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Reward biases spontaneous neural reactivation
during sleep
Virginie Sterpenich 1,2,3✉, Mojca K. M. van Schie1,3,4, Maximilien Catsiyannis1, Avinash Ramyead5,

Stephen Perrig6, Hee-Deok Yang7, Dimitri Van De Ville 3,8,9 & Sophie Schwartz1,2,3

Sleep favors the reactivation and consolidation of newly acquired memories. Yet, how our

brain selects the noteworthy information to be reprocessed during sleep remains largely

unknown. From an evolutionary perspective, individuals must retain information that pro-

motes survival, such as avoiding dangers, finding food, or obtaining praise or money. Here,

we test whether neural representations of rewarded (compared to non-rewarded) events

have priority for reactivation during sleep. Using functional MRI and a brain decoding

approach, we show that patterns of brain activity observed during waking behavior sponta-

neously reemerge during slow-wave sleep. Critically, we report a privileged reactivation of

neural patterns previously associated with a rewarded task (i.e., winning at a complex game).

Moreover, during sleep, activity in task-related brain regions correlates with better sub-

sequent memory performance. Our study uncovers a neural mechanism whereby rewarded

life experiences are preferentially replayed and consolidated while we sleep.
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S leep contributes to memory consolidation1. Human neu-
roimaging findings suggest that brain regions activated
during the encoding of waking experiences may be reacti-

vated during subsequent non-rapid eye movement (NREM)
sleep2–4 and are associated with increased local slow-wave activity
(SWA)5,6. These two mechanisms index parallel forms of mem-
ory optimization, i.e., neural replay and synaptic homeostasis7,8,
predominating during slow oscillatory activity and resulting in
improved subsequent behavioral performance. Moreover, it is
possible to influence memory reactivation during NREM by
presenting sensory cues, for instance tones or odors that have
previously been associated with specific stimuli or events9, thus
presumably enhancing hippocampal playback of those cued
items10. These recent observations raise a fundamental question
for memory research: how does the brain select those memories
that will be reprocessed during sleep? As for an individual’s
survival, events with an affective relevance, namely those yielding
highly positive (e.g., rewards) or negative (e.g., threats, punish-
ments) outcomes, should have an elevated storage priority so as
to optimize future behavior11. We would thus expect that
emotionally-relevant memories have an advantage for reactiva-
tion processes occurring during sleep. Initial converging support
for this hypothesis comes the following observations: (i) memory
for both aversive and rewarding information benefits from
sleep12–16, (ii) emotional and reward networks (including the
amygdala and ventral striatum) are activated during human
sleep17, and (iii) after a place-reward association task,
hippocampal–striatal neuronal ensembles display coordinated
replay during sleep in rats18. However, prior work did not test for
whether and how the reactivation of neural activity correspond-
ing to a rewarded event may compete with that of an equivalent,
but nonrewarded event. Yet, although critical for current models
of memory, direct experimental evidence supporting the privi-
leged reemergence during sleep of neural activity corresponding
to information with a high motivational or emotional value is still
lacking. In this work, we analyze fMRI data acquired during task
execution at wake and during subsequent sleep, and demonstrate
that the reactivation of distributed patterns of neural activity
could be detected during human sleep and predominates during
slow-wave-rich sleep. Critically, by also showing that patterns of
neural activity coding for information with high motivational
relevance are prioritized in the competition for reactivation
during sleep, the present study extends previous work, while
uncovering a possible mechanism whereby rewarded memories
benefit from sleep12–14.

Results
Brain decoding approach to revealing reactivation in sleep. Our
main goal was to test whether brain patterns associated with a
rewarded experience during wakefulness are prioritized for
spontaneous reactivation during sleep. To this end, we used a
brain decoding approach that allows the classification of mental
states on the basis of measured brain states4. A pioneering study
by Horikawa et al. (2013)19 demonstrated that this approach is
suitable for predicting the content of ongoing mental imagery
during sleep based on fMRI activity. Here, we recorded simul-
taneous EEG-fMRI (64 channels EEG BrainAmps system; 3 T
MRI scanner, Trio TIM, Siemens, Germany) in 18 participants
(12 women, mean age ± SD: 22.1 ± 2.4 years) while they played a
“face” game and a “maze” game, and while they subsequently
slept (Fig. 1 and Supplementary Information). These two games
were designed to recruit distinct and well-characterized brain
networks specialized in the processing of face information (face
game) and in spatial navigation (maze game). To investigate
effects of reward on neural reactivation, we manipulated the

games so that, at the very end of the session, each participant
randomly won either the face or the maze game. This randomi-
zation was used to ensure that any game-related reactivation
during sleep was due to the reward status of one game (i.e., won
or not), and not because spontaneous patterns of brain activity
during sleep intrinsically resembling those elicited when partici-
pants played one of the two games (i.e., face or maze). A pattern
classifier was trained on the fMRI data collected during game
playing, and then applied to the sleep data. We could thus test
whether the brain state associated with the victorious game
(compared to the state associated with the non-rewarded game)
prevailed during subsequent sleep, particularly during stage
N3 sleep when slow oscillations predominate.

While awake, each participant played the two games during 60-
s blocks organized in a pseudorandom order. Each game block
was followed by a 90-s block of rest. In the face game, participants
had to discover a target face among 18 different faces (Fig. 1a).
Each face block started with a written clue relating to the target
face. However, only the two last clues, nearing the end of the
session, were truly informative about the target face. In the maze
game, participants had to find the exit in a virtual maze (adapted
from the Duke Nukem 3D game). On each maze block, one
additional arrow indicating the way to the exit was disclosed.
Mirroring the structure of the face game, the exit was only
accessible at the very end of the maze game. As soon as the
participant found the solution for one game (i.e., discovering
the target face or the exit of the maze), the remaining blocks of
the other game were rigged to make it unsolvable. Thus, each
participant won either the face or the maze game. The difficulty of
each task was adjusted during pilot experiments to ensure that
participants were fully engaged in the task, and did not realize
that the resolution of the games was manipulated, so that they
attributed their victory in one game to their own good
performance. Eight participants found the correct face and 10
participants reached the exit of the maze. As expected, each game
recruited a specific set of distributed brain regions, including the
fusiform face area (FFA) and occipital face area (OFA) for the
face game, and the parahippocampal place area (PPA) for the
maze game (Fig. 1b and Supplementary Table 1). After the game
session and a short pause outside the scanner, the participants
were invited to sleep in the scanner, while continuous EEG-fMRI
data was recorded (sleep session; Fig. 1b). Because neural replay
has previously been associated with slow oscillations1, we
included in our analyses the data from those 13 participants
who reached sustained N3 sleep stage (mean age ± SD: 22.0 ± 2.5
years; 7 won the face and 6 the maze game; Supplementary
Table 2). After a short debriefing on sleep quality and mentation
during the sleep session, all participants left the lab to complete
their night of sleep at home. After one supplemental recovery
night, all participants came back to the lab where their memory
for each game was tested.

