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A B S T R A C T

Background: in current clinical practice, the standard evaluation for axillary lymph node (ALN) status in
breast cancer has a low efficiency and is based on an invasive procedure that causes operative-associated
complications in many patients. Therefore, we aimed to use machine learning techniques to develop an effi-
cient preoperative magnetic resonance imaging (MRI) radiomics evaluation approach of ALN status and
explore the association between radiomics and the tumor microenvironment in patients with early-stage
invasive breast cancer.
Methods: in this retrospective multicenter study, three independent cohorts of patients with breast cancer
(n = 1,088) were used to develop and validate signatures predictive of ALN status. After applying the machine
learning random forest algorithm to select the key preoperative MRI radiomic features, we used ALN and
tumor radiomic features to develop the ALN-tumor radiomic signature for ALN status prediction by the sup-
port vector machine algorithm in 803 patients with breast cancer from Sun Yat-sen Memorial Hospital and
Sun Yat-sen University Cancer Center (training cohort). By combining ALN and tumor radiomic features with
corresponding clinicopathologic information, the multiomic signature was constructed in the training cohort.
Next, the external validation cohort (n = 179) of patients from Shunde Hospital of Southern Medical Univer-
sity and Tungwah Hospital of Sun Yat-Sen University, and the prospective-retrospective validation cohort
(n = 106) of patients treated with neoadjuvant chemotherapy in prospective phase 3 trials [NCT01503905],
were included to evaluate the predictive value of the two signatures, and their predictive performance was
assessed by the area under operating characteristic curve (AUC). This study was registered with Clinical-
Trials.gov, number NCT04003558.
Findings: the ALN-tumor radiomic signature for ALN status prediction comprising ALN and tumor radiomic
features showed a high prediction quality with AUC of 0¢88 in the training cohort, 0¢87 in the external valida-
tion cohort, and 0¢87 in the prospective-retrospective validation cohort. The multiomic signature incorporat-
ing tumor and lymph node MRI radiomics, clinical and pathologic characteristics, and molecular subtypes
achieved better performance for ALN status prediction with AUCs of 0¢90, 0¢91, and 0¢93 in the training
cohort, the external validation cohort, and the prospective-retrospective validation cohort, respectively.
Among patients who underwent neoadjuvant chemotherapy in the prospective-retrospective validation
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Research in context

Evidence before this study
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cohort, there were significant differences in the key radiomic features before and after neoadjuvant chemo-
therapy, especially in the gray-level dependence matrix features. Furthermore, there was an association
between MRI radiomics and tumor microenvironment features including immune cells, long non-coding
RNAs, and types of methylated sites.
Interpretation this study presented a multiomic signature that could be preoperatively and conveniently used
for identifying patients with ALN metastasis in early-stage invasive breast cancer. The multiomic signature
exhibited powerful predictive ability and showed the prospect of extended application to tailor surgical man-
agement. Besides, significant changes in key radiomic features after neoadjuvant chemotherapy may be
explained by changes in the tumor microenvironment, and the association between MRI radiomic features
and tumor microenvironment features may reveal the potential biological underpinning of MRI radiomics.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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1. Introduction

The importance of axillary lymph node (ALN) status in early-stage
invasive breast cancer was highlighted in a 10-year follow up of the
ACOSOG Z0011 and IBCSG 23-01 randomized clinical trials [1�2].
The inclusion of the sentinel lymph node biopsy (SLNB) in standard
diagnostic procedures of breast cancer since 2005 has greatly
improved the accuracy of ALN status judgment and has allowed
women to avoid axillary lymph node dissection (ALND) if they have
fewer than three positive sentinel lymph nodes [3�4]. However,
SLNB is still an invasive procedure that may cause complications such
as lymphedema and upper limb numbness. Its accuracy is also limited
by radiopharmaceuticals and the modalities of radiocolloid injection
[5�6]. Moreover, it takes a long time for the frozen section of SLNB,
which extends the surgery period. As a consequence, it is urgent and
indispensable to develop a reliable and efficient preoperative evalua-
tion approach of the ALN status in patients with early-stage invasive
breast cancer.

The diagnostic performance of current non-invasive imaging
modalities to assess ALN status, including magnetic resonance imag-
ing (MRI) and axillary ultrasound, are limited by their high false-neg-
ative rates [7]. Nowadays, the development of radiomics in the
aspects of tumor diagnosis, treatment decisions, and prognosis pre-
diction is encouraging, and breast cancer is one of the focal areas in
the exploration [8�10]. MRI examination has been recommended for
preoperative estimation of breast cancer patients, and our previous
study showed that MRI radiomic features of ALN region were helpful
for ALN metastasis (ALNM) prediction [11]. In this retrospective mul-
ticenter study, we aimed to establish a new preoperative approach
based on MRI radiomics focusing on both ALN and tumor regions for
ALNM prediction in patients with early-stage invasive breast cancer;
the final intention is to help tailor the surgical management and
reduce unnecessary SLNB or ALND, thereby decreasing the incidence
of associated postoperative complications and improving the life
quality of patients. Moreover, we explored the association between
MRI radiomics and breast tumor microenvironment.
2. Methods

2.1. Patients and study design

This multicenter study was conducted following the Declaration
of Helsinki and the CLAIM guideline. The study protocol was
approved by the ethics committee of each participating institution
(Sun Yat-sen Memorial Hospital of Sun Yat-sen University, SYSEC-
KY-KS-2019-054-001; Sun Yat-sen University Cancer Center, B2020-
114-01; Shunde Hospital of Southern Medical University, KYLS-
20190579; and Tungwah Hospital of Sun Yat-sen University,
2020DHLL018). The requirement for informed consent in retrospec-
tive cohorts was waived. Participants from the prospective phase III
clinical trials [NCT01503905] [12] provided their informed consent,
and the trial was approved by the ethics committee with the number
of 2011-KY-012-001.

