV-2 T cells prior to

ex vivo expansion at baseline (p = 0.52, R2 = 0.07) (Figure S4B).

Nonetheless, we recognize that the correlation observed

following expansion could be skewed by data from a single indi-

vidual who represents an outlier and that further studies with

larger cohorts are needed to confirm this trend.

These data indicate that antigenic skewing can be driven by

the immunodominance of the protein and by the culture condi-

tions and support use of IL-2/4/7 for expansion of SARS-CoV-

2 T cells for clinical use.

SARS-CoV-2 T cells can be expanded from the PB of
healthy donors but at lower frequencies than for CoV-
RDs
Recent reports indicate the presence of SARS-CoV-2 T cells in

the PB of healthy donors (HDs) not exposed to COVID-19 (Braun

et al., 2020; Pia, 2020). Thus, we wanted to find out whether

SARS-CoV-2 T cells can be expanded from the PB of HDs and

whether they have a similar pattern of SARS-CoV-2 recognition

as those generated from CoV-RDs. PBMCs from 5 HDs were

expanded using the same protocol as for those from CoV-RDs.

We achieved only modest expansion of CTLs recognizing

SARS-CoV-2 antigens over a 14-day culture period, with a me-

dian 20.37-fold increase (range, 2.85–41.84) for the IL-2/4/7 cul-

ture condition and 21.49-fold increase (range, 4.00–53.95) for the

IL-2/7/15 culture condition (Figure 4A). The frequencies of

SARS-CoV-2 CTLs from the PB of HDs after 14 days of culture

were significantly lower than those achieved with PB from

CoV-RDs (Figure 4B). At baseline (pre-expansion), assessment

of IFN-g production and CTL frequencies suggested that, in

HDs, responses were directed mostly against the N protein (me-

dian, 0.13%; range, 0.03%–0.37%), followed by S (median,

0.10%; range, 0.04%–0.12%) and M (median, 0.09%; range,

0.01%–0.75%) (Figure S5A). Culture in the presence of either

cytokine cocktail could skew the response toward S, albeit at

much lower frequencies than that observed with CoV-RDs (Fig-

ure S5B; Tables S6 and S7). We did not find any particular

pattern of antigenic response in the CD4 andCD8 compartments

(Figure S5B; Tables S6 and S7). Expansion was not successful

under IL-2/4/21 or IL-2/7/21 stimulation conditions. Thus, the

different patterns of antigen recognition and the weaker expan-

sion of SARS-CoV-2 T cells from HDs support use of buffy coats

from CoV-RDs as starting material for generation of SARS-CoV-

2-reactive T cells for ACT.

Expanded SARS-CoV-2 T cells can be genetically
modified to render them steroid resistant
Corticosteroids are used for treatment of individuals with

COVID-19-related ARDS to reduce mortality associated with

this condition. SARS-CoV-2-specific T cell therapy is not an op-

tion in these individuals because corticosteroids induce

apoptosis of adoptively transferred T cells, significantly limiting

the efficacy of this approach. To address this challenge, we

used CRISPR-Cas9 gene editing to knock out the glucocorticoid

receptor gene (nuclear receptor subfamily 3 group C member 1



A

C

D

B

Figure 3. Pattern of antigenic responses af-

ter expansion of SARS-CoV-2 T cells from

COVID-19-RDs compared with baseline

(A) Bar graph showing the percentages of CD4+

and CD8+ subsets of SARS-CoV-2 T cells at

baseline.

(B) Graphical analysis showing the percentages of

IFN-g (+) SARS-CoV-2 T cells from RDs at base-

line in the CD4+ compartment (left panel) or CD8+

compartment (right panel) when stimulated with

the peptide libraries derived from the different

structural proteins M (blue), N (red), and S (green).

(C and D) Pie charts illustrating the percent distri-

bution of IFN-g (+) CD4 and CD8 T cells reactive to

M (blue), N (red), S1 (dark green), and S2 (light

green) peptide libraries at baseline (C) or following

expansion with IL-2/4/7 (top panel) or IL-2/7/15

(bottom panel) cytokine cocktails (D).