Reward-related fMRI reactivation in N3 sleep. To assess the
spontaneous reemergence during sleep of patterns of brain
activity associated with the rewarded (i.e. won) and non-rewarded
game at wake, we used a neural decoding approach (see Supple-
mentary Information). We first extracted the time course of
activity from regions of interest (ROIs) activated during each
game, and during the blocks of Rest (Supplementary Table 1).
Next, we trained a classifier to dissociate between 5 brain states.
Two states corresponded to playing the face or maze game,
subsequently assigned to the Reward (R) and No-Reward (NR)
states according to which game each participant won and used for
decoding during sleep. One state represented activity during the
blocks of rest (Fig. 1b). We also included two states of no interest,
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pre-reward (pre-R) and pre-no-reward (pre-NR), corresponding
to the 3 s preceding each game; see Supplementary Information.
Successful classification of the main states of interest was vali-
dated using a leave-one-out procedure with the data from the
game session (Supplementary Fig. 1). We then applied this clas-
sifier to the data from the sleep session, which provided, for each

acquired fMRI brain volume, the likelihood of each brain state to
be present (from 0 to 1). Finally, after artifacts removal from the
EEG data, we performed sleep staging and computed the average
likelihood for each brain state to be reactivated during the distinct
sleep stages in each participant. In other words, we could thus test
whether the brain states associated to the rewarded and the non-
rewarded game were differentially distributed across sleep stages
(Figs. 1b and 2).

Specifically, a repeated-measure ANOVA on likelihood
measures with Brain state (Reward, No-Reward, Rest, pre-R,
pre-NR) and Sleep stage (Wake, N1, N2, N3) as within-subjects
factors showed main effects of Brain state (F(4,48)= 137.1, p <
0.001) and an interaction between Brain state and Sleep stage
(F(12,144) = 14.8, p < 0.001) (Fig. 3a, Supplementary Table 3).
Post-hoc planned comparisons first showed that the Rest state
predominated over the Reward and No-Reward states during
wakefulness (Rest vs. Reward: F(1,12)= 263.2, p < 0.001, Rest vs.
No-Reward: F(1,12)= 515.8, p < 0.001), while it was progressively
less represented from light to deeper sleep stages (main effect of
sleep for the Rest state: F(1,12)= 371.9, p < 0.001). These results
suggest a similarity between resting blocks during the game
session and resting while awake during the sleep session.
Conversely, both game-related brain states had a relatively low
likelihood of being present from wakefulness to N2 (less than
0.20), and did not differ between Reward versus No-Reward states
(Reward vs. No-Reward for Wake: F(1,12)= 2.24, p= 0.16, N1:
F(1,12)= 0.18, p= 0.67, N2: F(1,12)= 0.03, p= 0.87). By contrast,
and confirming our main hypothesis, the Reward state has a
much higher likelihood to occur during N3 sleep and differed
from the No-Reward state (F(1,12)= 10.65, p= 0.007). The states
corresponding to the preparation period before each game did
not differ for the Reward and No-Reward states in any sleep stage
(pre-R vs. pre-NR states for Wake: F(1,12)= 0.002, p= 0.96, N1:
F(1,12)= 0.37, p= 0.56, N2: F(1,12)= 0.03, p= 0.88, N3: F(1,12)=
1.42, p= 0.26). Note that the classifier was trained and applied
using 5 possible distinct states, and that there was no correlation
between the Reward and No-Reward states during N3 (Spearman

Fig. 1 Experimental overview. a In the face game (top), participants had to discover a target face based on a series of clues. For illustrative purposes, all
faces are visible here, while in the actual game they were hidden, except for a small disk corresponding to the “torch”, which participants moved using a
trackball. In the maze game (bottom), participants had to find the exit of the maze, aided by arrows. b During the game session, participants played blocks
of the face (in red) and maze (in blue) games, separated by blocks of rest (in black). During the last block, each participant won one of the games (here the
face game is the rewarded game). After a 15-min break, participants underwent the sleep session. EEG-fMRI was recorded during both sessions. Each game
recruited specific brain regions (blue frame: maze vs. face game; red frame: face vs. maze game) and the classifier was trained on these data to differentiate
between different brain states (5 states in total, see Supplementary Information). Sleep EEG was scored and the classifier was applied to the fMRI from the
sleep session to determine the likelihood for each brain state to occur at each fMRI scan during different sleep stages (example for the Reward and No-
Reward states shown on the bottom right). N3 indicates N3 sleep stage.

Fig. 2 Data from one representative participant. From top to bottom:
Hypnogram, time course of the log-transformed power values for low delta
(1–2 Hz), time-courses of likelihood for the Rest (in gray), Reward (in red),
and No-Reward (in blue) brain states (pre-R and pre-NR are not
represented here). Periods of N3 are highlighted in light brown. Increased
likelihood of the brain state corresponding to the rewarded game is visible
during N3. W indicates Wake; N1, N2, N3 indicate N1, N2, N3 sleep stages
respectively.
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rho=−0.47, p= 0.14), thus indicating that the presence of one of
the two game-related states did not imply absence of the other
state. To ensure that the type of game won (Face or Maze) did not
affect the main results, we computed a new ANOVA with Brain
state and Sleep stage as within-subjects factor and Game Won as
between-subjects factor. We observed no main effect of Game
Won (F(1,11)= 0.25, p= 0.63), no interaction between Game Won
and Brain state (F(4,44)= 0.27, p= 0.89) and interaction between
Game Won and Sleep stages (F(3,33) = 0.46, p= 0.71), thus
further suggesting that neural reactivation was enhanced by the
associated reward value, independently of the type of game.
Altogether, these results provide direct evidence for the privileged
reactivation, during N3 sleep, of a brain state associated with
playing a game that led to a positive outcome.

To further investigate whether game-related reactivations
coincided with periods of increased low delta activity, as expected
from current models of memory reactivation during sleep1, we
extracted the power values for the relevant frequency band (1–2
Hz) from the EEG data of the whole sleep session, and conducted
correlations between these values and the time courses of
likelihood for the 5 different states detected in the fMRI data
from each participant. The resulting correlation values entered an
ANOVA with Brain state (Reward, No-Reward, pre-R, pre-NR,
Rest) and Frequency band (low delta, 1–2 Hz; high delta, 2–4 Hz;
theta, 4–7 Hz; alpha, 8–10Hz; sigma, 12–14Hz; beta, 15–25Hz) as
within-subjects factor. We observed a main effect of Brain
state (F(4,48)= 8.51, p < 0.001), a main effect of Frequency band
(F(5,60)= 13.59, p < 0.001), and an interaction between both factors
(F(20, 240)= 15.95, p < 0.001). More specifically, a direct comparison
between Reward and No-Reward states (planned comparison)

showed a significant difference (F(1,12)= 5.54, p= 0.03) due to the
positive correlation between low delta activity and the strength of
the reactivation of the brain state associated with the successful
game (Fig. 3c, Supplementary Table 4). No such difference was
found when exploring correlations of game-related states with
other frequency bands (Supplementary Table 4).