A total of 1,161 patients with early-stage invasive breast cancer
were recruited from four institutions in China, of which 1,088
patients passed quality control. The inclusion criteria were as follows:
(a) female patients aged at least 18 years with histologically con-
firmed staged I�III invasive breast cancer [13]; (b) patients who had
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been treated with surgery and SLNB or ALND, and had pathologically
confirmed ALN status; (c) available preoperative MRI scan of breast
tumor and/or ALN, including contrast-enhanced T1-weighted imaging
(T1+C), T2-weighted imaging (T2WI), or diffusion-weighted imaging
quantitatively measured apparent diffusion coefficients (DWI-ADC).
The exclusion criteria were as follows: (a) biopsy conducted at an
external institution and unavailable pathologic results; (b) lack of pre-
operative T1+C, T2WI, and DWI-ADC, simultaneously (c) previous or
simultaneous presence of other tumors. The clinical T and clinical N
stages were evaluated by imaging (MRI, ultrasonography, or positron
emission tomography) or clinical examination according to the NCCN
guideline [14]. The primary outcome was the ALN status, which was
pathologically determined based on SLNB or ALND.

The patients were divided into three cohorts: (1) the training
cohort (n = 803 from Sun Yat-sen Memorial Hospital of Sun Yat-sen
University, a national hospital [Guangzhou, China], and Sun Yat-sen
University Cancer Center, a national hospital [Guangzhou, China]), (2)
the prospective-retrospective validation cohort (n = 106 from prospec-
tive phase III clinical trials [NCT01503905] collected from Sun Yat-sen
Memorial Hospital of Sun Yat-sen University, a national hospital
[Guangzhou, China]), (3) and the external validation cohort (n = 179
from the Shunde Hospital of Southern Medical University [Foshan,
China] and Tungwah Hospital of Sun Yat-sen University [Dongguan,
China]). All of the patients in the prospective-retrospective validation
cohort underwent neoadjuvant chemotherapy before surgery.

Breast tumors were classified into four molecular subtypes
according to St. Gallen Consensus Conference 2013 [15]. Patients
who were estrogen receptor (ER) and progesterone receptor (PR)-
positive, human epidermal growth factor receptor 2 (HER2)-negative,
and had a Ki67 level of <14% in breast tumors were defined as Lumi-
nal A subtype patients. Luminal B subtype patients included ER-posi-
tive and HER2 overexpressed or amplified patients, or ER-positive
and HER2-negative patients with at least one of the following situa-
tions: Ki67 >14%, PR negative or low PR. If ER and PR were absent,
HER2-positive subtype patients were distinguished by HER2 overex-
pression or overamplification, whereas those with HER2-negative
breast tumors were classified as the triple-negative subtype. These
biomarkers were measured with immunohistochemical methods or
in situ hybridization.

2.2. Radiomic features extraction

The protocol of multi-sequence MRI acquisition across four institu-
tions and the parameters of MR scanners for patients are shown in
appendix pp 9, 10. Multi-sequence MRI images from all of the cohorts
were retrieved from the Picture Archiving and Communication System,
and the N4ITK Bias Field Correction module (https://www.slicer.org/
wiki/Documentation/Nightly/Modules/N4ITKBiasFieldCorrection) in the
3D Slicer software (https://www.slicer.org/, version 4.10.2) [16] was
applied to obtain the standard normal distribution of image intensities
and reduce the possible heterogeneity before feature extraction. Ini-
tially, the regions of interest (ROI) of tumors and lymph nodes were
semi-automatically delineated on each slice obtained via T1+C sequence
by 3D Slicer software. Then, the ROIs of the breast tumor area (ROI-1)
and ALN area (ROI-2) comprising all lymph nodes that can be seen were
applied to T2WI and DWI-ADC (delineated with b value of 800 or
1000 s/mm2 and then copied to the corresponding ADC maps) sequen-
ces, in which elaborated matching was done by the “transform section”
in 3D Slicer software before radiomic feature extraction. In the process
of image segmentation for identifying the ALN and tumor regions, MRI
images were randomly assigned to and delineated by two radiologists
(N Lu and XH Li) who were blinded to the patients’ clinical outcomes
from different institutions. All delineated ROIs and ROIs for which con-
sensus had not been reached were reassessed under the guidance of
two senior radiologists (CM Xie and Z Wu) with more than 20 years of
experience inMRI interpretation. Next, radiomic features corresponding
to the quantitative data obtained after computational translation of
images of ROIs were extracted using the SlicerRadiomics extension in
3D Slicer software, the in-house texture extraction platform developed
based on the python package “PyRadiomics”, which has shown to con-
form to the Image Biomarker Standardization Initiative (IBSI) guidelines.
A total of 863 radiomic features were extracted from each ROI in each
sequence. The features included 12 diagnostic features, 107 original fea-
tures (consisting of seven categories features: first-order statistics,
shape-based, gray level co-occurrence matrix [GLCM], gray level run
length matrix [GLRLM], gray level size zone matrix [GLSZM], neighbour-
ing gray tone difference matrix [NGTDM], and gray level dependence
matrix [GLDM]), and 744 wavelet features (also composed of seven cat-
egories of features). Therefore, a total of 5178 radiomic features were
extracted from ROI-1s and ROI-2s in T1+C, T2WI, and DWI-ADC sequen-
ces. The extracted radiomic features from ROIs of each MRI sequence
were normalized separately using the Z-score to make the dynamic
ranges comparable before radiomic feature selection.