The bars represent median values with inter-

quartile ranges. Statistical analysis by paired t test

(A and B).
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[NR3C1]) in SARS-CoV-2 CTLs and confirmed high efficiency

of deletion (>90%), as determined by PCR and western blot

analysis (Figures 5A and 5B). An Annexin V apoptosis assay

confirmed that the viability of NR3C1 knockout (KO) CTLs

treated with dexamethasone was similar to that of control

CTLs (defined as CTLs electroporated with Cas9 alone) (Figures

5C and 5D). Moreover, NR3C1 KO SARS-CoV-2 CTLs main-

tained a similar phenotype and distribution of CD4+ and CD8+
T cell subsets compared with control

SARS-CoV-2 CTLs and retained their

effector functions (Figures 5E–5G).

DISCUSSION

Here we show that large numbers of

SARS-CoV-2 T cells can be generated

from buffy coats of convalescent individ-

uals with specificity directed against

multiple structural proteins of this virus,

including the RBD of the S protein. These

cells can be genetically modified to

render them resistant to the lymphocyto-

toxic effect of corticosteroids, making

their application clinically feasible.

We performed single-cell analysis of

ex-vivo-expanded SARS-CoV-2 CTLs

to better understand their phenotypic

and functional properties. SARS-CoV-2

T cellswere classified basedon their state

of differentiation into naive, CM, EM, or

terminally differentiated EM (TEMRA)

cells. SARS-CoV-2 T cells were CD4+

dominant, comprising mostly EM and

CMcells. Theeffector phenotypepredicts

the capacity to mediate early viral clear-

ance,whereasCMTcells persist andpro-

vide long-term immunity after adoptive
transfer (Powell et al., 2005). Indeed, our group and others have

confirmed that adoptive infusion of VSTs with a predominantly

CD4+ EM phenotype results in successful eradication of severe

viral infections such as JCV, BKV, and adenovirus (Heslop

et al., 2010; Leen et al., 2010; Muftuoglu et al., 2018; Olson

et al., 2021). We also investigated the functional state of SARS-

CoV-2 T cells based on their ability to produce one or more cyto-

kines in response to ex vivo stimulation with SARS-CoV-2
Cell Reports 36, 109432, July 20, 2021 7



A B Figure 4. SARS-CoV-2 CTLs can be

expanded from the PB of HDs but at lower

frequencies compared with RDs

(A) Graphical representation of the log 10-fold

expansion of SARS-CoV-2 T cells derived from

HDs cultured with different cytokine cocktails:

IL-2/4/7 (blue) and IL-2/7/15 (red).

(B) Comparison of SARS-CoV-2 T cell expansion

between recovered donors (RDs; blue) and

healthy donors (HDs; red) cultured under the

different cytokine stimulation conditions IL-2/4/7

(left panel) and IL-2/7/15 (right panel).

The bars represent median values with inter-

quartile ranges. Statistical analysis by paired t test

(A) or unpaired t test (B).
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antigens. Polyfunctionality is defined as production of multiple

cytokines by T cells and is associatedwith protective immune re-

sponses to viruses and vaccines (Minton, 2014). We confirmed

that SARS-CoV-2 T cells were polyfunctional with a predomi-

nantly Th1 phenotype and capable of killing antigen-loaded

targets.

T cells derived from individuals with severe COVID-19 have

been reported to express multiple inhibitory molecules (Song

et al., 2020), raising concerns that, following ex vivo expansion,

they may have an exhausted phenotype with poor effector

function and replicative senescence. In our study, T cells from

COVID-19-recovered individuals did not have an exhaustion

phenotypic signature following in vitro expansion and retained

their functional phenotype.

SARS-CoV-2 neutralizing antibodies are directed against the

RBD within the N terminus of the S glycoprotein. Peptides

derived from this region of the protein are believed to be spe-

cific to SARS-CoV-2, whereas peptides from the C terminus

are shared with other betacoronaviruses (Braun et al., 2020).