Similar game-related activity during wakefulness and sleep. We
next asked whether the reactivation during N3 sleep primarily
involved regions activated during task performance at wake (i.e.,
those used for the training of the classifier), or whether it may
have also involved regions outside of these networks. We thus
included the likelihood values for the task-specific brain states
(face, maze) for each fMRI volume during N3 sleep as regressors
in a whole-brain regression analysis, independently of the reward
status. We obtained two sets of regions significantly activated
during sleep when participants reactivated preferentially each
game state, i.e., Face state vs. Rest state in N3, and Maze state vs.
Rest state in N3. We then performed a conjunction analysis with
the similar contrasts during the game session at wake, i.e., face
game vs. rest at wake, and maze game vs. rest at wake. We could
confirm that the occurrence of the game-related states during
deep sleep activated a subset of regions involved when playing at
each of these games while awake (Fig. 4, Supplementary Table 5).
During N3, the states associated with both games reactivated a
large part of the visual cortex, like playing the games did during
wakefulness. However, the Face state significantly activated fusi-
form and occipital face-selective regions while the Maze
state activated the para/hippocampal regions, consistent with

Fig. 3 Classification results (N= 13). a Mean likelihood of Reward, No-Reward, Rest, pre-Reward (pre-R) and pre-No-Reward (pre-NR) brain states
in each sleep stage, showing increased reactivation of the brain state associated with the rewarded game during N3. Asterisk represents p= 0.007 for
repeated measures ANOVA with post-hoc t test (two-sided). b Individual data for the Reward and No-Reward state during N3 sleep. Asterisk represents
p= 0.007 for t test (two-sided). c Correlation between time course of likelihood and low delta power (1–2 Hz) for the Reward and No-Reward states. Error
bars represent SEM (Standard Error of the Mean); dots represent individual values for those participants won the face game and diamonds correspond to
data from participants who won the maze game. Asterisk represents p= 0.03 for t-test (two-sided). W indicates Wake; N1, N2, N3 indicate N1, N2,
N3 sleep stages respectively. Source data are provided as a Source Data file.
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task-specific neural reactivation during sleep (see Supplementary
Fig. 3).

Task-related neural reactivation in sleep boosts consolidation.
Previous studies using cueing procedures (or “targeted memory
reactivation”) have suggested that task- or stimulus-specific
neural reactivation early in the sleep night or during a nap
enhances memory consolidation9,20–22. Although our participants
did not spent a full night of sleep in the scanner, we tentatively
sought to test for such an effect. We therefore asked our parti-
cipants to come back to the lab after one full night of recovery
sleep to perform memory tasks related to each of the games
(Supplementary Fig. 2). We observed no overall difference in
memory performance for the rewarded and non-rewarded games
(ANOVA with z-scored memory performance, F(1,11)= 0.008,
p= 0.93). We then extracted the mean beta values from each
entire reactivation network, separately for Face and Maze states,
and correlated these values with subsequent memory perfor-
mance for each game. We observed significant positive correla-
tions with memory performance related to the corresponding
game (Spearman correlation; face: rho= 0.66, P= 0.04; Fig. 4b;
maze: rho= 0.73, P= 0.02; Fig. 4c). While correlations do not
ascertain causal relationships, this pattern of results converges
with cell-recordings in animals18 and human studies using tar-
geted memory reactivation procedures9,20,23 to support a role for
task-selective reactivations in memory consolidation processes.
These findings also suggest that early post-learning NREM sleep
might be critical for the consolidation of declarative memory.

Reactivation in hippocampus and VTA during sleep. Because
during game playing, both games engaged memory regions, and
because the reward status of the games was not included in the
training dataset (rewarded block not included), the classifier
could not distinguish the games on the basis of activity across
memory and/or reward networks. Yet, based on previous animal

and human studies12,18, we expected that the reactivation of the
Reward state may be associated with an increased recruitment of
memory and reward regions. We thus tested whether the hip-
pocampus and ventral tegmental area (VTA), known to be cri-
tically involved in episodic memory and reward respectively, were
preferentially engaged whenever the rewarded state was detected
during sleep. To this end, we extracted the time courses of activity
from two a priori anatomically-defined regions, i.e., the bilateral
hippocampus (using the AAL atlas, Fig. 5a) and bilateral VTA
(using a manually defined ROI on proton-density images from an
independent sample of 19 participants). We then assessed the

Fig. 5 Reward-related reactivation in hippocampus and ventral tegmental
area (VTA) during sleep (N= 13). a Anatomical masks used as regions of
interest (in green). b Mean correlation values for all participants between
the time courses of the regions of interest and the different brain states.
Asterisks indicate p < 0.002 for the hippocampus and p < 0.02 for the VTA
for the Reward vs. No-Reward comparison, for two-sided post-hoc t tests.
Error bars represent SD (Standard Deviation); dots represent individual
data. Repeated measures ANOVA with post-hoc test (planned
comparison). Source data are provided as a Source Data file.

Fig. 4 Game-specific reactivation during N3 and subsequent memory (N= 13). a In red, brain regions more activated for Face than Rest brain state
during N3 sleep, and also recruited during the execution of the task at wake (blocks of Face vs. Rest; conjunction analysis). This network included, among
other regions, early visual cortices and the fusiform and occipital face regions. In blue, brain regions more activated for Maze than Rest brain state during
N3 sleep, and also recruited during the maze game (blocks of Maze vs. Rest; conjunction analysis). This network included, among others, early visual
cortices, the hippocampus and parahippocampal cortex. In purple, overlap between those face and maze reactivation networks during sleep. b Correlation
between activity in the face network (red regions in a) during N3 and memory performance for the face game. c Correlation between activity of the maze
network (blue regions in a) during N3 and memory for the maze game. Gray dots for participants who won the face game; black dots for participants who
won the maze game. FFA fusiform face area; paraH: parahippocampus, OFA occipital face area. For memory performance measurements, see “Methods”.
Source data are provided as a Source Data file.
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correlation between these values and the 5 different brain states
decoded during the sleep session, and performed two ANOVAs
on the rho values, with the 5 states as a within-subjects factor
(Fig. 5b). For the hippocampus, we observed a main effect of State
(F(4,48)= 80.19, p < 0.001). Post-hoc analyses revealed that the
time course of hippocampal activity correlated significantly more
with the Reward state than the other states (vs. No-Reward state:
F(1,12)= 15.21, p= 0.002; vs. Rest state: F(1,12)= 95.15, p < 0.001;
vs. pre-R state: F(1,12)= 80.98, p < 0.001; vs. pre-NR: F(1,12)=
80.50, p < 0.001). Similarly, for the VTA, we observed a main
effect of State (F(4,48)= 21.0, p < 0.001) and the time course of
VTA activity correlated significantly more with the Reward state
than the others ones (vs. No-Reward state: F(1,12)= 7.21, p= 0.02;
vs. Rest state: F(1,12)= 25.37, p < 0.001; vs. pre-R state: F(1,12)=
22.73, p < 0.001; vs. pre-NR: F(1,12)= 21.89, p < 0.001).