2.3. Tumor and lymph node radiomic signature construction and
validation

The signatures were built based on the training cohort with MRI
radiomic features that were extracted from the breast primary tumor
and the ALN regions of T1+C, T2WI, and DWI-ADC sequences. First, a t-
test was used to detect the associations between each feature and the
patients’ ALN status; MRI radiomic features achieving significance at P
< 0¢05 during the t- test were entered into further selection. Next, the
random forest algorithm [17] was used to select the top 30 radiomic
features based on the mean decrease Gini index from the T1+C, T2WI,
and DWI-ADC sequences of ROI-1 and ROI-2, respectively, in the train-
ing cohort. Then, a total of 180 top features identified by the random
forest algorithm were applied for the construction of the signature via
the support vector machine (SVM) algorithm [18], with the model
type of c-classification and the kernel type of radial basis. The predic-
tive accuracy of the ALN-tumor radiomic signature for predicting
ALNM was initially assessed in the training cohort and then validated
in the prospective-retrospective validation and external validation
cohorts by receiver operating characteristic (ROC) curve analysis.

2.4. Multiomic signature construction and validation

The independent sample t- test was used to assess the association
between clinical characteristics, pathologic characteristics, molecular
subtype, and ALN status in the training cohort. To provide clinicians
with a quantitative tool to predict individual probability of ALNM, all
of these characteristics with P < 0¢05 and key MRI radiomic features
were used for the construction of the multiomic signature via the
SVM algorithm. ROC curve analysis was also performed to evaluate
the performance of the multiomic signature in the training cohort
and was validated in the prospective-retrospective validation and
external validation cohorts.

2.5. Radiomic features varied after neoadjuvant chemotherapy

A total of 45 (42%) of 106 patients from the prospective-retrospec-
tive validation cohort both received MRI examination before and
after the neoadjuvant chemotherapy. The clustering heatmaps of the
key radiomic features extracted from ALN and tumor regions were
performed with the R package pheatmap. The differentiated key
radiomic features after neoadjuvant chemotherapy were analysed
using the paired-samples t- test.

2.6. MRI radiomics features associated with tumor microenvironment

The t- test was utilized to identify differentially expressed genes
[19] associated with the radiomic score in 91 patients with T1+C and

https://www.slicer.org/wiki/Documentation/Nightly/Modules/N4ITKBiasFieldCorrection
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T2WI sequences MRI from The Cancer Genome Atlas (TCGA) and The
Cancer Imaging Archive (TCIA). Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) analyses were performed
using the clusterProfiler R package [20]. The GO terms and KEGG
pathways were considered statistically significant if their P values
and false-discovery rates were lower than 0.05.

The CIBERSORT algorithm [21] and the LM22 gene signature were
used for highly sensitive and specific discrimination of 22 human
immune cell phenotypes. CIBERSORT is a deconvolution algorithm
that uses a set of reference gene expression values (a signature with
547 genes) that is considered a minimal representation for each cell
type. Based on those values, CIBERSORT infers the cell type propor-
tions in the data from bulk tumor samples with mixed cell types
using support vector regression. The gene expression profiles were
prepared using standard annotation files, the data were uploaded to
the CIBERSORT web portal (http://cibersort.stanford.edu/), and the
algorithm was run using the LM22 signature at 1,000 permutations.

Next, the data of 12,578 long non-coding RNAs of transcriptome
RNA sequencing based on the Illumina platform and 23,381 types of
methylated site data based on both the Illumina Human Methylation
27 and the Illumina Human Methylation 450 platforms were used for
analysis. The top 30 ALNM-associated long non-coding RNAs and
types of methylated sites were selected using the random forest algo-
rithm. Correlation analysis was used to estimate the strength of the
correlations with Spearman r.

3. Statistical analysis

The x2 test was performed to examine the differences in the cate-
gorical variables, and the independent-samples t- test was applied to
evaluate the differences in the continuous variables between two
groups. The predictive accuracy of the signatures was assessed by ROC
analysis. The area under ROC curve (AUC) was used to evaluate sensitiv-
ity and specificity in each signature. Additionally, decision curve analysis
(DCA) was performed to assess the clinical utility of the prediction
model by quantifying the net benefits when different threshold proba-
bilities were considered [22]. The patients were categorized into high-
and low-radiomic score groups, with the optimal cutoff values defined
by the R package cutpointr. Heatmaps were generated to show the dis-
tribution and expression levels of radiomic features, immune cells, long
non-coding RNAs, and types of methylated sites. Survival was calculated
using the Kaplan-Meier method and the log-rank test, and hazard ratios
(HRs) and 95% confidence intervals (CIs) were calculated by Cox regres-
sion analysis. For all the analyses, two-sided P-values less than 0¢05
were considered statistically significant. Statistical analyses were per-
formed using R software (version 4.0.2). This study was registered with
ClinicalTrials.gov, number NCT04003558 (Sun Yat-sen University Cancer
Center are included in the training cohort now).

3.1. Role of the funding source

The funding sources had no role in the study design, data collec-
tion, data analysis, data interpretation, or writing of the report. The
corresponding author had full access to all of the data and the final
responsibility, with the agreement of all authors, for the decision to
submit for publication.

4. Results

4.1. Patients’ characteristics

A total of 1,161 early-stage invasive breast cancer patients were
retrospectively recruited; of them, 1,088 patients were eligible for
this study, while 73 patients did not pass the quality control (55
patients did not have histologically confirmed staged I�III invasive
breast cancer, and 18 patients lacked MRI before surgery). The study
design and the study workflow are shown in Fig. 1 and appendix p 1,
respectively. Table 1 shows the clinicopathologic characteristics of
the patients in the training cohort (n = 803), the prospective-retro-
spective validation cohort (n = 106), and the external validation
cohort (n = 179). Of the 1,088 patients, 389 (35¢75%) initially received
the diagnosis of positive ALN status by radiologists through MRI, but
106 (27¢25%) of them did not have ALNM and were confirmed as neg-
ative ALN status with pathologic examination. In contrast, 190
(28¢27%) of 672 patients with clinical negative ALN status were found
to have pathologic positive ALN status.