We showed that expanded SARS-CoV-2 T cells from CoV-

RDs were capable of recognizing epitopes from the N and C

terminus of the S glycoprotein, indicating specificity for the

SARS-CoV-2 virus. In addition, expanded CTLs reacted against

N and M proteins, which are reportedly also shared among

different betacoronaviruses (Patrick et al., 2006). The specific

antigens that drive an effective and protective T cell response

against SARS-CoV-2 are not yet known. They may be proteins

that are shared with other betacoronaviruses, or they may be

unique to SARS-CoV-2 (e.g., RBD) or may likely be a combina-

tion of both.

Cytokines can modulate the phenotype of T cells by activating

different signaling pathways. We tested different combinations

of cytokines, including IL-2, IL-4, IL-7, IL-15, and IL-21 to identify

the optimal conditions to promote expansion of SARS-CoV-2

T cells with a memory phenotype and without evidence of

exhaustion. Although IL-2, IL-4, IL-7, and IL-15 support expan-

sion of central and EM T cells (Clénet et al., 2017; Geginat

et al., 2001), with IL-2, IL-7, and IL-15 driving proliferation

through STAT5 signaling (Drake et al., 2016), in vitro culture

with IL-21 facilitates generation of memory stem-like T cells

(Chen et al., 2018). Because CD4 and CD8 T cells are involved

in successful antiviral response, we also investigated whether

cytokines would support expansion of both subsets. We
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observed that cocktails including IL-2/4/7 or IL-2/7/15 resulted

in expansion of clinically relevant doses of polyfunctional

SARS-CoV-2 T cells with a CM and EM phenotype. Interestingly,

the combination of IL-2/4/7 preferentially supported expansion

of T cells against S and, in particular, the RBD-containing S1 re-

gion of the protein, making this the cytokine cocktail of choice for

production of SARS-CoV-2 T cells for clinical use. Inclusion of IL-

21 in the cytokine cocktail resulted in poor expansion of SARS-

CoV-2 T cells, in line with previous studies reporting that the

effect of IL-21 to augment the antigen-specific T cell response

is limited to the naive and not the memory T cell population (Li

et al., 2005).

CRS is a major complication of COVID-19 (Moore and June,

2020) and is caused by production of inflammatory cytokines

such as IL-6 by virus-infected myeloid cells. The inflammatory

milieu overstimulates cells of the innate and adaptive immune

system, which, in turn, contributes to the observed cytokine

storm (Kang et al., 2019). Therefore, a legitimate concern with

our approach is that the adoptively infused SARS-CoV-2

T cells, which also include a small percentage of Th2 and

Th17 subsets, could amplify CRS and worsen the condition

(Hotez et al., 2020; Wu and Yang, 2020). However, we believe

that ACT for COVID-19 is unlikely to worsen CRS because the

adoptively infused CTLs will target and kill SARS-CoV-2-in-

fected myeloid cells, breaking the vicious cycle driving the

cytokine storm. Furthermore, CRS is not unique to betacorona-

virus infections and has been reported with other viral infec-

tions, such as CMV, EBV, and adenovirus (Humar et al.,

1999; McLaughlin et al., 2018; Ramos-Casals et al., 2014),

where ACT with virus-specific CTLs has been used to treat

hundreds of individuals with severe infections effectively and

with minimal complications (Bollard and Heslop, 2016;

McLaughlin et al., 2018; Muftuoglu et al., 2018; Tzannou

et al., 2017).

Our approach allows cryopreservation and banking of SARS-

CoV-2 T cells, facilitating rapid identification and selection of

off-the-shelf VSTs for immediate ACT based on the most closely

HLA-matched third-party donor, as published by our group and

others for other severe viral infections (Eiz-Vesper et al., 2013; Ha-

que et al., 2007; Leen et al., 2010; Muftuoglu et al., 2018; O’Reilly

et al., 2016). Thus, we initiated a phase I/II clinical trial to assess

the feasibility, safety, and efficacy of off-the-shelf SARS-CoV-2

T cells in individuals with mild to moderate COVID-19 disease
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Figure 5. Expanded SARS-CoV-2 CTLs can be genetically modified to become steroid resistant

(A and B) NR3C1 KO efficiency shown by PCR gel electrophoresis (A) and western blot (B) in SARS-CoV-2 CTLs expanded with IL-2/4/7 or IL-2/7/15, after

electroporationwith Cas9 alone or Cas9 complexedwith crRNA 1 and crRNA 2 targeting exon 2 of theNR3C1 gene. SARS-CoV-2 CTLs electroporatedwith Cas9

alone were used as controls. b-Actin was used as loading control for the western blot.