Discussion
Here we demonstrate the privileged reemergence of patterns of
brain activity associated with a recent rewarding (compared to a
non-rewarding) waking experience during sleep. Specifically, we
recorded simultaneous EEG-fMRI data while participants played
two games, of which only one led to a final victory, and while the
same participants subsequently slept in the scanner. By first
training a classifier on the awake fMRI game data and then
applying it to the fMRI sleep data, we found that the brain state
corresponding to the successful or rewarded game prevailed
during N3 sleep, especially when slow oscillatory activity was
high. We also report that the occurrence of the Reward brain state
during the sleep session correlated with the activation of the
hippocampus and the VTA. These findings in humans are in line
with the observation in rodents that neural oscillations during
slow-wave sleep coordinate the replay of recently encoded
memories in the hippocampus24, and across reward25 and neo-
cortical regions26. Post-learning increases in oscillatory activity
during sleep (hippocampal sharp-wave ripples, 11–15 Hz sleep
spindles, ~1 Hz SWA) are known to enhance memory retention
in both humans1,5,27–31 and animals32,33. Importantly, neuroi-
maging studies also suggested that overnight memory con-
solidation resulted in functional changes in brain regions
specialized for the processing of task-relevant features, for
example the hippocampus after a spatial navigation task3, or the
primary visual cortex after a perceptual learning task34,35. The
present study adds experimental evidence for a close resemblance
between neural activity patterns associated with specific behaviors
trained during wakefulness and those spontaneously generated
during sleep. In particular, our findings establish that brain states
corresponding to specific waking behaviors can reemerge during
N3 sleep, and further confirm that this reactivation implicates
those same regions that were recruited during wakefulness
(including face-selective regions for the face game and spatial
navigation regions for the maze game).

Critically, here we show a privileged reprocessing of rewarded
information during sleep, which could serve memory consolida-
tion. Indeed, despite the fact that our experimental design was not
optimal for testing subsequent memory (i.e., post-learning sleep
was discontinued), we observed a correlation between the
strength of game-related neural reactivation during early NREM
sleep and subsequent memory performance. This finding may
implicate a coordinated replay of hippocampal and striatal
regions during sleep, as previously observed after a spatial
rewarded task in rodents18, and which could presumably con-
tribute to a value-based consolidation of episodic memory, as
recently found in humans12. To specifically test for the implica-
tion of the reward system during reward-biased reactivation in
sleep, we used a region of interest approach and observed that

activity of the VTA increased during sleep whenever the like-
lihood of the Reward state was high. Thus, beyond the neural
replay of recent information observed in rodents, we show that
reactivation processes are regulated by the affective value asso-
ciated with freshly encoded information. By combining measures
of waking behavior and neural decoding during sleep, this study
unveils a mechanism whereby rewards may serve as a tag to
promote the reactivation and the consolidation of motivationally-
relevant information during NREM sleep in humans12–14,21. The
temporal resolution of fMRI does not allow to test for the reac-
tivation of temporally-organized individual neurons’ activity
(such as during ripples), and should therefore considered as a
complementary approach to single-cell recordings. The exact
underlying systems and cellular mechanisms remain to be further
clarified using animal models. This study also exemplifies the
usefulness of neural decoding methods for testing hypotheses
about the nature of spontaneous brain activity, such as fMRI data
recorded during sleep, when no or little concomitant behavioral
data can be collected19.

While the current data support that neural reactivation during
early NREM sleep promotes the consolidation of rewarded
information, substantial evidence suggests that negative memories
(and aversive conditioning) are also altered during sleep, and
primarily during REM sleep when the amygdala is strongly
activated36–42. Together these observations advocate for separate
influences of rewarding and aversive events on memory repro-
cessing during NREM and REM sleep, as also suggested by the
analysis of emotions in NREM and REM dream reports43.
Although being unsuccessful at one of the games may have eli-
cited negative emotions (e.g., anger, frustration) in the present
study, we could not test the hypothesis of dissociated contribu-
tions of NREM and REM sleep on emotional memories with our
dataset because none of our participants reached REM sleep while
being scanned in the MRI. The present study therefore opens new
avenues for investigating how affective values control memory
playback across distinct consciousness states.

Methods
The study protocol was approved by the Human Research Ethics Committee from
the State of Geneva, Switzerland. We complied with all relevant ethical regulations
for work with human subjects. All participants gave their written informed consent
to take part in this study and received a financial compensation for their partici-
pation. The authors affirm that the human research participant provided informed
consent for publication of the photographs in Fig. 1.

Experimental design. The experimental protocol involved three main visits on
different days. During the first visit or habituation phase, participants were placed
inside the MRI scanner and one structural volume was acquired (see MRI data
acquisition section below). Participants were then instructed to maintain a regular
sleep schedule until the second visit, which was scheduled at least 5 days later.
Before leaving the lab, participants were equipped with an actimeter (Actigraph
GT3X+ , ActiGraph, FL, USA), which they wore on their left wrist, and asked to
fill out a sleep diary including an assessment of subjective sleep quality, during at
least 5 days prior to the second visit (Table S6). For the second visit or scanning
phase, participants arrived at 6.00 pm at the laboratory and were asked to fill out
the St. Mary’s Hospital Sleep questionnaire assessing the quality of the previous
night’s sleep44. They ate one big sandwich, which we gave them as their evening
meal, and they were then equipped with an MRI compatible EEG cap, plus EOG,
EMG, and ECG (see EEG data acquisition section below). At 8.15 pm, participants
underwent a short training of the tasks and were then installed in the scanner.
Vigilance, attention, and anxiety states were assessed using 10-points visual analog
scales (VAS; Karolinska Sleepiness Scale for vigilance45, and scales for attention
and anxiety). Next, participants were scanned while they performed the face and
maze games (game session; see Tasks section below). Once the games were over,
participants were taken out of the scanner and allowed to relax, walk in the lab, and
eat a small snack (one piece of cake). At 10.00 pm, they were placed back inside the
scanner for the sleep session. Participants again reported their levels of vigilance,
attention, and anxiety. Next, they were given a 4-button MRI compatible box (HH-
1 × 4-CR, Current Designs Inc., USA), which they could use to communicate with
the experimenters, by pressing different buttons to tell whenever they felt too cold
or too hot or uncomfortable, or whether they wanted to go out of the scanner. They
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were then instructed to try to fall asleep. The sleep session lasted between 51 min
and 2 h 40 min (mean: 1 h 43 min). All participants performed this session in one
block except two participants, who needed a small break in the middle of the sleep
session to readjust their position in the scanner. After the sleep session, we
removed the EEG cap and all other electrodes, and participants took a shower.
Finally, participants answered a series of questions presented as VAS about their
thoughts and feelings during the game and sleep sessions (sleepiness, anxiety,
physical comfort, game-related thoughts). We did not observe any correlation
between the scores on any of these subjective scales and reactivation of brain states
during N3 (all p > 0.05). Before leaving the laboratory, all participants were
reminded to wear the actimeter and to fill out the sleep diary until the third visit,
which was scheduled two days later (thus allowing for one full recovery night). For
the third visit or Memory test phase, all participants came at 12.00 am to perform
tests assessing their memory for elements of the face and maze games.