4.2. Tumor and lymph node radiomic signature for ALN metastasis
discrimination

From a total of 5178 quantitative features from ALN and tumor
regions of three MRI sequences by the random forest algorithm,
180 key radiomic features were selected. The classification of
these features and the process to determine the optimal number
of feature are shown in appendix pp 11, 12. Fig. 2a demonstrates
the overall distribution of key radiomic features from T1+C, T2WI,
and DWI-ADC sequences among patients with and without ALNM
in the training cohort, which shows the obvious difference
between the two groups. Incorporating these key features of the
ALN region to predict ALNM yielded AUC values of 0¢85, 0¢61,
and 0¢81 in the training cohort, the prospective-retrospective val-
idation cohort, and the external validation cohort, respectively
(appendix p 2). Simultaneously, incorporating the three-sequence
key features of the tumor region for ALNM prediction achieved
an AUC of 0¢78, 0¢59, and 0¢63 in the training cohort, the prospec-
tive-retrospective validation cohort, and the external validation
cohort, respectively (appendix p 3). The AUC values for ALNM
prediction of combining the multi-sequence features were higher
than those when incorporating single-sequence features in the
training and the validation cohorts (appendix p 13). We found
that the groups of patients classified correctly by ALN or tumor
radiomic signature were disjoint, which indicated that the radio-
mic signature reflecting phenotypes of the tumor and ALN regions
may achieve better performance. The cases’ classification results
were shown in the Sankey diagram (appendix p 4). We also com-
pared the clinicopathologic characteristics between intersecting
and disjoint groups in the validation cohorts. Except for the case
origin, there were no differences for other characteristics
between intersecting and disjoint groups (appendix pp 14, 15).

When combined both ALN and tumor regions features, the ALN-
tumor radiomic signature was constructed and illustrated good per-
formance in detecting ALNM in the training cohort (AUC, 0¢88), the
prospective-retrospective validation cohort (AUC, 0¢87), and the
external validation cohort (AUC, 0¢87), which outperformed the ALN
or tumor radiomic signature alone (Fig. 2b). The detailed evaluation
indicators for model performance including sensitivity and specificity
are summarized in appendix p 16.

When comparing the performance of the ALNM prediction
between the ALN-tumor radiomic signature and radiologists, we
found that the ALN-tumor radiomic signature achieved higher
accuracy, AUC, and sensitivity than the diagnosis of radiologists
on the same MRI in the training, the prospective-retrospective
validation and the external validation cohorts (appendix p 17).
Besides, we collected the information on radiologists’ evaluations
of both MRI and ultrasound images of 348 patients from Sun Yat-
sen Memorial Hospital; then, we compared the performance
between the ALN-tumor radiomic signature and radiologists’ eval-
uations based on both MRI and ultrasound images. The results
indicated that the ALN-tumor radiomic signature achieved higher
sensitivity (0.83 vs. 0.60 and 0.49), and the clinical utility of the
ALN-tumor radiomic signature was not worse than the standard
clinical practice (appendix p 18).

http://cibersort.stanford.edu/


Fig. 1. Study workflow
(a) Radiomic workflow. Multi-sequence MRI images were used for breast tumor and ALN region identification and the delineation of regions of interest, then features were

extracted using 3D Slicer software for the signatures construction. (b) The association between MRI radiomics and tumor microenvironment. MRI=magnetic resonance imaging.
ALN = axillary lymph node. T1+C=contrast-enhanced T1-weighted imaging. T2WI=T2-weighted imaging. DWI-ADC=diffusion-weighted imaging quantitatively measured the appar-
ent diffusion coefficient. SVM=support vector machine. DC= dendritic cell. MDSC=myeloid-derived suppressor cell. NK=natural killer cell. LncRNA=long non-coding RNA.
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4.3. Multiomic signature for ALN metastasis discrimination

In the univariate analysis, which is presented in appendix p 19,
five differentially expressed clinical characteristics, including age
(P = 0¢012, independent-samples t- test), clinical T stage (P < 0¢001,
Chi-squared test), clinical N stage (P < 0¢001, Chi-squared test), Ki67
expression (P = 0¢010, Chi-squared test), and molecular subtype
(P = 0¢033, Chi-squared test), were found to be associated with ALN
status in the training cohort. To develop a more precise and clinically
applicable method that can predict an individual’s ALN status, we



Table 1
Clinicopathologic characteristics between axillary lymph node positive and negative groups in the training, prospective-retrospective validation and external validation
cohorts.

Training cohort Prospective-retrospective validation cohort External validation cohort
(No. of patients[n] = 803) (n =106) (n =179)
Axillary lymph node status Axillary lymph node status Axillary lymph node status

Characteristic Negative Positive Negative Positive Negative Positive
(n = 475) (n = 328) (n = 28) (n = 78) (n = 94) (n = 85)