(C) Representative fluorescence-activated cell sorting (FACS) plots showing the percentage of apoptotic cells (Annexin V+) and live or dead cells (live/dead stain)

in control Cas9 versusNR3C1KOSARS-CoV-2 CTLs after culture with or without dexamethasone (Dexa; 200 mM) for 72 h. Inset values indicate the percentage of

Annexin V and live/dead cells from each group.

(legend continued on next page)
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(ClinicalTrials.gov: NCT04742595). Because there is increasing

evidence that use of corticosteroids may reduce mortality in indi-

viduals with COVID-19-related ARDS (Horby et al., 2021), we also

developed an efficient and novel strategy to inactivate the gluco-

corticoid receptor in SARS-CoV-2 T cells using RNA-guided

endonuclease CRISPR. In the event of unanticipated toxicities,

corticosteroid-resistant SARS-CoV-2 T cells can be eliminated

easily using T cell-directed antibodies such as anti-thymocyte

globulin (ATG) or alemtuzumab.

Adoptive transfer of SARS-CoV-2 T cells may be a suitable

therapeutic strategy for treatment of individuals with COVID-19.
Limitations of the study
Our study evaluated the cytotoxic effect of SARS-CoV-2 T cells

using well-validated in vitro assays. We could not test the effi-

cacy of our expanded SARS-CoV-2 T cells in vivo because a

robust mousemodel of human COVID-19 is not readily available.

We also recognize that our study lacks data from affected indi-

viduals; however, a phase I/II clinical trial is currently underway

to assess the feasibility, safety, and efficacy of our off-the-shelf

SARS-CoV-2 T cells in individuals with mild to moderate

COVID-19 (ClinicalTrials.gov: NCT04742595).
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Software and algorithms
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REAGENT or RESOURCE SOURCE IDENTIFIER

R package Rphenograph (v0.99.1) Levine et al. (2015) https://github.com/JinmiaoChenLab/

Rphenograph

R package ggplot2 (v3.3.2) Wickham (2016) https://cran.r-project.org/web/

packages/ggplot2/index.html

R package pheatmap (v1.0.12) Kolde (2019) https://cran.r-project.org/web/

packages/pheatmap/index.html

R package ggpubr (v0.4.0) Kassambara (2020) https://cran.r-project.org/web/

packages/ggpubr/index.html

GeneSys software Syngene https://www.syngene.com/software/

genesys-rapid-gel-image-capture/

Helios 6.5.358 acquisition software Fluidigm https://www.fluidigm.com/binaries/content/

documents/fluidigm/resources/cytof-

software-6.7-rl-400314/cytof-software-

6.7-rl-400314/fluidigm%3Afile

FlowJo 10 BD Biosciences https://www.flowjo.com

GraphPad Prism GraphPad https://www.graphpad.com
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RESOURCE AVAILABILITY

Lead contact
Further information and requests may be directed to and will be fulfilled by the Lead Contact Katayoun Rezvani (KRezvani@

mdanderson.org).

Materials availability
All requests for data andmaterials will be reviewed byMDAnderson Cancer Center to verify if the request is subject to any intellectual

property or confidentiality obligations. Any data and materials that can be shared by the corresponding author will be released freely

or via a Material Transfer Agreement if deemed necessary.

Data and code availability

d The data will be available from the lead contact upon request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

COVID-19 recovered donors and healthy donors
Buffy coat units were processed from500mL of whole blood collected from each of the 10COVID-19 recovered donors (CoV-RD) and

20 mL of peripheral blood from 5 healthy donors were collected under local Institutional Review Board approved protocols (Lab02-

0630 and PA13-0647) and following informed consent. All donors were 18 years or older and were recruited without consideration of

disease severity, race, ethnicity or gender. All CoV-RD had recovered from proven symptomatic COVID-19 confirmed by a positive

test for SARS-CoV-2. At the time of blood collection, all were asymptomatic for at least 14 days and had a negative PCR test, con-

firming full recovery.