Population. Twenty-six right-handed healthy participants (18 women, 8 men,
mean age ± SD: 22.0 ± 2.3 years) participated in this study. A semi-structured
interview established the absence of neurological, psychiatric, or sleep disorders. All
participants were non-smokers, moderate caffeine consumers, and did not take any
medication. They were not depressed as assessed by the Beck Depression
Inventory46 (mean ± SD: 1.7 ± 2.0), and had low anxiety levels as assessed by the
STAI-T47 (31.8 ± 5.8). None of the participants suffered from excessive daytime
sleepiness as assessed by the Epworth Sleepiness Scale48 (5.6 ± 3.0) or sleep dis-
turbances as determined by the Pittsburgh Sleep Quality Index Questionnaire49

(3.1 ± 2.2). Sensitivity to Punishment and Sensitivity to Reward Questionnaire50

established that none of the participants had extreme sensitivity to reward (37.0 ±
7.7) or punishment (32.5 ± 5.4), nor did they suffer from excessive impulsivity as
assessed by the UPPS Impulsive Behavior Scale51,52 (90.1 ± 9.6). We also made sure
that none of the participants was a regular player of video games.

The data from 8 participants were removed from further analysis because of
technical problems during scanning (N= 4), because the participants did not win
at any game (N= 2), or because they did not sleep during the sleep session (N= 2).
The fMRI data from 18 participants were thus used for the analysis of the game
session and classifier training (12 women; mean age ± SD: 22.1 ± 2.4). Then, the
trained classifier was applied to the fMRI data from the sleep session. Because we
expected neural reactivation to predominate during periods of sleep with high
amounts of slow oscillations, we analyzed the results from those 13 participants
who had sustained N3 in the scanner (9 women; mean age ± SD: 22.0 ± 2.5).
Participants who won the face and maze games (when considering the 18 and 13
participants) did not differ regarding any demographic parameter (age, depression,
anxiety, sleepiness, sleep quality, sensitivity to reward/punishment, and
impulsivity), and subjective VAS (vigilance, attention, and anxiety) during the
scanning phase (t tests, all p > 0.05). Moreover, they also did not differ regarding
objective and subjective sleep variables (all p > 0.05). All statistics performed in this
study are two-sided.

Tasks. During the game session, each participant played a face game and a maze
game. The games were designed to recruit distinct and well-characterized brain
networks specialized in the processing of face information (face game) and in
spatial navigation (maze game). To investigate the effects of reward on neural
reactivation, we manipulated the games so that, at the very end of the session, each
participant would randomly win either the face or the maze game. This rando-
mization ensured that any potential reactivation during sleep would be primarily
explained by one of the games being successful (i.e., reward status), and not by
some unforeseen resemblance between sleep-related activation patterns and those
associated with one of the games during wakefulness. Both games have been
extensively piloted so that we could manipulate which of the two games one
participant would win at very end of the scanning session. Critical for the purpose
of the present experiment, participants had to believe that they won one of the
games thanks to their own ability, without suspecting that the games had been
rigged (which actually was the case). According to a short debriefing performed
after the sleep session, participants were more satisfied by their performance on the
rewarded (or successful) game (6.0 ± 1.4 on a 10 point scale from 0: very unsatisfied
to 10: very satisfied) than on the non-rewarded game (3.5 ± 1.4 on the same scale;
t(1,13)= 5.98, p < 0.001). Both games were programmed using Cogent (Laboratory
of Neurobiology, University College London, UK), a Matlab-based toolbox (The
MathWorks Inc, Natick, Massachusetts, US). The maze game also integrated
portions of the commercial game Duke Nukem 3D (3D Realms Entertainment, Inc.
Garland, Texas, US), with a homemade map. The visual rendering of Duke Nukem
3D was improved by using a high-quality texture pack (High Resolution Pack,
http://hrp.duke4.net/), and the Eduke32 source port (http://www.eduke32.com/).

Face game. In the face game, participants had to find one target face based on
clues given, one by one, by a female presenter, much like the famous “Guess Who”?
game (Fig. 1a). During this task, participants were instructed to explore the 18
different faces hidden on the top half of the screen using an MRI-compatible
trackball (HH-TRK-1, Current Designs Inc., USA) to move a “torch” (i.e., a circular
beam of light of the diameter of one face). The faces were generated using the
FaceGen software (Singular Inversions Inc, Toronto, Canada). They were clearly

distinguishable, including men and women, of various ages and ethnic origins,
smiling or not, and some exhibiting specific characteristics like a tattoo or a scar.
Each clue was shown as a written sentence in a cartoon bubble, as if uttered by the
female presenter whose face was displayed on the lower left corner of the screen
(Fig. 1a). Each clue described one feature of the target face such as “He or she is
smiling” or “He or she has no visible scar”. The game was split into 8 blocks (60 s
each), each starting with a different clue, with both the presenter and the current
clue remaining visible throughout the block.

At the beginning of each block, a new clue was presented and participants had
40 s to explore the faces with the torch before they could click on one of the faces. A
green progression bar was shown and turned orange when participants could select
one face. Participants had 15 s to do so before a feedback message was shown
during 5 s (i.e., “This is not the correct face” or, for the last block if they won,
“Congratulations, this is the correct face!”). As mentioned above, the game was
rigged. After a series of poorly informative clues, the two last clues were more likely
to guide participants towards the correct face, which was the presenter’s face (“She
is a rather talkative woman”, “She stands away”). Note that the task instructions
were consistent with this possibility, i.e., the preceding clues could all apply to the
presenter’s face and there was no mention about the correct face being one of the
18 faces. For those participants who first won the maze game, the two last clues of
the face game did not point to one single correct answer (“He or She has brown
eyes”, “He or She has thin lips”), which prevented these participants from winning
on the face game.