Age, years (median [IQR]) 48 [43,56] 48 [41,56] 42 [39,46] 41 [38,45] 49 [43,56] 46 [42,56]
Number of tumors (%)
1 421 (88¢6) 284 (86¢9) 21 (75¢0) 62 (79¢5) 76 (80¢9) 72 (84¢7)
>1 54 (11¢4) 43 (13¢1) 7 (25¢0) 16 (20¢5) 18 (19¢1) 13 (15¢3)
Tumor size, cm (median [IQR]) 2¢0 [1¢6, 2¢7] 2¢5 [2¢0, 3¢2] 3¢6 [2¢6, 5¢0] 3¢1 [2¢5, 5¢1] 2¢3 [1¢7, 2¢8] 2¢8 [2¢1, 3¢7]
Clinical T stage (%)
T1 241 (50¢7) 97 (29¢6) 0 (0¢0) 12 (15¢4) 39 (41¢5) 18 (21¢2)
T2 213 (44¢8) 209 (63¢7) 22 (78¢6) 44 (56¢4) 50 (53¢2) 58 (68¢2)
T3 16 (3¢4) 15 (4¢6) 4 (14¢3) 18 (23¢1) 3 (3¢2) 7 (8¢2)
T4 5 (1¢1) 7 (2¢1) 2 (7¢1) 4 (5¢1) 2 (2¢1) 2 (2¢4)
Clinical N stage (%)
N0 382 (80¢4) 132 (40¢2) 15 (60¢0) 21 (29¢6) 85 (96¢6) 37 (50¢0)
N1 90 (18¢9) 178 (54¢3) 10 (40¢0) 45 (63¢4) 3 (3¢4) 20 (27¢0)
N2 2 (0¢4) 18 (5¢5) 0 (0¢0) 4 (5¢6) 0 (0¢0) 16 (21¢6)
N3 1 (0¢2) 0 (0¢0) 0 (0¢0) 1 (1¢4) 0 (0¢0) 1 (1¢4)
Clinical TNM stage (%)
I 207 (43¢6) 51 (15¢5) 0 (0¢0) 4 (5¢6) 37 (42¢0) 12 (16¢2)
II 253 (53¢3) 241 (73¢5) 22 (88¢0) 51 (71¢8) 48 (54¢5) 42 (56¢8)
III 15 (3¢2) 36 (11¢0) 3 (12¢0) 16 (22¢5) 3 (3¢4) 20 (27¢0)
Histological grade (%)
Grade 1 (low) 22 (5¢0) 2 (0¢6) 0 (0¢0) 0 (0¢0) 4 (4¢9) 5 (6¢7)
Grade 2 (intermediate) 235 (53¢0) 149 (46¢1) 10 (50¢0) 43 (72¢9) 46 (56¢1) 33 (44¢0)
Grade 3 (high) 186 (42¢0) 172 (53¢3) 10 (50¢0) 16 (27¢1) 32 (39¢0) 37 (49¢3)
Pathologic T stage (%)
T1 272 (57¢3) 140 (42¢7) 19 (67¢9) 30 (40¢0) 45 (47¢9) 23 (27¢1)
T2 188 (39¢6) 171 (52¢1) 7 (25¢0) 32 (42¢7) 45 (47¢9) 55 (64¢7)
T3 13 (2¢7) 16 (4¢9) 1 (3¢6) 7 (9¢3) 2 (2¢1) 6 (7¢1)
T4 2 (0¢4) 1 (0¢3) 1 (3¢6) 6 (8¢0) 2 (2¢1) 1 (1¢2)
Pathologic TNM stage (%)
I 271 (57¢1) 0 (0¢0) 19 (67¢9) 0 (0¢0) 45 (47¢9) 0 (0¢0)
II 202 (42¢5) 206 (62¢8) 8 (28¢6) 28 (37¢3) 47 (50¢0) 44 (51¢8)
III 2 (0¢4) 122 (37¢2) 1 (3¢6) 47 (62¢7) 2 (2¢1) 41 (48¢2)
ER status (%)
Negative 64 (13¢6) 51 (15¢5) 5 (17¢9) 8 (10¢3) 20 (21¢3) 25 (29¢8)
Positive 407 (86¢4) 277 (84¢5) 23 (82¢1) 70 (89¢7) 74 (78¢7) 59 (70¢2)
PR status (%)
Negative 128 (27¢2) 91 (27¢7) 14 (50¢0) 23 (29¢5) 31 (33¢0) 29 (34¢5)
Positive 343 (72¢8) 237 (72¢3) 14 (50¢0) 55 (70¢5) 63 (67¢0) 55 (65¢5)
HER2 status (%)
Negative 326 (72¢0) 208 (65¢4) 15 (68¢2) 43 (65¢2) 59 (71¢1) 44 (62¢9)
Positive 127 (28¢0) 110 (34¢6) 7 (31¢8) 23 (34¢8) 24 (28¢9) 26 (37¢1)
Ki67 status (%)
<30 259 (55¢0) 150 (45¢7) 12 (42¢9) 63 (80¢8) 52 (57¢1) 49 (59¢8)
�30 212 (45¢0) 178 (54¢3) 16 (57¢1) 15 (19¢2) 39 (42¢9) 33 (40¢2)
Molecular subtypes (%)
Luminal A 92 (20¢0) 30 (9¢2) 4 (16¢0) 21 (30¢0) 20 (23¢0) 15 (19¢7)
Luminal B 306 (66¢7) 249 (76¢6) 16 (64¢0) 42 (60¢0) 50 (57¢5) 40 (52¢6)
HER2-positive 31 (6¢8) 28 (8¢6) 1 (4¢0) 3 (4¢3) 6 (6¢9) 12 (15¢8)
Triple negative 30 (6¢5) 18 (5¢5) 4 (16¢0) 4 (5¢7) 11 (12¢6) 9 (11¢8)
Type of surgery (%)
Breast-conserving surgery 250 (52¢7) 127 (38¢7) 14 (50¢0) 28 (35¢9) 22 (23¢4) 18 (21¢2)
Others 224 (47¢3) 201 (61¢3) 14 (50¢0) 50 (64¢1) 72 (76¢6) 67 (78¢8)
Follow-up time, months (median [IQR]) 23¢4 [15¢8, 35¢6] 21¢7 [15¢3, 35¢1] 45¢5 [21¢5, 65¢2] 44¢6 [25¢5, 57¢1] 22¢6 [10¢6, 41¢5] 24¢3 [9¢4, 55¢1]