Blood fromCov-RDwas collected in heparin-coated blood bags and stored at room temperature prior to processing for peripheral

bloodmononuclear cell (PBMC) isolation. PBMCswere isolated by density-gradient sedimentation using Ficoll-Paque (Lymphoprep,

Oslo, Norway). Isolated PBMCs were either used fresh for ex vivo expansion of SARS-CoV-2 specific T cells (SARS-CoV-2 CTLs) or

cryopreserved in freezing media containing 10% DMSO (GIBCO), supplemented with 10% heat inactivated Human Serum AB

(Gemini Bio) and stored in liquid nitrogen until used for phenotypic and functional assays.

METHOD DETAILS

Functional assessment of SARS-CoV-2 reactive T cells
For intracellular assessment of cytokine production, cells were stimulated ex vivo with 15-mer PepMixes overlapping by 11 amino

acids derived from SARS-CoV-2 Spike (S) (peptide pool 1 or 2), Membrane (M), Nucleocapsid (N), Envelope (E), or the non-structural
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proteins (AP3A, Y14, NS6, NS7a, NS7B, NS8,ORF9B and ORF10) (JPT, Germany) [1mg /ml per peptide] for 4 hours. Stimulation with

an equimolar amount of DMSO was performed as negative control and with Phorbol 12-myristate 13-acetate (PMA)- Ionomycin

(1.25ng/ul and 0.05ng/ml, respectively) as positive control. Brefeldin A (Millipore Sigma, St. Louis, MO) was added into the culture

for 4 hours. Cells were stained with an antibody cocktail containing live/dead viability dye Aqua (Invitrogen), CD3 APC Cy7 (Bio-

legend, Clone HIT3A), CD4 APC (E Biosciences, Clone SK3), CD8 PerCP Cy5.5 (Biolegend, Clone SK1), CD95 BV785 (Biolegend,

Clone DX2), CD45RO BV650 (BD Biosciences, Clone UCHL1), CD45RA PECy7 (Biolegend, Clone HI100), CD27 BV711 (Biolegend,

Clone O323), CCR7 FITC (BD Biosciences, Clone 150503) and CD62L BV605 (Biolegend, Clone DREG56) for 30 minutes on ice, then

fixed and permeabilized using the BD fixation/permeabilization kit (BDBiosciences, San Diego, CA) according tomanufacturer’s pro-

tocol. Cells were subsequently stained with antibodies against IL-2 PE (BD Biosciences, Clone MQ1-17H12), IFN-g BV450 (BD

Biosciences, Clone B27), and TNF-a AF700 (Biolegend, Clone MAB11) for 30 mins. Following a final wash, cells were re-suspended

in FACS buffer and data were acquired on a BD LSRFortessa (BDBiosciences). Data analysis was performed using Flowjo (Tree Star,

Ashland, OR). The gates applied for the identification of IFN-g, IL-2, and TNF-a on the total population of CD4+ andCD8+ T cells were

defined according to the negative control for each individual. Similar functional assays were performed for NR3C1 knockout (KO)

CTLs.

SARS-CoV-2 antibody assay
IgM and IgG responses against Nucleocapsid, S1 receptor-binding domain (RBD), S1S2, S2, S1, OC43, HKU1, NL63 Nucleoprotein,

and 229E Spike derived from SARS-CoV-2 and other human coronaviruses were performed at Genalyte (Austin, TX) CLIA-certified

laboratory using plasma from convalescent patients.

Cytokine and chemokine measurement
Cells were stimulated ex vivowith 15-mer PepMixes from S,M and N for 24 hours at 37�C and 5%CO2. Supernatants were collected

and assayed with the Milliplex�MAP Human Cytokine/Chemokine panel (EMD Millipore Corporation, Burlington, MA) following the

manufacturer’s instructions.