Maze game. In the maze game, participants had to find the exit of a maze, which
was indicated by an “Exit” sign. Participants used the MRI-compatible trackball to
navigate the virtual maze during blocks of 60 s. On each block, participants were
placed at the same starting point and one additional arrow guiding them towards
the exit was made visible in the maze (Fig. 1a, Fig. S2B). However none of the
participants would reach the exit until block number 7. Like the face game, and
unknown to the participants, the maze game was rigged. Whenever participants
would first win the face game on the last blocks, the exit of the maze was blocked.
The exit was difficult to find, not only because the maze was relatively large
considering the allotted time, but also because an optical illusion masked the
hallway leading to the exit, which would remain unexplored unless an arrow would
incite participants to enter the hallway despite the illusion. On each block, parti-
cipants played during 55 s and then a feedback message was shown during 5 s (i.e.,
“You did not reach the exit” or for the last block, if they indeed reached the exit,
“Congratulations, you found the exit!”).

Timing and delivery of the tasks. Before the main scanning session, participants
underwent a brief training on both tasks: a short version of the face game with only
6 faces and 3 clues (all distinct from those used in the main game), and a short
version of the maze game with a simpler map and without any arrow. There were 3
blocks for each game.

During the main scanning experiment, participants performed 8 blocks of face
game and 8 blocks of maze game organized in a pseudo-random order (i.e., no
more than 2 repetitions of the same game in an immediate succession). Each game
block (60 s) was followed by a resting state period of 90 s, during which participants
were instructed to close their eyes and let their thoughts wander. A short sound was
played at the end of the rest period, indicating that participants could open their
eyes and get ready for the next game block. Before each game, a screen indicated
during 3 s which game was about to start (also called “pre-game” period). The
whole game session lasted 40 min, divided into two fMRI runs of 20 min each.

Delayed memory tests. We assessed memory for elements from both games two
days after the scanning phase, i.e., after one full recovery night. Memory for the
face game was tested by asking participants to place each individual face at their
original location on the screen. Participants were presented with a grid of 18 empty
rectangles corresponding to the locations of the faces during the game. Each face
was then shown at the bottom of the screen in a random order. Participants had to
drag each face to the empty rectangle that they thought was its correct location.
Three points were attributed for the correct location (out of 18 possible locations),
1 point was given for a correct column (out of 6 possible columns), and 0.5 point
for a correct row (out of 3 possible rows; Fig. S2A). Memory for the maze game was
assessed by placing participants at one specific location in the maze and asking
them to find the starting point that was used during the game session as rapidly as
possible. Performance was measured as the shortest map distance from the par-
ticipant’s current location after 30 s to the starting (here goal) point (Fig. S2B). We
computed z-scores from the face and maze memory tests to be able to compare
performance on both memory tasks within the same ANOVA (distances for the
maze game were inversed; so that larger z-score indexed better performance). A
repeated-measures ANOVA on these values with Memory task (face, maze) as
within-subjects factor and Won game (participants who won at the face game and
those who won at the maze game) as between-subjects factor showed no significant
effect of Memory task (F(1,11)= 0.007, p= 0.93), Won game (F(1,11)= 0.21, p=
0.65), or interaction (F(1,11)= 1.30, p= 0.28).

To test for the impact of the strength of game-related reactivation during sleep
on memory consolidation processes, we performed a correlation between the level
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of reactivation during N3 in task-relevant brain regions and memory performance
for the face and maze games across all 13 participants (Fig. 4b). To do so, we first
used the output of the classifier (organized as Face, Maze, Rest, Pre-face, Pre-maze
states) as regressors in an SPM regression analysis. Next, using a conjunction
procedure, we identified those voxels activated both as a function of the Face state
(Face > Rest state) during N3 and when performing the face game during
wakefulness, and extracted the mean fMRI activity across these voxels during the
sleep session. For the maze game, we applied the same procedure, and thus
identified reactivated voxels and obtained their mean activity over the course of the
sleep session. We then performed Spearman correlations to test for a link between
task-specific neural reactivation during sleep and delayed memory performance for
each game.

EEG
EEG data acquisition. EEG was continuously recorded in the scanner during the
fMRI acquisition. The EEG setup included a 64-channels MRI-compatible EEG
cap, two pairs of ECG, horizontal and vertical EOG, and one pair of chin EMG
(BrainAmp MR plus; Brain Products GmbH, Gilching, Germany). The EEG signal
was referenced online to FCz. Electrode-skin impedance was kept under 10 kOhm,
in addition to the 5-kOhm built-in electrode resistance. The EEG signal was
digitized at a 5000 Hz sampling rate with 500 nV resolution. Data were analog-
filtered by a band-limiting low-pass filter at 250 Hz (30 dB per octave) and a high-
pass filter with a 10 s time constant corresponding to a high-pass frequency of
0.0159 Hz.

EEG data analysis. Gradient artifacts were removed offline using a sliding average
of 21 averages with the BrainVision Analyzer software (Brain Products GmbH,
Gilching, Germany). Then, the signal was down-sampled to 500 Hz and low-pass
filtered with a finite-impulse response filter with a bandwidth of 70 Hz. The bal-
listocardiogram (BCG) artifact was removed by using a sliding average procedure
with 9 averages, followed by independent component analysis (ICA) to remove
residual BCG along with oculo-motor components.

Two experts sleep scorers performed sleep staging on the artifact-free data from
the sleep session according to AASM criteria53 on 20 s windows of recording.
Thirteen participants reached sustained N3 sleep stage. No REM sleep was
obtained in the MRI.

We also conducted a power spectrum analysis of the EEG from the sleep session
using the Welch periodogram method applied to successive 4-s epochs of recording
from Cz, overlapping by 2 s. Data points with arousals or movement artifacts were
removed before the analysis. The logarithm power spectrum was extracted. This
procedure was performed for the main frequency band of interest: low delta (1-2
Hz); but also for other frequency bands for exploration purposes including: high
delta: 2–4 Hz, theta: 4–7 Hz, alpha: 8–10 Hz, sigma: 12–14 Hz, beta: 15–25 Hz. We
obtained 6 times series for the different frequency bands for the sleep session,
which we then resampled (at the TR of the fMRI acquisition, see below) to perform
correlation analyses with the brain states identified by the pattern classification
method (see Pattern classification section below).

MRI
MRI data acquisition. MRI data were acquired on a 3 Tesla whole body MR
scanner (Tim Trio, Siemens, Erlangen, Germany) using a 12-channels head coil.
Functional images were acquired with a gradient-echo EPI sequence (repetition
time [TR]/ echo time [TE]/flip angle = 2100 ms/30 ms/80°) and parallel imaging
(GRAPPA; acceleration factor = 2). Each functional image comprised 32 axial
slices (thickness= 3.2 mm without gap, FOV= 235 × 235 mm, matrix size = 128 ×
84, voxel size: 3.2 × 3.2 × 3.84 mm,) oriented parallel to the inferior edge of the
occipital and temporal lobes. The two runs of the game session comprised
615 scans and 603 scans, respectively, and the run of sleep session, for the data used
in the analyses reported in the main text, comprised on average 2789 scans
(between 1459 and 3589 scans). The structural image was acquired with a T1-
weighted 3D sequence (MPRAGE, RT/inversion time [TI]/TE/flip angle = 1900
ms/900 ms/2.32 ms/ 9°, FOV= 230 × 230 x 173 mm3, matrix size = 256 × 246 x
192 voxels, voxel size = 0.9 mm isotropic). Visual stimuli were presented on a back
projection screen inside the scanner bore using an LCD projector (CP-SX1350,
Hitachi, Japan), which the participant could comfortably see through a mirror
mounted on the head coil. Participants responses were recorded via an MRI-
compatible trackball (HH-TRK-1, Current Designs Inc., USA) during the game
session and via an MRI-compatible response button box (HH-1 × 4-CR, Current
Designs Inc., USA) during the sleep session.