IQR=interquartile range. TNM=tumor�node�metastasis. ER=estrogen receptor. PR=progesterone receptor. HER2=human epidermal growth factor receptor 2. Ki67=prolifer-
ation marker protein Ki67.
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built a multiomic signature incorporating all key radiomic features of
ALN and tumor regions, with clinical characteristics, pathologic char-
acteristics, and molecular subtypes that were significantly associated
with ALNM. The multiomic signature showed better performance in
ALNM prediction and achieved a higher AUC (0¢90) in the training
cohort, the prospective-retrospective validation cohort (AUC, 0¢93),
and the external validation cohort (AUC, 0¢91) (Fig. 2c). The sensitiv-
ity and specificity of the multiomic signature are listed in appendix p
16. As for the combination of these clinicopathologic characteristics
and molecular subtype, it achieved an AUC of 0¢74, 0¢68, and 0¢72 for
predicting ALNM in the training cohort, the prospective-retrospective
validation cohort, and the external validation cohort, respectively
(appendix p 5).

The multiomic signature also exhibited the ability to discriminate
ALNM patients with 1, 2, and 3 positive nodes (AUC of 0¢88, 0¢89, and
0¢92, respectively, in the training cohort; AUC of 0¢79, 1¢00, and 0¢93,
respectively, in the prospective-retrospective validation cohort; and
AUC of 0¢97, 0¢93, and 0¢87, respectively, in the external validation
cohort; appendix p 20). Moreover, to further assess the added value
of the multiomic signature to the ALN status, we conducted subgroup
analysis within patients with different molecular subtypes. Encourag-
ingly, the multiomic signature could identify ALNM patients in the



Fig. 2. Performance and clinical value of magnetic resonance imaging radiomic signatures
(a) Overall distribution of key radiomic features from T1+C, T2WI, and DWI-ADC sequences among patients with and without ALN metastasis in the training cohort (n = 392). (b)

Performance of the ALN-tumor radiomic signature for predicting ALN metastasis in the training (n = 392), the prospective-retrospective validation (n = 45), and the external valida-
tion (n = 112) cohorts. (c) Performance of the multiomic signature for predicting ALN metastasis in the training (n = 381), the prospective-retrospective validation (n = 30), and the
external validation (n = 81) cohorts. (d) Decision curve analysis for the ALN-tumor radiomic signature and the multiomic signature (n = 381). ALN=axillary lymph node. AUC=area
under the receiver operating characteristics curve. T1+C=contrast-enhanced T1-weighted imaging. T2WI=T2-weighted imaging. DWI-ADC=diffusion-weighted imaging quantita-
tively measured the apparent diffusion coefficient.
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subgroups of Luminal A (AUC, 0¢91, 0¢91, respectively), Luminal B
(AUC, 0¢89, 0¢92, respectively), human epidermal growth factor
receptor 2 (Her-2) positive (AUC, 0¢90, 0¢76, respectively), and tri-
ple-negative breast cancer (TNBC) (AUC, 1¢00, 1¢00, respectively)
patients in the training and external validation cohorts (appendix
p 20). In addition, when stratified by other factors such as age,
Ki67 expression level, and clinical T stage, the AUC value of the
multiomic signature remained at 0¢86�1¢00 in these subgroups
(appendix p 20).

According to the radiomic score of the multiomic signature, an
optimal cutoff value of 0¢334 was generated to classify the patients
into high- and low-score groups in the training cohort. The high-
score patients, with a high risk of ALNM, had significantly shorter dis-
ease-free survival compared with the low-score group (HR 0¢43, 95%
CI 0¢21�0¢86, P = 0¢014, log-rank test; appendix p 6).
4.4. Multiomic signature for clinical decision-making

Decision curve analysis was conducted to determine the clinical
usefulness of the multiomic signature by quantifying the net benefits
at different threshold probabilities. The decision curve showed that if
the threshold probability was >5%, the use of the multiomic signa-
ture to predict ALNM added more benefits than either the ALN-tumor
radiomic signature or the radiologists’ diagnosis (Fig. 2d).

During clinical practice, patients’ clinical ALN status judged by the
preoperative MRI is commonly inconsistent with the pathologic ALN
status, and even senior radiologists may make mistakes. The multio-
mic signature could precisely recognize ALNM among patients with
different clinical node stages in the training and validation cohorts
(appendix p 20). As shown in Fig. 3, patient 1 had a pathologic posi-
tive ALN status but was considered as a non-ALNM patient by



Fig. 3. Patients with inconsistent MRI-based ALN status and pathology-based ALN status
Patient 1 had a pathologic positive ALN status, but the MRI-based status was considered negative by radiologists before surgery. In contrast, the MRI-based status of patient 2

had initially been marked as positive by radiologists, but it was later found to be negative on pathologic examination. The ALN status of two patients was accurately assessed
through the multiomic radiomic signature by the cutoff value of 0¢334. MRI=magnetic resonance imaging. ALN=axillary lymph node. T1+C=contrast-enhanced T1-weighted imaging.
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radiologists based on the MRI before surgery. On the contrary, patient
2 had initial diagnosis of ALNM by radiologists but was later found to
be a non-ALNM patient by pathologic examination. The ALN status of
the two patients was accurately assessed through the multiomic sig-
nature by the cutoff value of 0¢334.