Generation of SARS-CoV-2 specific T cells
Isolated PBMC from CoV-RD and HD were pulsed with a SARS-CoV-2 PepMix (JPT, Germany) comprising the entire length of the

structural (S, M, N, E) and non-structural (AP3A, Y14, NS6, NS7a, NS7B, NS8, ORF9B and ORF10) proteins at a concentration of

1 mg/ml per peptide. Cells were cultured in complete media with 5% human AB serum and supplemented with four different cytokine

cocktails: IL-2 (50 IU/ml), IL-4 (60 ng/ml) and IL-7 (10 ng/ml) versus IL-2 (50 IU/ml), IL-7 (10 ng/ml) and IL-15 (10 ng/ml) versus IL-2

(50 IU/ml), IL-4 (60 ng/ml) and IL-21 (30 ng/ml) versus IL-2 (50 IU/ml), IL-7 (10 ng/ml) and IL-21 (30 ng/ml) every 3 days. After 14 days of

expansion, the frequencies of SARS-CoV-2 specific T cells were determined by intracellular cytokine staining.

Mass Cytometry
A panel of 40 metal-tagged antibodies was used for the in-depth characterization of SARS-CoV-2 reactive T cells (Table S1). All un-

labeled antibodies were purchased in carrier-free form (Fluidigm) and conjugated in-house with the corresponding metal tag using

Maxpar X8 polymer per the manufacturer’s instructions (Fluidigm) and as previously described (Muftuoglu et al., 2018). Briefly,

thawed PBMCs were rested overnight at 37�C / 5% CO2 and stained with a freshly prepared antibody mix against cell surface

markers for 30 minutes at room temperature on a shaker (100 rpm). For the last 3 minutes of incubation, cells were incubated

with 2.5 mM cisplatin (Pt198, Fluidigm) for viability assessment, washed twice with cell staining buffer and fixed/permeabilized using

BD fixation/permeabilization solution for 30 minutes in dark at 4�C. Cells were washed twice with perm/wash buffer, stained with

antibodies directed against intracellular markers and after an additional wash step, stored overnight in 500 ml of 1.6% paraformal-

dehyde (EMD Biosciences)/PBS with 125 nM iridium nucleic acid intercalator (Fluidigm). Samples were supplemented with EQ cali-

bration beads (Fluidigm) and acquired at 300 events/second on a Helios instrument (Fluidigm) using the Helios 6.5.358 acquisition

software (Fluidigm).

Mass cytometry data were normalized based on EQTM four element signal shift over time using Fluidigm normalization software 2.

Initial data processing was performed using Flowjo version 10.2. Calibration beads were gated out and singlets were chosen based

on iridium 193 staining and event length. Dead cells were excluded by the Pt198 channel andmanual gating was performed to select

the CD45+CD3+ population which was subsequently exported for downstream analyses. A total of 156,384 cells were evenly

sampled from 16 samples derived from 8 patients to perform automated clustering analysis. The data were processed using the

R package cytofkit (v1.11.3) (Chen et al., 2016). Expression values for each marker were arcsine transformed with a cofactor of 5.

Data dimensionality reduction was performed using the R package Rtsne (v0.15) (Krijthe, 2015) for t-Distributed Neighbor Embedding

(tSNE) analysis. The R package Rphenograph (v0.99.1) (Levine et al., 2015) was used to cluster all cells into 32 clusters. Both the R

package Rstne (v0.15) and the R package Rphenograph (v0.99.1) were implemented in the R package cytofkit (v1.11.3). The t-SNE

plots were generated using the R package ggplot2 (v3.3.2) (Wickham, 2016). Normalized mean values of marker expressions in each

cluster were plotted as heatmap using the function ‘‘pheatmap’’ from R package pheatmap (v1.0.12) (Kolde, 2019). Min-max normal-

ization was used to scale each marker’s mean expressions range to [0,1]. The normalized mean values of marker expressions were

plotted as boxplots using the function ‘‘ggpaired’’ from R package ggpubr (v0.4.0) (Kassambara, 2020). The mean comparison
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p values of Wilcoxon signed-rank test were added to the plots using the function ‘‘stat_compare_means’’ from R package ggpubr

(v0.4.0).