MRI data analysis. Functional volumes were analyzed by using Statistical Para-
metric Mapping 8 (SPM8; www.fil.ion.ucl.ac.uk/spm/software/spm8) implemented
in Matlab (The MathWorks Inc, Natick, Massachusetts, USA). Functional MRI
data were corrected for head motion, slice timing and were spatially normalized to
an echo planar imaging template conforming to the Montreal Neurological Insti-
tute (MNI) template (voxel size, 3 × 3 × 3mm). The data were then spatially
smoothed with a Gaussian kernel of 8 mm full width at half maximum (FWHM).
Analysis of fMRI data was performed using a General Linear Model (GLM)
approach conducted in two subsequent steps, accounting for intra-individual (fixed

effects) and inter-individual (random effects) variance. For each participant, brain
responses at every voxel were fitted with a GLM, and main contrasts of interest
were computed. The resulting individual maps of t-statistics were then used in
second-level random-effects analyses. We used one-sample t tests to identify
regions of interest for the decoding approach. Specifically, we selected peaks of
activation from clusters of >50 voxels (p < 0.001 uncorrected) and as well as peaks
in smaller clusters from well-documented task-related regions (i.e., FFA and OFA
for the face game). Statistical inferences were corrected for multiple comparisons
according to the Gaussian random field theory using small volumes created from
anatomical regions of the AAL atlas (p < 0.05 corrected)54.

For the game session, 13 conditions were modeled: “pre-face” corresponded to
the 3 s period before the face game, “face-part1” when participants explored the
faces (40 s), “face-part2” when participant could select one face (15 s), the rest
period following the face game was divided in 3 equivalent parts (30 s each: “face-
rest1”, “face-rest2”, “face-rest3”), “pre-maze” corresponded to the 3 s period before
the maze game, ‘maze’ when participants explored the maze (60 s), the rest period
following the maze game was also split into 3 periods of 30 s each (“maze-rest1”,
“maze-rest2”, “maze-rest3”), “WIN-block” was the last block of the won game (face
or maze), and “WIN-rest” was the rest following the WIN-block. All these
conditions were entered in the design matrix as separate regressors (block design)
convolved with the canonical hemodynamic response function (HRF). Movement
parameters estimated during realignment were added as regressors of no interest in
the first-level analyses. We then used t tests across the 18 participants at wake to
define regions of interest (ROIs) for the pattern classification during sleep (see
Pattern classification section below).

To better characterize the brain networks corresponding to the different brain
states for each game during the sleep session, we used the time course of the game-
related brain states identified by the pattern classification (Face, Maze, Rest) as
regressors in an SPM design matrix on those 13 participants who reached stage
N3 sleep. The states Pre-face and Pre-maze were not entered in the design due to
their low occurrence during the sleep session. The goal of this whole-brain analysis
was to reveal regions whose activity correlated with the Face or Maze brain states
(compared to Rest state) during N3, within and possibly outside of the ROIs used
for the training of the classifier on the wake data. As such, this complementary
analysis offered an additional test for region-specific reactivations during sleep
(Fig. 4a, Table S5). To identify brain regions significantly activated both during one
specific game while awake and when the likelihood of occurrence of the brain state
associated with that game was high during subsequent sleep, we performed a
conjunction analysis combining the contrast Face vs. Rest states during N3 (or
Maze vs. Rest state during N3) and the contrast face game vs. rest during wake (or
maze game vs. rest during wake).

Finally, we asked whether regions involved in the processing of declarative
memory (i.e. hippocampus) and/or in reward-related dopaminergic modulation
(i.e., ventral tegmental area, VTA) may show activity changes whenever the Reward
(as compared to the No-Reward) state was detected during sleep. We created one
anatomical mask for the bilateral hippocampus using the AAL atlas and another
anatomical mask for the bilateral VTA that we delineated on proton-density
images from an independent sample of 19 young males, healthy participants
(mean ± SD: 22.05 ± 2.78 years old). From each of these masks, we extracted the
time course of activity during the sleep session, averaged across all voxels within
each mask, and computed correlations with time courses of the different states used
in the classifier (Reward, No-Reward, Rest, pre-R, pre-NR) during the sleep session
as well. Next, we performed separate ANOVAs for the hippocampus and for the
VTA on the obtained Pearson rho values with State as within-subjects factor. When
the main effect of State was significant, post-hoc planned comparison tested for
differences between specific conditions. All statistics were performed two-sided.

Pattern classification. We used a pattern recognition approach to test whether
task-specific patterns of neural activity recorded during the game session could be
detected in the data recorded during the sleep session. This approach involved 4
main steps for the decoding of distinct brain states during the sleep session
(Fig. 1b): (1) definition of the states and ROIs based on the fMRI data from the
game session, (2) training of a classifier on the fMRI data of the game session at
wake extracted from the ROIs, (3) validation of the classifier using a leave-one-out
procedure, (4) application of the classifier to the Sleep fMRI data, so as to get the
likelihood for each brain state to be present in each brain volume acquired during
the sleep session. Then, the mean likelihood of each brain state was computed for
each scored period of wakefulness and sleep stages (N1, N2, N3), and for each
participant. We could thus test whether the brain state corresponding to the
successful game (Reward, compared to No-Reward, Rest, pre-R, or Pre-NR) had
any advantage for reactivation during sleep, in particular during deeper sleep stages
(see main text). We also used the time course of the likelihood for each game-
related state to occur in the fMRI Sleep data in a whole-brain analysis using SPM
(see previous section).