4.5. Radiomics changed after neoadjuvant chemotherapy and was
associated with the tumor microenvironment

Among the 106 patients who underwent neoadjuvant chemother-
apy before surgery in the prospective-retrospective validation cohort,
45 patients received MRI examination before the neoadjuvant che-
motherapy. There were significant differences in the key radiomic
features before and after neoadjuvant chemotherapy, especially in
the GLDM-type features (Table 2). Moreover, the expression of 70
features was up-regulated, while the expression of 68 features was
down-regulated. Comparison of the key radiomic features between
neoadjuvant therapy response and non-response groups revealed
two radiomic features (T1+C-wavelet-LLL-GLCM-Inverse difference
moment normalized from tumor region and DWI-ADC-wavelet-
HHH-glszm-Large area low gray level emphasis from ALN region)
that were significantly associated with the response to the chemo-
therapy. Fig. 4 shows that the clustering of key radiomic features
changed greatly after neoadjuvant chemotherapy, which may be
explained by changes of the tumor microenvironment.

To determine whether radiomics can reflect the tumor microenvi-
ronment, we further explored the association between MRI radiomic
features and the tumor microenvironment including 22 immune
cells, long non-coding RNAs, and types of methylated sites in 90
patients with breast cancer from TCGA and TCIA with T1+C and T2WI
sequences MRI. The expression level of 395 long non-coding RNAs
and the enrichment level of 1,784 types of methylated sites were
found to be significantly different between the ALNM and non-ALNM
patients. Moreover, the top 30 ones were selected via the random for-
est algorithm for further analysis. The overall distribution of key
tumor microenvironment features among patients with and without
ALNM is shown in appendix p 7. Correlation analysis showed that the
key radiomic features of ALN and tumor regions remarkably and line-
arly correlated with immune cells, such as M0 macrophages, B naïve
cells, and neutrophils; long non-coding RNAs, such as P11.563P16.1
and RP11.888D10.3; methylated sites, such as cg14681629 and
cg02784848 (Fig. 5).

According to the cutoff value of the radiomic score from the T1+C
and T2WI sequence signatures of the tumor region in the training
cohort, the patients were classified into two groups. In total, 1,381 T1
+C and T2WI sequence-based differentially expressed genes (DEGs)
were obtained among the low-score and high-score patients.
COX6B2 was most up-regulated and PPP2R2C was most down-regu-
lated in high-score patients. Next, the GO and KEGG analyses were
performed to further examine the biological functions of the identi-
fied radiomic-based genes. The GO enrichment analysis showed that
the radiomic-based genes were enriched in various physiological
metabolic processes, such as affection of transmembrane transporter
activity, NADP binding, and ATPase complex (appendix pp 8, 21). The
KEGG pathway enrichment analysis found that these genes were
involved in the oxidative phosphorylation signaling pathway (appen-
dix p 21).

5. Discussion

Unlike previous studies focusing exclusively on the tumor region
or ALN region for predicting ALNM [11,23�24], in this study, the
ALN-tumor radiomic signature combining multi-sequence key radio-
mic features of ALN and tumor regions showed a high predictive abil-
ity and could be applied to predict the ALN status precisely. The
multiomic signature integrating the radiomic features above, ALNM-



Fig. 4. Clustering of key radiomic features before and after neoadjuvant chemotherapy
The clustering of 180 key radiomic features (a) before neoadjuvant chemotherapy

and (b) after neoadjuvant chemotherapy in 45 patients from the prospective-retro-
spective validation cohort.
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associated clinicopathologic characteristics, and molecular subtype
demonstrated better performance in predicting ALNM. In addition,
the multiomic signature improved the accuracy of ALN status evalua-
tion in patients with inconsistent clinical and pathologic ALN status;
moreover, it accurately recognized ALNM in patients with a different
number of positive lymph nodes, different clinical T stages, different
age, different Ki67 expression levels, and different molecule sub-
types. Also, the key radiomic features were found to be associated
with the tumor microenvironment. The findings indicated that the
multiomic signature is an effective tool for ALNM prediction, which
provides useful messages for diagnosis and treatment decision pre-
operatively. It can also prevent unnecessary ALND and even SLNB in
patients with early-stage invasive breast cancer.

Breast cancer patients have distinct ALN status when they are
newly diagnosed, and the treatment plans are also different depend-
ing on their ALN status. It has been demonstrated that patients with
positive ALN status have poorer outcomes than those with negative
ALN status [25]. It is important for clinician’s decision-making that
patients with a positive ALN status are considered as high-risk
patients and need to undergo adjuvant chemotherapy according to
NCCN guidelines [14]. Some TNBC patients with a larger tumor



Fig. 5. The association between MRI radiomics and tumor microenvironment
The correlation between key MRI radiomic features and immune cells, lncRNAs and types of methylated sites in 90 breast cancer patients from The Cancer Genome Atlas and

The Cancer Imaging Archive. Correlation analysis was used to estimate the strength of the correlations with Spearman r. T1+C=contrast-enhanced T1-weighted imaging. T2WI=T2-
weighted imaging. LncRNA=long non-coding RNA. MRI= magnetic resonance imaging.
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burden and clinical positive ALN status are also considered for neoad-
juvant therapy. It should be noted that the misjudgement of the ALN
status is a cause of patients’ overtreatment and a waste in health
care. As for the patients with negative ALN status and without other
risk factors, they can be treated with endocrine therapy alone, which
translates to lower costs and more comfortable treatment experience.
Thus, it is very important to accurately and clearly distinguish the
ALN status for patients with early-stage breast cancer.

During clinical practice, patients’ clinical ALN status judged by the
preoperative MRI is commonly inconsistent with the pathologic ALN
status, and even senior radiologists may make mistakes. To reduce
the misjudgment, tumor size, grade and other tumor-related factors
have been used to predict lymph node metastasis. Some researchers
have shown that the radiomic features derived from tumors contain-
ing a lot of biological information could also predict tumor metasta-
sis, therefore the combination of radiomic features derived from
tumor and lymph node regions for ALNM prediction was explored in
this study. According to the ‘seed and soil’ theory, ALNM initiation
depends on the synergies of the tumor cells (seed) and the ALN
microenvironment (soil), which may explain why including the MRI
profiles of the tumor and ALN regions can improve the performance
of the lymph node diagnostic model.