CRISPR-Cas9 gene editing of the glucocorticoid receptor
Knockout (KO) of NR3C1 (the glucocorticoid receptor gene) was performed on day 7 of T cell expansion using ribonucleoprotein

(RNP) complex. We used two crRNAs targeting exon 2 of the human NR3C1 gene: crRNA #1 TGAGAAGCGACAGCCAGTGA,

crRNA#2 GGCCAGACTGGCACCAACGG as previously described (Basar et al., 2020) Briefly, Cas9 protein (IDT) and gRNA (crRNA +

tracrRNA combination) were complexed and electroporated into 1 million SARS-CoV-2 specific T cells using the Neon transfection

system (Thermo Fisher Scientific).

Annexin V apoptosis assay
Annexin V apoptosis assay was performed to evaluate the effect of dexamethasone on the viability of CTLs from Cas9 control and

NR3C1KOgroups. CTLs fromboth groupswere treatedwith 200 mMdexamethasone (Sigma) for 72 hours. Cells were then collected,

washedwith Annexin V buffer, and stainedwith Annexin V (V500; BDBiosciences) and live/dead viability dye (efluor 660; Invitrogen) in

addition to CD3 APC Cy7 (Biolegend, Clone HIT3A), CD4 APC (E Biosciences, Clone SK3), and CD8 PerCP Cy5.5 (Biolegend, Clone

SK1). The proportion of apoptotic (positive for Annexin V) and dead CTLs (positive for live/dead stain) was determined by flow

cytometry.

To confirm the ability of SARS-CoV-2 CTLs to mediate cytotoxicity, autologous PBMCswere labeled with carboxyfluorescein suc-

cinimidyl ester (CFSE) per manufacturer’s recommendation and loaded with SARS-CoV-2 Spike (S) (peptide pool 1 or 2), Membrane

(M) and Nucleocapsid (N) PepMix (JPT, Germany) [1mg /ml per peptide] overnight. The next day, the SARS-CoV-2 PepMix-loaded

PBMCs were co-cultured with the expanded CTLs at 1:1 ratio for 16 hours followed by Annexin V staining as described above.

The proportion of dead/apoptotic PBMCs (Live/Dead+ and Annexin V+) was determined by flow cyometry.

PCR gel electrophoresis
DNAwas extracted and purified (QIAampDNABloodMini Kit; QIAGEN Inc) fromSARS-CoV-2 specific T cells (control andNR3C1KO

conditions). We used the Platinum SuperFi Green PCRMaster Mix from Invitrogen for polymerase chain reaction (PCR) amplification

using the following PCR primers spanning the Cas9–single-guide RNA cleavage site of exon 2 of the GR gene: exon 2 forward primer,

GGACTCCAAAGAATCATTAACTCCTGG; exon 2 reverse primer, AATTACCCCAGGGGTGCAGA. DNA bands were separated by

agarose gel electrophoresis prepared with SYBR-safe DNA gel stain in 0.5 3 Tris/Borate/EDTA. Gel images were obtained using

GeneSys software in a G:BOX gel documentation system (Syngene).

Western blot
To detect GR protein expression, CTLs were lysed in lysis buffer (IP Lysis Buffer; Pierce Biotechnology Inc) supplemented with pro-

tease inhibitors (Complete Mini, EDTA-free Cocktail tablets; Roche Holding) and incubated for 30 minutes on ice. Protein concen-

tration was determined by the bicinchoninic acid (BCA) assay (Pierce Biotechnology Inc). The following primary antibodies were

used: GR (clone D6H2L) XP rabbit monoclonal antibody and b-actin antibody (clone 8H10D10); both antibodies were obtained

from Cell Signaling Technology. Blots were imaged using a G:BOX gel documentation system and GeneSys software (Syngene).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical significance was assessed with Prism 9.0 software (GraphPad Software, Inc.). Means were compared using unpaired

t test, paired t test, one-way ANOVA, or two-way ANOVA as needed. The Tukey correction was used for correction of multiple com-

parisons. For correlation analysis, R squared simple linear regression was used. Graphs represent mean and standard deviation (SD).

A p % 0.05 was considered to be statistical significance. When analyzing variables with more than 2 categories, P values were

adjusted for multiple comparisons. The statistical details are found in the figure legends.
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