We first defined 5 relevant states for the classification of the Game data
(Fig. S1): Face state (8 blocks of face game playing, 60 s; corresponding to the
duration of face-part1 + face-part2 defined in the previous section), Maze state (8
blocks of maze game playing, 60 s), Rest state for the periods following each game
(16 blocks of 90 s). We also added a Pre-face state (8 blocks of 3 s preceding each
face game) and a Pre-maze state (8 blocks 3 s preceding each maze game), as states
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of no interest, but which may yield spurious classification results if not explicitly
defined. We then defined 58 ROIs based on the SPM contrasts on the Game data:
face > maze, maze > face, face-rest1 < face-rest3, maze-rest1 < maze-rest3
(Table S1). The two former contrasts identified regions selectively activated for
each game; the two latter contrasts were used to reveal regions whose activity was
suppressed immediately following each of the games relative to later periods of rest
and were also selected for the analysis of post-task resting periods not reported
here. We based this approach on our previous work in which we demonstrated that
those regions whose activity was significantly suppressed immediately after the
presentation of video clips (first 30 s relative to subsequent 30 s temporal bins)
largely overlapped with those activated during video watching55. Here, and as
expected, these contrasts (for face and for maze) mostly engaged task-selective
regions (see Supplementary Table 1). To best delineate the network of regions
involved in each of the games, we thus combined all regions whose activity
increased during game playing and/or decreased for the first compared to the last
Rest temporal bins. We extracted the time-course of fMRI activity from spheres
(radius of 5 mm) centered on the peak of activation for each ROI, and let the
classifier assign one of the five labels (i.e., brain states) to each time-point for the
data from all participants who performed the game session (N= 18). Please note
that, as for all main contrasts (see above), the extracted time-courses of fMRI
activity did not include the data from the block during which participants won one
of the games (and after which the game ended). We ran the validation of the
classifier using a leave-one-out procedure. As shown on Fig. S1, classification
accuracy was high for the Face, Maze, and Rest states (all > 0.76), but low for the
Pre-face and Pre-maze states. The classifier was then applied to the Sleep data of
the participants who reached N3 sleep (N= 13) (Fig. 3a). To test for the selective
reactivation of the successful game, we conducted an ANOVA on the mean
likelihood of occurrence of each brain state during distinct sleep stages, with 5
Brain states defined now as a function of which game has been won by each
participant (Reward, No-Reward, Rest, pre-R, pre-NR) and 4 Sleep stages (Wake,
N1, N2, N3) as within-subjects factors (Table S3). We also performed post-hoc
analyses for significant interactions.

Second, because current models of memory replay during sleep suggest a critical
role for slow waves (delta activity) in orchestrating coordinated reactivations1,28,
we computed correlations analyses (Spearman correlation, with Fisher z-
transform) between the likelihood of occurrence of each brain state (Reward, No-
Reward, pre-R, pre-NR, Rest) and the power spectrum of low delta (1–2 Hz) across
time. For exploratory purposes, we also investigated other frequency bands (high
delta, 2–4 Hz; theta, 4–7 Hz; alpha, 8–10 Hz; sigma, 12–14 Hz; beta, 15–25 Hz;
Table S4). We subdivided the delta band in two subcomponents (low and fast
delta) to take into account possible functional distinctions between both
subcomponents56. The rho correlation values for each participant were analyzed
using a repeated-measures ANOVA with Brain state and Frequency bands (high
delta, theta, alpha, sigma, beta) as within-subjects factors. Post-hoc analyses were
used to decipher significant interactions using planned comparisons.

Classification method. We used a classifier based on Conditional Random Fields
(CRFs), whose predictions can account for temporal context57,58, such as the dif-
ferent event episodes in our fMRI task paradigm (e.g., face and maze blocks)59.
The fMRI time courses of the 1,…, N= 58 ROIs were embedded into a feature
vector xt= [f1, f2,…, fN] for all T timepoints t. We used the following S= 5 possible
labels yt of the GLM conditions (i.e., Rest, Pre-maze, Pre-face, Maze, Face) to
perform supervised learning. In particular, we deployed the conventional condi-
tional random field (CRF) that models all labels of the observation data with one
exponential distribution60. Based on an underlying graphical model, one can define
the following product of potential functions for a label sequence y and an obser-
vation sequence x:

exp ∑
S

i;j
λi;jti;jðyt�1; yt ; x; tÞ þ∑

S

k
λi;jti;jðyt�1; yt ; x; tÞ

� �
ð1Þ

where ti,j is a transition feature function and sk a state feature function. The set of
weights θ ¼ ½λ1;1; � � � ; λS;S; μ1; � � � ; μS� needs to be estimated from the training data.

By stacking all transition and state functions as φ ¼ t1;1; � � � ; tS;S; s1; � � � ; sS
h i

, we

can then rewrite the above equation using the inner product as expðhθ;φðx; yÞiÞ.
Then, the probability of y given an observation x is obtained as

pθðyjxÞ ¼
expðhθ;φðx; yÞiÞ

ZθðxÞ
ð2Þ

where ZθðxÞ ¼ ∑y expðhθ;φ ðx; yÞiÞ is the normalization factor.
The log-likelihood that is maximized to fit the CRF model is defined as

Lðθ; dataÞ ¼ ∑
k
ðhθ;φðxðkÞ; yðkÞÞi � logðZθðxðkÞÞÞÞ ð3Þ

where xðkÞ is the k-th observation sequence and yðkÞ the k-th label sequence of
training data. Fitting is done using iterative techniques described in61. The fitted
model is then matched to an observation sequence of the test data using the Viterbi
algorithm61.

We fitted the CRF model to the task data and performed leave-one-session-
out cross-validation (across subjects). Since we aimed at ultimately applying the

CRF model to the sleep data for which the temporal sequence of the paradigm is
not necessarily meaningful, we kept the transition feature functions constant
and uniform. The confusion matrix for the cross-validation on the data of the
game session is shown in Supplementary Fig. 1. All states are well decoded,
except the Pre-maze and Pre-face ones that are confounded with the Rest
condition. Next, we applied the same CRF model to the data from the sleep
session. Finally, although very unlikely given the randomization of the game
type across reward conditions, we wanted to ensure that higher reactivation of
the rewarded task during sleep did not trivially relate to better performance of
the classifier, as assessed during wakefulness. We thus used the mean probability
or likelihood time courses for the 5 states, now according to which game was
won (Reward, No-Reward, Rest, pre-R, pre-NR) and tested for correlations
between decoding accuracy during the game session and the strength of state
reactivation during sleep. No significant correlation was found (Reward: R=
−0.24, p= 0.43; no-Reward: R= 0.48, p= 0.09; Rest: R=−0.31, p= 0.31; pre-
R: R= 0.02, p= 0.95; pre-NR: R= 0.42, p= 0.15). These results suggest that the
probability of reactivation during sleep did not relate to how accurately the
classifier classified the game- or rest-related states during the training (game)
session.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw data sets generated and analyzed during the current study are available in the
openneuro.org repository https://openneuro.org/datasets/ds003574/versions/1.0.2 62. Source
data are provided with this paper.

Code availability
MRI preprocessing and MRI analysis were performed using SPM scripts that are publically
available on the SPM website (https://www.fil.ion.ucl.ac.uk/spm/). The codes related to the
conditional random fields are available as public open source codes (CRF++: Yet Another
CRF toolkit. https://taku910.github.io/crfpp/). All codes used to run the analysis are also
available from the authors upon request.
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