Besides MRI examination, ultrasound is also favored by clinicians
in clinical practice because of its wide application and easily accessi-
ble data for study. Previous research demonstrated that an approach
based on ultrasound radiomics also showed acceptable performance
for ALN status prediction in early-stage breast cancer patients [8,26].
However, compared with MRI examination, operators’ experience
and heterogeneity from the ultrasound beam’s angle of incidence
often affect the standardization of ultrasound image data, which
results in the lack of reproducibility of the model. As MRI examina-
tion possesses the advantage of showing the three-dimensional spa-
tial position of each organ and tissue with high resolution, it can
provide more comprehensive information for diagnosis and TNM
staging; therefore, MRI has been recommended for lesions that are
difficult to be visualized by ultrasound and mammography, and for
preoperative estimation of breast cancer [27].

Additionally, the ALN-tumor signature based on MR radiomic in
this study illustrated its superiority over general radiologists in
detecting ALNM. Hence, it may be beneficial to combine MR radio-
mics with ultrasound radiomics, which may achieve better perfor-
mance for ALNM prediction; this is especially useful for improving
the diagnosis and treatment level in hospitals in rural areas as a com-
pensation for the disadvantages in these areas with insufficient medi-
cal resources. Some ALNs that are not visible or not captured by
breast MRIs would not be missed if combined with ultrasound radio-
mics.

Previous studies have indicated that the tumor microenvironment
harbours a variety of immune cells, blood vessels, and extracellular
matrix, and changes in the distribution of immune cells and blood
vessel formation may facilitate the development and metastasis of
tumors [28]. It has also been shown that the tumor microenviron-
ment changes greatly after neoadjuvant chemotherapy. Therefore,
many tumor-microenvironment-related factors, such as cancer-asso-
ciated fibroblasts, myeloid-derived suppressor cells, and tumor-asso-
ciated macrophages, have been used to predict tumor metastasis and
therapeutic effects [29�31]. It has been reported that radiomic fea-
tures could reflect the molecular and gene features of tumor and
even provide a large volume of information on the tumor microenvi-
ronment [32�34]. In this study, the key radiomic features of ALN and
tumor regions remarkably and linearly correlated with immune cells,
long non-coding RNAs, and methylated sites. Besides, there were sig-
nificant differences in the key radiomic features before and after neo-
adjuvant chemotherapy, which may be explained by changes of the
tumor microenvironment. Moreover, the up- and down-regulation of
genes in the patients with a high radiomic risk score and the function
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of these genes to develop metastases may reveal the potential biolog-
ical underpinning of MRI radiomics [35�36]. Based on these results,
we think radiomic profiles could help identify potential targets for
molecular-based therapy of breast cancer, which shows implications
for personalized medicine. In the future, we plan to conduct targeted
regulation of these immune cells or epigenetic molecules in the
breast cancer metastasis mouse model; the mice will receive an MRI
examination during the treatment so that the dynamic changes of
the radiomic features during the treatment can be monitored. In that
way, we can verify the scientific hypothesis that targeted regulation
of immune cells or epigenetic molecules can reverse the radiomic
changes and improve the prognosis of breast cancer patients. This
hypothesis will provide a new theoretical and experimental basis for
the precision medicine of breast cancer. Based on the finding that the
ALN-tumor radiomic signature with the integration of radiomic fea-
tures from the tumor and the ALN regions could effectively predict
ALNM, the combination of radiomics and tumor microenvironment
characteristics is promising to improve the predictive ability for
ALNM.

Several limitations still need to be addressed in our study. First,
the clinical information and MRI sequences of some patients were
missing because of the study’s retrospective nature, which led to a
decrease in the sample size. Second, although the normalization was
applied during data pre-processing, the heterogeneity of the MRI
scans from multiple centers was inevitable. Third, the image segmen-
tation method used in this study was based on manual delineation,
which could be replaced by automatic delineation of ROIs using deep
learning methods to improve the reproducibility of our model in the
future. Fourth, because our finding that radiomic features may reflect
the change of tumor microenvironment was based on indirect evi-
dence, validation and experimental proof are needed in the future.
Fifth, for the current study design cannot address the uncertainty and
variability in sentinel lymph node diagnoses, we will construct a
model for sentinel lymph node metastasis and extra-sentinel lymph
node metastasis prediction respectively in the future to solve this
problem. Besides, since the TCIA database only contains MRI images
of the T1+C and T2WI sequences, without the DWI-ADC sequence,
TCIA data were not used to verify our signature performance or in
any other analyses. We also failed to construct an ALNM prediction
model with a combination of tumor microenvironment features, MR
radiomics, and ultrasound radiomics, but further exploration could
be conducted in the future to realize more precise prediction for
ALNM.

In conclusion, this study revealed the clinical value of machine
learning algorithms and presented the multiomic signature incorpo-
rating MRI multi-sequence key radiomic features of ALN and tumor
regions with clinicopathologic characteristics and molecular subtype.
It can be conveniently used to identify ALNM patients among differ-
ent molecular subtypes in early-stage invasive breast cancer and may
eventually result in a preoperative approach to guide future clinical
practice. Furthermore, we also found significant changes in MRI
radiomics after neoadjuvant chemotherapy and the association
between MRI radiomic features and tumor microenvironment fea-
tures including immune cells, long non-coding RNAs, and types of
methylated sites, which may reveal the potential biological underpin-
nings of MRI radiomics.
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